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Abstract: In this paper, we consider a classical food chain model describing predator-prey 

interaction in a chemostat. The Michaelis-Menten kinetics is used as the uptake for both predator 

and prey. We observe the dynamical behavior of the model around each of the equilibria and 

points out the exchange of stability. We use Lyapunov function in the study of the global stability 

of predator-free equilibrium. Using removal rate of prey as the bifurcation parameter, we prove 

that the model undergoes a Hopf bifurcation around interior equilibrium. It has been found that 

the dynamical behavior of the model is very sensitive to the parameter values. With the aid of 

numerical simulations we analyze the model equations and illustrate the key points of analytical 

findings, and determine the effects of operating parameters of the chemostat on the dynamics of 

the system. 
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1. Introduction 

 

The chemostat is a laboratory apparatus used to study general properties of population growth 

and interaction among micro-organisms under nutrient limitation in a controlled environment. 

The continuous culture model with Monod kinetics for nutrient uptake has received a great deal 

of attention since it was first introduced and a complete mathematical theory of this model has 

been developed. There are many articles devoted to the study of the chemostat both from the 

experimental and the modeling point of view. A detailed exposition of the mathematical theory of 

the chemostat is given in [1]. Moreover, the chemostat model is the starting point for many 

variations (food chain, food web etc.) that yield more realistic biological and mathematical 

problems [2-8]. The dynamics of predator, prey and substrate interaction has become a 

ubiquitous tool for studying a number of industrial fields such as waste treatment bioreactors 

[9-10]. Predation is a direct interaction which occurs when individuals from one population 

derive their nourishment by capturing and ingesting individuals from another population [11-14]. 

A simple food chain in a chemostat had been studied in [15-19] and related experiments are 

described in [20-23]. The dynamics of a tri-trophic food chain models that incorporate either 

Michaelis-Menten or general monotone response functions for all trophic levels and removal 

rates for the prey and predator populations are either equal to the washout rate of the chemostat 

or distinct had been examined by many researchers [5, 8, 16-19, 24]. It has been shown that these 

simple food chain with one predator and one prey exhibit that the predator feeds exclusively on 

either the prey or the prey and the nutrient, and the prey consumes the nutrient in the chemostat. 
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In [3], the authors restricted their attentions to the case in which the prey is of logistic growth 

and predators have Holling’s type II functional responses and established the global stability for 

the case of extinction of top-predator. Several studies used bifurcation analysis to find out if 

coexistence of all trophic levels is possible [5, 13, 16, 25]. In [16], the authors carried out the 

analysis of their model numerically, by finding both local and global bifurcations of equilibria 

and of limit cycles with respect to chemostat control parameters. Li and Kuang [6] considered a 

simple food chain and studied global stability of equilibria, and presented its dynamics 

numerically, while in [4] the authors studied analytically the global stability of equilibria of the 

model which is the extension of this simple food chain. Sarah [8] examined the dynamical 

behavior of tri-trophic food chain model with global stability of equilibrium points and Hopf 

bifurcation of solutions.  In this paper, we are going to examine the dynamics of a food chain 

where the predator feeds exclusively on the prey and on the nutrient, and the prey consumes the 

nutrient in the chemostat. The Michaelis-Menten functional response is used for both predator 

and prey. In addition, we confine our interest to find criteria under which the model predicts that 

the populations will be able to persist at a steady state in the culture vessel for an indefinitely 

long period of time. This study also focus on global stability of equilibrium points, bifurcation 

analysis around interior equilibrium and sensitivity profiles of state variables with respect model 

parameters. Our results in this paper are extension to those in [4, 6, 8, 16]. This paper is 

organized as follows. In Section 2, the food chain model with Michaelis-Menten functional 

response is described. In section3, some elementary properties such as boundedness, invariance 

of non-negativity, dissipativity and the equilibria and their stabilities are investigated. Section 4 

is devoted to discuss global stability analysis of equilibria. In Section 5, we discuss Hopf 

bifurcation of solutions. Section 6 deals with sensitivity analysis and numerical simulation. 

Finally a short discussion is given in Section 7. 

 

2. The model 

 

The food chain we analyze in this paper consists of substrate, prey and predator. Let )(ts  

denotes the nutrient concentration, )(tx  the concentration of the prey population and )(ty the 

concentration of the predator population at time t . Our model is described by the following 

ordinary differential equations: 
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with 
dt

d
yyxxss  ',0)0(,0)0(,0)0( 000 . 

In the system (1), 0s denotes the input concentration of the nutrient, im  are the maximal 

uptakes, ia are the half saturation constants, i are the growth yield constants and D  the input 

rate from the feed pump and the washout rate of the chemostat chamber. 1D  and 2D  are the 

removal rates of prey and predator populations respectively. All parameters have positive values. 
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It is convenient to introduce dimensionless variables. In particular, we define 
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Then, omitting the bars to simplify the notation, the system (1) becomes 
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with 0,0,0 000  yxs . 

Without loss of generality, we can consider the system (2) instead of (1) and we can always 

reinterpret our findings in terms of original variables. 

 

3. Elementary properties, existence of equilibria and their stabilities 

 

3.1. Boundedness and non-negativity of solutions 

 

In this section, we shall show that the system is dissipative by proving that solutions of system 

(2) are non-negative and bounded. 

 

Theorem 1.  

All solutions of the system (2) with initial values in 3
R  are non-negative and bounded, and for 

large t , 1)( ts . 

 

Proof.  

First let ))(),(),(( tytxts  is a solution of (2). Suppose that 0)( ts  for all 0t  is not true. Let 

}0)(  &  0:min{1  tsttt . Then ),0[    ,0)( 1ttts  . But from the first equation of (2), we 
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implies that 0]exp[)( 101  Atxtx , a contradiction. Therefore, 0)( tx  for all 0t . A similar 

argument shows that 0)( 1 ty  is absurd. Thus, the system (2) with positive initial conditions at 

0t  produces a positive solution for 0t . 

Furthermore, if yxs  , then )(1 21 yDxDsyxs  .Let 
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 21min ,,1min DDD  , then  min1 D . If )(tu  is a solution of uDu min1  with 
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Therefore, solutions of (2) are bounded and the system (2) is dissipative. Finally, ss  1 for 

0t , so we have   tests  11)( 0
 and thus 1)( ts , for large t . This completes the proof. 

 

3.2. The equilibria: existence and local stability 

 

We will find the following possible equilibria of system (2) in the form ),,( yxsE . Extinction 

of all populations: )0,0,1(0E . Survival of population x  only: )0,,( 111 xsE , where 
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value 1s  and 2s  represent the break-even concentration of nutrient. It is easy to see that if 

2,1,  iDm ii  then the corresponding populations tend to zero. Thus, in order to avoid the 

population vanishing, we shall assume that 2,1,  iDm ii . To discuss the existence of equilibria, 

we say that equilibrium points will not exist if any one of its components is negative. The 

washout equilibrium point )0,0,1(0E  always exists. The existence condition for 1E  is 
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In the next step, we will investigate the local stability of these equilibrium points by finding 

the eigenvalues of the associated Jacobian matrices. The Jacobian matrix due to the linearization 

of (2) about an arbitrary equilibrium 3
R),,( yxsE  is given by 
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It is easy to show that the eigenvalues of  0EJ  will be negative if 1and1 10  RR  or 

equivalently, 0,1and1 330  xsR . 

The Jacobian matrix at 1E  is given by 
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When 3E  exists, the Jacobian matrix due to linearization of (2) about 3E  is given by the 

expression 
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The Routh-Hurwitz criterion says that 3E  will be LAS if and only if 0,0 31    and 

321   . We can summarize the above results in the following theorem. 

 

Theorem 2.  

If 1and1 10  RR , then only 0E  exists and it is LAS. If 1and1 20  RR , then 0E  and 1E  

exist, 0E  is unstable and 1E   is LAS. If 1and1 31  RR , then 0E  and 2E  exist, 0E  is 

unstable and 2E   is LAS. If 1and1 20  RR , then 0E , 1E  and 3E  exist, and 0E  and 1E  

are unstable, 3E  is LAS if 0,0 31    and 321    and, therefore, the system will be 

uniformly persistent. 

 

4. Global analysis 

 

In the previous section, we showed the existence and local stability analysis of all equilibria. 

In this section, we shall present the global stability of the equilibria of system (2). The proof for 

0E  is very straightforward. Most importantly we shall show that if only 0E  and 1E  exist, 

under a reasonable assumption 1E  is globally asymptotically stable. The proof involves the 

construction of a Lyapunov function and the application of the Lyapunov-LaSalle theorem. We 

shall use method similar to [3]. 

 

Theorem 3.  

If 1and1 10  RR , then 0E  is the only equilibrium point and all solutions of (2) converges to 

0E . 

 

Proof.  

It is clear that if 1and1 10  RR , then by Theorem 2, 0E  is the only equilibrium point and 

LAS. Now to prove that 0E  is globally asymptotically stable, assume that ))(),(),(( tytxts  is a 
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)(
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)( 1

sG
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sF


 . Since 0)(  sH  and 11)( xsH  , )(sF  satisfies 
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Define a Lyapunov function as in [3] on the region  0,0),1,0(),,(   yxsyxs 3
R , 
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where 0c  will be defined later. Then 0V  on   and 0V  iff 1ss  , 1xx   and 

0y . The time derivative of V  along trajectories of (2) is given by 
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To discuss the sign of V  , we will investigate each term of V  . Let 0  satisfies 
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Let 
1

3

13 x
a

xa
c


 , then 

    01

3

13
4 




 yxx

xa

xxm
V   and 04 V  iff 0y . Therefore, each 

term of V   is non-positive. Hence 1E  is global attractor by Lasalle’s invariance principle [1, 

27]. This completes the proof. 

 

5. Hopf bifurcation analysis 

 

In this section, we shall discuss that our model undergoes a Hopf bifurcation by using 1D  as 

a bifurcation real parameter. Clearly (by theorem 2) there is no Hopf bifurcation at 0E , 1E  and 

2E . So we are going to vary 1D  in order to obtain the desired Hopf bifurcation for *

11 DD   

around 3E . First we recall that the eigenvalues of  3EJ  satisfy the equation (3) and its 

components are defined as in (4). 

By the Routh–Hurwitz criteria, necessary and sufficient conditions for all the roots of (3) to 

have negative real parts are 

:1H  0,0 31    and :2H  321   . 

Now in order to have Hopf bifurcation, we must violate either 1H  or 2H . Suppose 

0,0 31   . Clearly (3) will have two pure imaginary roots if and only if 

321      (5) 

for some values of 1D , say *

11 DD  . Since 02   at *

11 DD  , there is an open interval 

containing *

1D , say    *

1

*

1 , DD  for some 0  for which 0*

1 D , such that 02   

for    *

1

*

11 , DDD . Thus for    *

1

*

11 , DDD , the characteristic equation (3) cannot 

have positive real roots. For *

11 DD  , we have (see [20, p.80 ]) 

   012

2      (6) 

which has three roots 

21  i , 22  i , 13   . 

For    *

1

*

11 , DDD , the roots are in general of the form 

)()()( 1111 DiDD   , 

)()()( 1112 DiDD   , 

)()( 1113 DD   . 

To apply Hopf’s bifurcation theorem to (2) (see [28]) we need to verify the transversality 

condition 

   2,1,0Re *
11

1 


iD
DDi   (7) 

Substituting )()()( 1111 DiDD    and )()()( 1112 DiDD    into (3), and calculating 

the derivatives with respect to 1D , we obtain 
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and 0)()( *

11

*

13  DD  . Hence there is a Hopf bifurcation at *

11 DD  . We can now 

formulate the following: 

 

Theorem 5.  

Suppose 1H  holds. Then system (2) exhibits a Hopf bifurcation leading to a family of 

periodic solutions that bifurcate from 3E  for suitable values of 1D  in the neighborhood of 

*

1D . 

 

6. Sensitivity analysis and Numerical simulation 

 

Many dynamic models of biological processes can be written under the following general 

form: 

),),,((),(;)0(),,),,((
),(

0 ttXgtYXXttXf
dt

tdX



    (9) 

where ),,( yxsX   is a vector of state variables, ),,,,,,,( 21321321 ddaaammm  a vector of 

parameters, Y a vector of outputs and t  the independent variable. Let 





X
Z  be the 

sensitivity of state variable X  with respect to parameter  , then the sensitivity matrix 

equations can be expressed in a compact formula: 

0)0(, 
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
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 Z

f
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X

f

dt
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
 (10) 

Equation (10) is also called first forward sensitivity equation. Simultaneous integration of 

equations of systems (9) and (10) provides values of sensitivity functions [29] with respect to 

time. According to (9), the sensitivity of the output iY  w.r.t. the parameter   is evaluated as 

0)0(, 
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However, these absolute sensitivity functions are not normalized and they are not useful for 

comparing the effects of different input factors for what relative sensitivity functions should be 

used. Relative sensitivities are ideal for comparing parameters, because they are dimensionless, 

normalized functions. Hence, 1L -norm of the relative sensitivity of the function iY  to 

variations in the parameter 
j  is given by: 

 


















j

i

i

j

norm

Y

Y
sen




  (12) 

 

6.1. Numerical simulation 

 

In this section, our aim is to present numerical simulations to illustrate the key results of 

theoretical findings, especially bifurcation around interior equilibrium and sensitivity of state 

variables w.r.t. parameters. We left the simulation works for other equilibria as these are simple. 

The figures have been constructed by proper choice of the kinetic parameters so that all the 

interesting behaviors of the system are observed. We choose the basic parameters of the model (2) 

to be ,5.2,5.1,6.3 321  mmm ,6.0,4.0,8.0 321  aaa 5.1,4.1 21  DD . The initial 

condition    7.0,2.0,6.0,, 000 yxs  is used to generate solution curves and trajectories in all 

figures. Our simulation work (Fig. 1) suggests that 3E  is a global attractor if it is locally 

asymptotically stable. 

 As certain parameters increase or decrease further away, 3E  loses its stability and 

oscillatory solutions appear which is to be the results of Hopf bifurcations. For showing the 

dynamics of the system (2) change, the parameter set  2321321 ,,,,,, Daaammm

 1,25.0,5.0,35.0.,2,05.0.,2  given as a fixed parameters and 1D  as a varied parameters (real 

bifurcation parameter). Fig. 2 shows a case in which 11 D  and system (2) possesses periodic 

solutions and results a Hopf bifurcation around 3E . Fig. 3 indicates that perturbing 1D  (while 

changing 11 D  to 1.11 D  and keeping other parameters in Fig. 2 fixed) leads to a 

bifurcation. This seems to destroy the periodic solutions and possibly leads to the global stability 

of 3E  whereas Fig. 4 (while changing 11 D  to 9.01 D  and keeping other parameters in 

Fig. 2 fixed) leads to the instability of 3E . Therefore varying the values of 1D  and 2D  may 

affect the dynamics of (2) in a very surprising and significant way. Furthermore, at each stage we 

have presented the normalized sensitivity profile by Eq. (12) to see the affect of parameters on 

the dynamics of the model. Highest value indicates the most sensitivity of the parameter. All of 

the computations and visualizations have been performed in MATLAB R2007a. 

Next, we see how the parameters 1D  and 2D  affect the dynamics of (2) if 0s  is fixed. 

Assume that )2,1( iDi
 are large enough so that 1and1 10  RR , then all populations will be 

washed out ( 0E  is stable) in the chemostat. As 1D  is gradually decreased, eventually there is a 

bifurcation when 1and1 20  RR .  In this case, 0E  loses its stability and the new bifurcated 

steady state 1E  is asymptotically stable. As 2D  is gradually decreased, the next bifurcation 

occurs when 1and1 31  RR  hold. In this case 1E  loses its stability, and a new steady state 
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2E  appears. 

 

 
(a) 

 
(b) 

Figure 1: (a) The solution curves approach a positive equilibrium 3E  (b) 1L - norm of the normalized sensitivity of 

 the state variables w.r.t. parameters. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: (a) The solution appears to approach a periodic solution and Hopf bifurcation occurs around 3E   

(b) A plot of trajectories in three dimensional view (c) Projection of trajectories onto the xy  plane  

(d) 1L - norm of the normalized sensitivity of the state variables w.r.t. parameters. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: (a) The solution oscillates but eventually approaches a positive equilibrium 3E  (b) A plot of trajectories in 

 three dimensional view (c) Projection of trajectories onto the xy  plane (d) 1L - norm of the normalized 

sensitivity of the state variables w.r.t. parameters. 

 

 

7. Discussion and conclusions 

 

In this paper, we considered a food chain with one prey and one predator in the chemostat 

where the prey consumes the nutrient and the predator consumes the prey and the nutrient. We 

assumed that the functional response functions are in Michaelis-Menten form and the removal 

rates are different.  We performed a detailed computational analysis of this model. The dynamic 

behavior of this model depends on the numbers 3210 and,, RRRR . We established that system (2) 

has solutions which are eventually bounded in the future. We also established sufficient 

conditions for the existence and local stability of the equilibria by using Routh-Hurwitz criterion 

for system (2). We found that all the populations cannot persist if the removal rate of the prey is 

relatively large. This happens when 0E   is a global attractor of system (2). We constructed 

Lyapunov function on the base of [10], to show that 1E  is globally asymptotically stable. The 

global asymptotic stability of 1E  implies that nutrient as well as the prey population cannot 

support the predator and consequently the predator will be washed out in the chemostat 

regardless of the initial density levels of prey and predator. Next, when 3E  exists, then all the 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: (a) The solution oscillates and seems to approach a periodic solution (b) A plot of trajectories in 

three dimensional view (c) Projection of trajectories onto the xy  plane (d) 1L - norm of the 

normalized sensitivity of the state variables w.r.t. parameters. 

 

 

species (prey and predator) coexist in the sense that the system (2) is uniformly persistent and the 

conservation principle is circumvented. In this case, a switch of the stability of 3E  may occur. We 

then use the removal rate of prey, as a bifurcation real parameter. We found that Hopf bifurcation 

occur, under certain conditions, at the interior equilibrium point 3E  leading to a family of periodic 

solutions bifurcates form 3E . Finally, both analytically and numerically, simulation shows that in 

certain regions of the parameter space, the food chain system has rich dynamics including periodic 

and asymptotic behavior and the model sensitively depends on the parameter values. The results of 

the considered system (2) in this study are extension to the system of [4, 6, 8, 16] and is useful in the 

further study of the coexistence of competing populations in the chemostat. Since most of the food 

chain models in a chemostat incorporate Michaelis-Menten-type (type II) response function with 

constant yield coefficient, a more detailed analysis for this system with other type response 

functions or substrate inhibition (with variable yield coefficient) focus on bifurcation analysis, limit 

cycle and sensitivity profiles of state variables with respect model parameters will be provided in 

near future. 
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