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Abstract: The prime aim of the present study is to present analytical formulations and solutions 

for the buckling analysis of simply supported functionally graded plates (FGPs) using higher 

order shear deformation theory (HSDT). This study considers the thickness stretching effect and 

non-zero transverse shear stresses conditions on the top and bottom surfaces of the plate. It does 

not require shear correction factors. Material properties of the plate are assumed to vary in the 

thickness direction according to a power law distribution in terms of the volume fractions of the 

constituents. The equations of equilibrium and boundary conditions are derived using the 

principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s 

technique. Comparison studies are performed to verify the validity of the present results from 

which it can be concluded that the proposed theory is accurate and efficient in predicting the 

buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, 

modulus ratio, the volume fraction exponent and the loading conditions on the critical buckling 

load of FGPs is also investigated and discussed. 
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1. Introduction 

 

 

Functionally graded materials (FGMs) are the new generation of novel composite materials in 

the family of engineering composites, whose properties are varied smoothly in the spatial 

direction microscopically to improve the overall structural performance. These materials offer 

great promise in high temperature environments, for example, wear-resistant linings for handling 

large heavy abrasive ore particles, rocket heat shields, heat exchanger tubes, thermo-electric 

generators, heat engine components, plasma facings for fusion reactors, and electrically 

insulating metal/ceramic joints and also these are widely used in many structural applications 

such as mechanics, civil engineering, optical, electronic, chemical, mechanical, biomedical, 

energy sources, nuclear, automotive fields and ship building industries to minimize 
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thermomechanical mismatch in metal-ceramic bonding. Most structures, irrespective of their use, 

will be subjected to dynamic loads during their operational life. Increased use of  FGMs in 

various structural applications necessitates the development of accurate theoretical models to 

predict their response. 

  In the past, a variety of plate theories have been proposed to study the buckling behavior of 

FGM plates. The Classical plate theory (CPT) provides acceptable results only for the analysis of 

thin plates and neglects the transverse shear effects. Javaheri and Eslami [1], Abrate [2], 

Mohammadi et al.[3], Mahdavian [4], Feldman and Aboudi [5], Shariat et al. [6], Tung and Duc 

[7] were employed this theory to analyze buckling behavior of FG plates. However, for 

moderately thick plates CPT under predicts deflections and over predicts buckling loads and 

natural frequencies. The first-order shear deformation theories (FSDTs) are based on Reissner [8] 

and Mindlin [9] accounts for the transverse shear deformation effect by means of a linear 

variation of in-plane displacements and stresses through the thickness of the plate, but requires a 

correction factor to satisfy the free transverse shear stress conditions on the top and bottom 

surfaces of the plate. Although, the FSDT provides a sufficiently accurate description of response 

for thin to moderately thick plates, it is not convenient to use due to difficulty with determination 

of the correct value of shear correction factor [10]. 

  The authors [11-16] used FSDT to analyze the buckling of FG plates. In-order to overcome the 

limitations  of FSDT many HSDTs were developed that involve higher order terms in Taylors 

expansions of the displacements in the thickness coordinate. Javaheri and Eslami [17], 

Najafizadeh and Heydari [18], Bodaghi and Saidi [19], Bagherizadeh et al. [20], Mozafari and 

Ayob [21] were used the HSDT to analyze the buckling behavior of FG plates. Ma and Wang [22] 

have investigated the axisymmetric large deflection bending and post-buckling behavior of a 

functionally graded circular plate under mechanical, thermal and combined thermal-mechanical 

load based on classical nonlinear von Karman plate theory. They observed from their 

investigation that the power law index “n” has a significant effect on the mid-plane temperature, 

critical buckling temperature and  on the thermal post-buckling behavior of FGM plate. 

  Hosseini-Hashemi et al. [23] have developed the closed-form solutions in analytical form to 

study the buckling behavior of in-plane loaded isotropic rectangular FG plates without any use of 

approximation for different boundary conditions using the Mindlin plate theory. Saidi et al. [24] 

employed the unconstrained third-order shear deformation theory to analyze the axisymmetric 

bending and buckling of FG solid circular plates in which the bending-stretching coupling exists. 

Oyekoya et al. [25] developed Mindlin-type and Ressner type element for modeling of FG 

composite plate subjected to buckling and free vibration. Further, they studied the plate for the 

effect of different fiber distribution cases and the effects of fire distribution on buckling and free 

vibration. 

Ghannadpour et al. [26] applied finite strip method to analyze the buckling behavior of 

rectangular FG plats under thermal load. The solution was obtained by the minimization of the 

total potential energy and solving the corresponding eigenvalue problem. Thai and Choi [27] 

presented a simple refined theory to analyze the buckling behavior of FG plates which has strong 

similarity with classical plate theory in many aspects, accounts for a quadratic variation of the 

transverse shear strains across the thickness and satisfies the zero traction boundary conditions 

on the top and bottom surfaces of the plate without using shear correction factors. The governing 

equations were derived from the principle of minimum total potential energy. The effects of 

loading conditions and variations of power of functionally graded material, modulus ratio, aspect 

ratio, and thickness ratio were also investigated by these authors. 

Thai and Vo [10] have developed a new sinusoidal shear deformation theory to study the 
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bending, buckling and vibration of FG plates accounting for sinusoidal distribution of transverse 

shear stress and satisfies the free transverse shear stress conditions on the top and bottom 

surfaces of the plate without using shear correction factor. Uymaz and Aydogdu [28] analyzed 

the rectangular FG plates under different axial loadings for buckling based on small strain 

elasticity theory with different boundary conditions.  They also investigated the effects of the 

different material composition and the plate geometry on the critical buckling loads and mode 

shapes. 

Lal et al. [29] have examined the second order statistics of post buckling responses of FGM 

plate subjected to mechanical and thermal load with non-uniform temperature changes subjected 

to  temperature independent and dependent material properties. The effect of random material 

properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, 

boundary conditions and types of loadings subjected to temperature independent and temperature 

dependent  material properties were investigated  through numerical examples. 

This paper aims to develop analytical formulations and solutions for the buckling analysis of 

functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) 

accounting the thickness stretching effect and without enforcing zero transverse shear stress on 

the top and bottom surfaces of the plate. This doesnot require shear correction factor. The plate 

material is graded through the thickness direction. The plate’s governing equations and its 

boundary conditions are derived by employing the principle of virtual work. Solutions are 

obtained for FGPs in closed-form using Navier’s technique and solving the eigenvalue equation. 

The present results are compared with the solutions of the Thai and Choi [27] to study the effect 

of thickness stretching in predicting the critical buckling loads of FG plates. The effect of 

side-to-thickness ratios, aspect ratios and modulus ratios and the volume fraction exponent on 

the critical buckling loads are studied after establishing the accuracy of the present results for FG 

plates. 

 

2. Theoretical formulation 

 

  In formulating the higher-order shear deformation theory, a rectangular plate of length a, width 

b and thickness h is considered, that composed of functionally graded material through the 

thickness. Figure 1 shows the functionally graded material plate with the rectangular Cartesian 

coordinate system x, y and z. The material properties are assumed to be varied in the thickness 

direction only and the bright and dark areas correspond to ceramic and metal particles 

respectively. On the top surface (z=+h/2), the plate is composed of full ceramic and graded to the 

bottom surface (z=-h/2) that composed of full metal. The reference surface is the middle surface 

of the plate (z=0). The functionally graded material plate properties are assumed to be the 

function of the volume fraction of constituent materials. The functional relationship between the 

material property and the thickness coordinates is assumed to be  
 

bbt P +
2

1
)P-(P =P(z)

n

h

z








          (1) 

 

  Where P denoted\s the effective material property, Pt, and Pb denotes the property on the top 

and bottom surface of the plate respectively and n is the material variation parameter that dictates 

the material variation profile through the thickness. The effective material properties of the plate, 

including Young’s modulus, E, density, ρ, and shear modulus, G, vary according to equations (1) 

and poisons ratio (υ) is assumed to be constant. 
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Figure 1. Functionally graded plate and coordinates 
 

2.1. Displacement models 

 

  In order to approximate 3D plate problem to a 2D one, the displacement components u (x, y, z, 

t), v (x, y, z, t) and w (x, y, z, t) at any point in the plate are expanded in terms of the thickness 

coordinate. The elasticity solution indicates that the transverse shear stress varies parabolically 

through the plate thickness. This requires the use of a displacement field, in which the in-plane 

displacements are expanded as cubic functions of the thickness coordinate. In addition, the 

transverse normal strain may vary nonlinearly through the plate thickness. The displacement 

field which satisfies the above criteria may be assumed in the form: 
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Where u0, v0 is the in-plane displacements of a point (x, y) on the mid plane; 

wo is the transverse displacement of a point (x, y) on the mid plane; 

x, y , z are rotations of the normal to the mid plane about y and x–axes;  

u0
*
, v0

*
, w0

*
, x

*
, y

*
, and z

*
 are the corresponding higher order deformation terms. 

By substitution of displacement relations from equations (2) into the strain displacement 

equations of the classical theory of elasticity the following relations are obtained: 
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2.2. Elastic stress-strain relations 

 

The elastic stress-strain relations depend on which assumption of εz≠0. In the case of 

functionally graded materials the constitutive equations can be written as: 
 

























































































xz

yz

xy

z

y

x

xz

yz

xy

z

y

x

Q

Q

Q

QQQ

QQQ

QQQ

























66

55

44

332313

232212

131211

00000

00000

00000

000

000

000

       (4) 

 

  Where( x, y, z, xy, yz, xz) are the stresses and ( zyx ,,    , xy, yz, xz) are the strains with 

respect to the axes, Qij’s are the plane stress reduced elastic coefficients in the plate axes that 

vary through the plate thickness given by 
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  Where Ec is the modulus of Elasticity of the ceramic material and Em is the modulus of 

elasticity of the metal. 

 

2.3. Governing equations of motion  

 

  The work done by the actual forces in moving through virtual displacements, that are 

consistent with the geometric constraints of a body is set to zero to obtain the equation of motion 

and this is known as energy principle. It is useful in (a) deriving governing equations and the 

boundary conditions and (b) obtaining approximate solutions by virtual methods.  

Energy principles provide alternative means to obtain the governing equations and their solutions. 

In the present study, the principle of virtual work is used to derive the equations of motion of 

functionally graded plates.    

The governing equations of displacement model in Equation (2) will be derived using the 

dynamic version of the principle of virtual displacements, i.e.  
 

0)(
0

 dtKVU

T

                                                       (6) 

 

Where U = virtual strain energy  

V = virtual work done by applied forces  

K = virtual kinetic energy   

U + V = total potential energy.  

  The virtual strain energy, work done and kinetic energy is given by: 
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Where q = distributed load over the surface of the plate. 

xN  and yN  the inplane loads perpendicular to the edges x=0;  and y=0 respectively, 

and  xyN yxN the distributed shear forces parallel to the edges x=0; and y=0 respectively 

0 = density of plate material  

0u = u0 / t, 0v = v0 / t etc. indicates the time derivatives  

  Substituting for U, V and K in the virtual work statement in Equation (6) and integrating 

through the thickness, integrating by parts and collecting the coefficients of 
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******
,,,,,,,,,, zyxooozyxooo wvuwvu   the following equations of motion are 

obtained. 
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Where the force and moment resultants are defined as: 
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and the transverse force resultants and inertias are given by: 
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  The resultants in Equations (11) - (13) can be related to the total strains in Equation (4) by the 

following matrix: 
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Where 
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  The matrices [A], [B], [D] and [Ds] are the plate stiffness whose elements can be calculated 

using Equation (4), and Equations (11) - (13). 
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3. Analytical solution for the simply supported plate 

 

Let a simply supported rectangular plate with length a and width b which is subjected to 

in-plane loading in two directions ( 0,, 21  xycrycrx NNNNN  ). The following 

expressions of displacements are chosen based on the Navier’s approach to automatically satisfy 

the simply supported boundary conditions of the plate. 
 

yxUyxu mn

nm

 sincos),(
11

0 








 , 0≤x≤a; 0≤y≤b;                              (16a) 

yxVtyxv mn

nm

 cossin),,(
11

0 








  0≤x≤a; 0≤y≤b;                              (16b) 

ti

mn

nm

eyxWyxw  








 sinsin),(
11

0
, 0≤x≤a; 0≤y≤b;                           (16c) 

yxXyx mn

nm

x  sincos),(
11










 , 0≤x≤a; 0≤y≤b;                               (16d) 

ti

mn

nm

y eyxYyx  








 cossin),(
11

, 0≤x≤a; 0≤y≤b;                           (16e) 

yxZyx mn

nm

z  sinsin),(
11










 , 0≤x≤a; 0≤y≤b;                               (16f) 

yxUyxu mn

nm

 sincos),( *

11

*

0 








 , 0≤x≤a; 0≤y≤b;                              (16g) 

yxVyxv mn

nm

o  cossin),( *

11

*










 , 0≤x≤a; 0≤y≤b;                              (16h) 

yxWyxw mn

nm

 sinsin),( *

11

*

0 








 , 0≤x≤a; 0≤y≤b;                              (16i) 

yxXyx mn

nm

x  sincos),( *

11

*










 , 0≤x≤a; 0≤y≤b;                              (16j) 

yxYyx mn

nm

y  cossin),( *

11

*










 , 0≤x≤a; 0≤y≤b;                              (16k) 

yxZyx mn

nm

z  sinsin),( *

11

*










 , 0≤x≤a; 0≤y≤b;                               (16l) 

 

  The eigen problem related to governing equations is defined as 
 

   0][ 9999   XS
                                                        (17) 

 

  Where [S] collects all stiffness terms and ][  collects all terms related to the in-plane forces. 

In Equation (17) X are the modes of buckling associated with the buckling loads defined as λ. 

For each value of m and n, there is a unique value of Ncr. The critical buckling load is the 

smallest value of Ncr(m, n). 
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4. Results and discussion 

 

4.1. Comparative studies 

 

  To validate the accuracy of the present higher order theory in predicting the critical buckling 

load of FG plates subjected to different in-plane loading conditions (Uniaxial 

compression: ;0,1 21     biaxial compression: ;1,1 21     biaxial compression 

and tension 1,1 21     ), three numerical examples are presented and discussed. The 

material properties adopted here are : 

Aluminium Young’s modulus (Em)= 70GPa, density ρm= 2702 kg/m
3
, and Poisson’s ratio (υ)= 

0.3; Alumina Young’s modulus (Ec)= 380GPa, density ρc= 3800kg/m
3
, and Poisson’s ratio (υ)= 

0.3. 

For convenience, the critical buckling load is presented in nondimensionalized form as: 

3

2

hE

a
NN

m

cr                                                                                                                       (18) 

                                                                                                   

Example 1. 

  The first comparison is carried out for simply supported FG plate subjected to uniaxial 

compression along the x-axis ( 0,1 21   ) The comparisons of nondimensionalized critical 

buckling loads ( N ) obtained by present theory and those given by Thai and Choi [27] is 

presented in Table 1. It can be observed that, the effect of thickness stretching is lowering the 

critical buckling loads compared to the results of Thai and Choi [27]. It can also be seen that, the 

critical buckling load decreases with the increase of power-law index value while it increases 

with the increase of aspect ratio. Furthermore, increasing of thickness ratio, aspect ratio, not only 

increases the critical buckling load values, but also causes the changes in critical buckling modes 

at aspect ratio value is 1.5 and 2 when thickness stretching effect is not considered and only one 

buckling mode is exist when thickness stretching effect is considered. 

 

Table 1. Comparison of nondimensionalized critical buckling load ( N )of simply supported Al/Al2O3 plate  

subjected to uniaxial compression along x-axis ( 0,1 21    ) 

  
Power law index (n) 

a/b 
 

0 0.5 1 10 

0.5 Ref.[27] 7.4053 4.8206 3.7111 2.1896 

 
Present 7.37802 4.80131 3.69368 2.1785 

1 Ref.[27] 18.5785 12.1229 9.3391 5.4528 

 
Present 18.4721 12.0473 9.27091 5.4104 

1.5 Ref.[27] 40.7476
a
 26.9091

a
 20.8024

a
 11.5379

a
 

 
Present 47.0557 30.7961 23.7109 13.613 

2 Ref.[27] 64.0842
a
 42.5015

a
 32.898

 a
 17.9227

a
 

 
Present 106.144 69.7804 53.764 30.233 

a
Mode for plate is (m, n)=(2, 1) 

 

Example 2. 

The next comparison is performed for the simply supported FG plate subjected to inplane 

biaxial compression ( 1,1 21    ). The results of critical buckling loads obtained by 
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present theory and those reported by Thai and Choi [27] are presented in Table 2 and observed 

that the critical buckling loads are higher when thickness stretching is neglected comapared to 

the present results. It can be seen that, in this loading condition also, the nondimensionalized 

critical buckling load decreases with the increase of power-law index, while increases with the 

increase of aspect ratio, but only one critical buckling mode exists in any case of the aspect ratio, 

thickness ratio and modulus ratio, and power-law index. 

Table 2. Comparison of nondimensionalized critical buckling load ( N ) of simply supported Al/Al2O3 plate  

subjected to biaxial compression ( 1,1 21    ) 

  

Power law index (n) 

a/b 

 

0 0.5 1 10 

0.5 Ref. [27] 5.9263 3.8565 2.9689 1.7517 

 
Present 5.9024 3.841 2.9549 1.74276 

1 Ref. [27] 9.2893 6.0615 4.6696 2.7264 

 
Present 9.236 6.0237 4.6355 2.7052 

1.5 Ref. [27] 14.608 9.5685 7.3793 4.2384 

 
Present 14.479 9.4757 7.2957 4.1885 

2 Ref. [27] 21.505 14.1552 10.9323 6.1481 

 

Present 21.229 13.956 10.753 6.04668 

 

Example 3.  

  The last comparison is carried out for the simply supported FG plates under inplane biaxial 

compression and tension ( 1,1 21   ). The results predicted by present theory are compared 

with the Thai and Choi [27] results and seen that the present theory results are lower due to 

thickness stretcing effect. The results are presented in Table 6.3. It can also be seen that, under 

biaxial compression and tension also, the critical buckling load decreases with the increase of 

power-law index value while it increases with the increase of aspect ratio, same as in uniaxial 

and biaxial compression. Also,  increasing of thickness ratio, aspect ratio, not only increases the 

critical buckling load values, but also causes the changes in critical buckling modes. This can be 

observed when  aspect ratio value is 1. The critical buckling mode varies from (2,1) to (1,2). 

 

Table 3. Comparison of nondimensionalized critical buckling load( N ) of simply supported Al/Al2O3 plate  

subjected to biaxial compression and tension( 1,1 21   ) 

  
Power law index (n) 

a/b 
 

Ceramic 0.5 1 10 

0.5 Ref. [27] 9.8738 6.4275 4.9481 2.9195 

 
Present 9.83737 6.40174 4.9249 2.9046 

1 Ref. [27] 35.8461
a
 23.5920

b
 18.2206

a
 10.2468

a
 

 
Present 35.3812

a
 23.2603

b
 17.9215

a
 10.0781

a
 

1.5 Ref. [27] 37.9819 24.8781 19.1863 11.0199 

 
Present 37.6446 24.6369 18.9687 10.8901 

2 Ref. [27] 35.8416 23.592 18.2206 10.2468 

 
Present 35.3812 23.2601 17.9213 10.0778 

a
Mode for plate is (m, n)=(2, 1) 

b
Mode for plate is (m, n)=(1, 2) 
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4.2. Parametric study 

 

  The effect of side-to-thickness ratio, aspect ratio and the modulus ratio of nondimensionalized 

critical buckling load  for simply supported FG plate made of Al/Al2O3 with 0z  is 

investigated. Figure 2 - Figure 4 represents the variation of nondimensionalized critical buckling 

load with side-to-thickness ratio, aspect ratio and modulus ratio respectively under uniaxial 

compression. It is important to observe that, the effect of shear deformation and 

bending-extensional coupling is most for metals and least for ceramics and also the shear 

deformation effect is felt for a/h≤10, aspect ratio a/b≤1.5 and for modulus ratio Em/Ec =0.5. Also 

it is shown that, increase of side-to-thickness ratio and aspect ratio and power-law index values, 

increases the nondimensionalized critical buckling load while it decreases with increase of 

modulus ratio. 

  The effect of side-to-thickness ratio, aspect ratio, modulus ratio and power law index values 

on nondiensionalized critical buckling load for a simply supported FG plate under biaxial 

compression is shown in Figure 5 - Figure 7. The same can be observed as in the case of uniaxial 

compression. It is important to observe that, the critical buckling loads are larger in uniaxial 

compression and smaller in biaxial compression. Figure 8 shows the variation of 

nondimensionalized critical buckling load of different modulus ratios and power law index 

values under inplane compression and tension. It can be observed that, critical buckling load 

decreases with the increase of modulus ratio and power-law index values. 

 

 
Figure 2. Effect ofside to thickness ratios(a/h) on nondimensionalized critical buckling load 

    ( N )under uniaxial compression for a simply supported FG plate for various  
materialvariation parameters(n) 
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Figure 3. Effect of aspectratios(a/b) on nondimensionalized critical buckling load ( N ) under uniaxial  

compression for a simply supported FG plate for various material variation parameters(n) 
 

 
Figure 4. Effect of modulus ratio (Em/Ec) on nondimensionalized critical buckling load ( N ) under uniaxial  

compression for a simply supported FG plate for various material variation parameters(n) 
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Figure 5. Effect ofside to thickness ratios(a/h) on nondimensionalized critical buckling load ( N ) under 

biaxial compression for a simply supported FG plate for various material variation parameters(n) 
 
 
 

 
Figure 6. Effect ofaspect ratios(a/b) on nondimensionalized critical buckling load ( N ) under biaxial  

compression for a simply supported FG plate for various material variation parameters(n) 
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Figure 7. Effect ofmodulus ratios(Em/Ec) on nondimensionalized critical buckling load ( N ) Under biaxial  

compression for a simply supported FG plate for various material variation parameters(n) 
 
 

 
Figure 8. Effect ofmodulus ratios(Em/Ec) on nondimensionalized critical buckling load ( N )under biaxial   

compression and tension for a simply supported FG plate for various material variation  
parameters(n) 



B. S. Reddy,  J. S. Kuma,  C. E. Reddy, and K. V. K. Reddy 

34     Int. J. Appl. Sci. Eng., 2015. 13, 1 

5. Conclusions 

 

A higher order shear deformation theory with thickness stretching effect was successfully 

developed and applied to study the buckling behavior of functionally graded plates without 

enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. The present 

formulation was compared with the refined theory developed by Thai and Choi[27] and the 

effect of thickness stretching is observed.This eliminated the need of using shear correction 

factors. It can be concluded that for getting the more improved results for buckling the thickness 

stretching effect should be included in the development of the higher order theory for simply 

supported FG plates. Hence, the present findings will be useful benchmark for evaluating the 

other future plate theories and numerical methods such as the finite element and meshless 

methods.  
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