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Abstract: In this paper, an exponentially fitted arithmetic average difference scheme is proposed 

to solve singularly perturbed differential equations with dual layer behaviour. In this method, we 

have extended the arithmetic average finite difference method to the second order singularly 

perturbed two-point boundary value problem. We have introduced a fitting factor in a three point 

arithmetic average discretization for the given problem which takes care of the rapid changes 

that occur in the boundary layers due to the perturbation parameter. This fitting factor is obtained 

from the asymptotic approximate solution of singular perturbations. The discrete invariant 

imbedding algorithm is used to solve the tridiagonal system of the fitted method. Maximum 

absolute errors of the several numerical examples are presented to illustrate the proposed 

method. 
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1. Introduction 

 

Singular perturbation problem now is a maturing mathematical area with long history and a 

strong promise for continued important applications throughout science and engineering. 

Singular perturbation problems arise in various fields of engineering and applied sciences such 

as fluid dynamics, electrical networks, and many other areas. Typical examples of Singular 

Perturbation Problems include Navier-Stokes equation of fluid at high Reynolds number, heat 

transport problem with Peclet numbers, magneto-hydrodynamics duct problems with Hartman 

number. A differential equation with a small positive parameter multiplying the highest 

derivative term is generally called the Singular Perturbation Problem. 

For a detailed theoretical and analytical discussion on this topic, one may refer to the 

references [1-8]. The survey papers by Kadalbajoo and Reddy [9], Kadalbajoo and Patidar [10] 

give an erudite outline of the singular perturbation problems and their treatment on fluid 

dynamical boundary layers. A set of general sufficient conditions for a uniformly convergent 

scheme for singularly perturbed turning point problem is obtained by Farrell [11]. Natesan and 

Ramanujam [12] derived a computational method for the singularly perturbed turning point 
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problem in which exponentially fitted difference schemes are combined with classical numerical 

methods. Natesan et. al. [13] proposed a parameter uniform numerical method on Shishkin mesh 

to solve singularly perturbed turning point problems. Miller et al. [14] elucidate the classical 

schemes on Shishkin meshes to solve singularly perturbed BVPs of convection–diffusion and 

reaction–diffusion problems subject to Dirichlet boundary conditions. Phaneendra et. al. [15] 

proposed a fitting factor in Numerov method to solve singular perturbation problems with twin 

boundary layers. The solution of singular perturbation problem exhibits boundary layers. A 

boundary layer is a narrow region in which solution of the problem changes rapidly. For these 

problems, the existing numerical methods produce good results only if we take h , where h 

is mesh size and   is the perturbation parameter. But this is costly and time consuming process. 

If we take h , the existing numerical methods produce oscillatory solution and pollute the 

solution in the entire interval, because of the boundary layer behavior. Thus, in this paper we 

proposed an efficient and simpler computational technique to solve singularly perturbed 

two-point boundary value problems. In this paper, we proposed an exponentially fitted arithmetic 

average difference scheme on a uniform mesh for solving singularly perturbed two-point 

boundary value problems exhibiting dual boundary layers. In section 2, we described the fitted 

arithmetic finite difference method by extending the arithmetic finite difference scheme to the 

second order singularly perturbed two-point boundary value problem. To demonstrate the 

efficiency of the proposed method, numerical experiments are carried out for several test 

problems and the results are given in Section 3. Finally the discussions and conclusion are given 

in the last section. 

 

2. Numerical method 

 

To describe the method, we consider the singularly perturbed two point boundary value 

problem of the form: 

),1 ,0(       ; )()()(  xxfxyxby   (1) 

with boundary conditions   )1(  and  )0( yy     (2) 

Since, the problem (1) exhibits dual (twin) layers, we consider the asymptotic expansion 

solution of for the problem (1) and (2) (Doolan et. al. [16]): 

 





0

)()()(),(
i

i
iii wvxyxy   ,      (3) 

where  x  and  )1( x . Then the zeroth order of the above asymptotic expansion 

is given by 

)()()()( 000  wvxyxy    (4) 

where 

)(

)(
)(0

xb

xf
xy     (5) 

is the solution of the reduced problem of (1) and (2), which does not satisfy both the boundary 

conditions, 0v  is the left boundary layer correction and 0w  is the right boundary layer 

correction. 
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The solutions 00 ,wv  satisfy the differential equations 

) ,0(          ; 0)()0(
)(

02

0
2

 



vb

d
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   (6) 

) ,0(         ; 0)()1(
)(

02

0
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


wb

d

wd
   (7) 

with )0()1()0( 000 ywv  


  

)1()0()1( 000 ywv  


  

0)()( 00   wv  

Solutions of (6) and (7) are given by 




)0(
0 )(

b
Aev


   (8) 


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)1(
0 )(

b
Bew


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Therefore, zeroth order solution of (1) and (2) becomes 
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)1()0(

0 )()(
x

b
x

b

BeAexyxy

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where A and B are given by 
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eyy
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We rewrite the differential equation )()()( xfxyxby   as 

)()()(),(   where),()( xfxyxbyxgyxgxy  . 

Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 

1,....,,,0 210  Nxxxx  be the mesh points. Then we have Niihxi ,...,1,0 ;  . We choose n 

such that 
2

1
nx . Then in 









2

1
,0 the boundary layer will be in the left hand side i.e., at 0x  

and in 







1,

2

1
 the boundary layer will be in the right hand side i.e., at 1x . 

At ixx   the above differential equation can be written as 

)()()(),(   where),()( iiiiiiii xfxyxbyxgyxgxy    (12) 
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We consider the three-point arithmetic average discretization given by Chawla [17] for the 

problem (1): 

)(
3
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Then equation (13), becomes 
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  (14) 

In the interval 








2

1
 ,0 , we introduce a fitting factor 1  in the difference scheme (14) as 
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for .1,...,2,1  ni  To find the value of 1  on the left boundary layer, we use the left 

boundary layer asymptotic solution 
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     (16) 

and A is given by (10).  We assume that solution converges uniformly to the solution of (1), 

then 2/12/1   iii fff  is bounded. As 0h , equation (15) becomes 
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Substituting these expressions in (17) and simplifying, we get the fitting factor 
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This will be the fitting factor in the interval 








2

1
,0 . Substituting the fitting factor (18) in (15), we 

have the three term recurrence relation as 
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In the interval 







1,

2

1
, the boundary layer will be in the right hand side i.e., at 1x . We 

introduce a fitting factor 2 in the difference scheme (15) as 
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for i = n+1,n+2,…..N-1. To find the value of 2  on the right boundary layer, we use the right 

boundary layer asymptotic solution 
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where B is given by (11). Assume that solution converges uniformly to the solution of (1), then 
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Substituting these in (22) and simplifying, we get the fitting factor as 
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This will be the fitting factor in the interval 




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. Now from the equation (20), we have the 

three term recurrence relation 
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We solve the above tridiagonal system (19), (24) by discrete invariant imbedding algorithm 

together with the value of 









2

1
xyyn  which is obtained by the solution of the reduced 

problem, i.e., )(0 xy . 

 

3. Numerical Examples 

 

To demonstrate the applicability of the method, we have applied it to four linear singular 

perturbation problems with dual boundary layers. These examples have been chosen because 

they have been widely discussed in literature and because exact solutions are available for 

comparison. Maximum absolute errors are presented in tables. We calculate the maximum 

absolute errors in the solution by the principle )()(max i

N

i
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e
Dx

N xYxYG
N

i


 

 . Here )( i

N

e xY  

denotes the exact solution at ixx   and )( i

N xY  denotes the numerical solution at ixx  . 
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Example 1.  
Consider the following non-homogeneous singular perturbation problem 

xxxyxy  2cos2cos)()( 22  ; x[0,1] 

with y(0) = 0 and y(1) = 0. 

The exact solution is given by 

     
 
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e

ee
xy
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2
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)( 
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
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



 

The maximum absolute errors are presented for different values of h and   in Table 1 with 

fitting factor and without fitting factor. 

 

 

Table 1. The maximum errors in solution of Example 1 for small values of h  
 h 

 

 

    

with f.f without f.f with f.f without f.f with f.f without f.f with f.f without f.f 

 
1.23(-2) 1.71(-1) 1.10(-3) 6.76(-2) 7.63(-5) 1.74(-2) 4.90(-6) 4.10(-3) 

 
2.35(-2) 2.75(-1) 4.60(-3) 2.13(-1) 5.60(-4) 1.19(-1) 4.47(-5) 4.18(-2) 

 
2.52(-2) 2.91(-1) 6.20(-3) 2.68(-1) 1.40(-3) 2.42(-1) 2.39(-4) 1.80(-1) 

*with f.f = with fitted arithmetic average finite difference scheme 

*without f.f.= arithmetic average finite difference scheme (Chawla and Shivakumar [17]) 

 

 

Example 2.  

Consider the following non-homogeneous singular perturbation problem 

1)()(  xyxy ; x[0,1] 

with y(0) = 0 and y(1) = 0.  

The exact solution is 
 


xx

eexy





1

1)(  . The maximum absolute errors are 

presented for different values of h and   in Table 2 with and without fitting factor. 

 

 

Table 2. The maximum errors in solution of Example 2 for small values of h  

 h 

 

 

    

with f.f without f.f with f.f without f.f with f.f without f.f with f.f without f.f 

 
1.84(-14) 1.50(-1) 1.84(-14) 6.23(-2) 1.84(-14) 1.64(-2) 1.84(-14) 3.80(-3) 

 
2.22(-16) 2.66(-1) 2.22(-16) 2.60(-1) 2.22(-16) 2.40(-1) 2.22(-16) 1.80(-1) 

 
2.22(-16) 2.66(-1) 2.22(-16) 2.60(-1) 2.22(-16) 2.40(-1) 2.22(-16) 1.80(-1) 

 

  



32 42 52 62

310

410

510



32 42 52 62

310

410

510
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Example 3.  

Consider the following variable coefficient singular perturbation problem 

1)()2()( 2  xyxxy ;   x[-1, 1] 

with y(-1) = 0 and y(1) = 0. 

The exact solution is 

   



xx

ee
x

xy








11

22

1
)(

. 
The maximum absolute errors are 

presented for different values of h and   in Table 3 with and without fitting factor. 

 

 

Table 3. The maximum errors in solution of Example 3 for small values of h  
h 

 

 

    

with f.f without f.f with f.f without f.f with f.f without f.f with f.f without f.f 

 
2.46(-2) 1.49(-1) 2.09(-2) 7.91(-2) 1.74(-2) 3.20(-2) 1.72(-2) 2.05(-2) 

 
2.16(-2) 2.22(-1) 1.14(-2) 1.98(-1) 7.10(-3) 1.20(-1) 5.60(-3) 4.66(-2) 

 
2.16(-2) 2.33(-1) 1.12(-2) 2.45(-1) 5.60(-3) 2.34(-1) 2.80(-3) 1.79(-1) 

 

 

Example 4.  

Consider the following non-homogeneous singular perturbation problem 

















)1(

21)()(

xx

eexyxy ; x[0,1] 

with y(0) = 0 and y(1) = 0. 

The exact solution is given by 
)1(

)1(1)(





xx

xeexxy . The maximum absolute 

errors are presented for different values of h and   with and without fitting factor in Table 4. 

 

 

Table 4. The maximum errors in solution of Example 4 for small values of h  
h 

 

 

    

with f.f without f.f with f.f without f.f with f.f without f.f with f.f without f.f 

 
8.54(-4) 1.52(-1) 3.10(-4) 6.39(-2) 3.19(-5) 1.70(-2) 2.12(-6) 4.00(-3) 

 
1.24(-5) 2.50(-1) 1.84(-4) 2.07(-1) 2.31(-4) 1.18(-1) 5.03(-5) 4.19(-2) 

 
5.50(-12) 2.66(-1) 1.07(-7) 2.60(-1) 1.35(-5) 2.40(-1) 8.01(-5) 1.80(-1) 
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4. Discussions and conclusion 

 

We proposed an exponentially fitted arithmetic average finite difference method for solving 

singularly perturbed two-point boundary value problems with boundary layer at both (left and 

right) end points. To take care of the rapid changes that occur in the boundary layers due to small 

perturbation parameter, we introduced a fitting factor in three – point arithmetic average finite 

difference scheme. We obtained the value of the fitting factor from the asymptotic approximate 

solution of singular perturbations. We have implemented the present method on standard test 

problems. Maximum absolute errors of the numerical experiments are presented in tables. We 

compare the results by the present fitted scheme with the results by the three – point arithmetic 

average finite difference method [17] without fitting factor for small values of h , which 

shows that present scheme gives accurate results than three – point arithmetic average finite 

difference method. It shows the importance of the fitting factor introduced in the scheme. It is 

observed from the results that the present method approximate the exact solution very well. We 

have also presented graphical representation of the numerical and exact solution for the problems 

in Figures 1-4, to show the behaviour of the layer at both ends. From the graphs, we observed 

that numerical solution approximate exact solution very well in the boundary layers. 

 

 

 

 

Figure 1. Numerical solution of Example 1 with 36 10  ,2   h  
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Figure 2. Numerical solution of Example 2 with 36 10  ,2   h  
 
 
 

 
 

Figure 3. Numerical solution of Example 3 with 46 10  ,2   h  
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Figure 4. Numerical solution of Example 4 with 36 10  ,2   h  
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