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Abstract: An adaptive Finite Element framework for fatigue crack propagation analysis under 

constant amplitude loading is proposed. This framework combines the simplicity of standard 

industrial fatigue crack propagation analysis with the generality and accuracy of a full Finite 

Element analysis and can be implemented by combining standard existing computational tools. 

The equivalent domain integral method has been used to predict the fatigue crack direction as 

well as the corresponding stress-intensity factors is estimated at each small crack increment. The 

propagation is modeled by successive linear extensions, which are determined by the stress 

intensity factors under linear elastic assumption. The procedure is applied to the fatigue analysis 

of two internal parallel cracks specimen. The fatigue life cycle analysis is based upon Paris’ 

equation. The proposed methodology is implemented in an interactive graphics computational 

scheme for 2D finite element analysis, which includes modeling, analysis, and visualization 

capabilities. The numerical results are validated with other relevant researcher’s results. 
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1. Introduction 

 

The analysis of fatigue crack propagation is very important to ensure the reliability of 

structures under cyclic loading conditions. The fatigue life of components is mainly predicted by 

traditional strength based theories. The fracture based numerical simulations have extensive 

application to quantify and predict the fatigue life of component under constant or variable 

amplitude loading condition. An accurate evaluation of fracture parameters such as stress 

intensity factors (SIFs) becomes quite essential for the simulation based life cycle design 

analysis. To simulate cracked structures, a number of methods such as boundary element method 

[1–3], meshfree methods [4–7], finite element method (FEM), and finite difference method 

(FDM) are available. Finite element modelling has been in the forefront of numerical methods 

used for the simulation of fatigue fracture problems. A number of approaches have been 

developed in FEM over the years, which makes it as a most suited method for analyzing the 

asymptotic stress fields at the crack tip. However, FEM requires that the crack surface should 

coincide with the edge of the finite elements, i.e. a conformal mesh is needed besides special 

elements to handle crack tip asymptotic stresses. 
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Nevertheless, with regard to the finite element approach, the fatigue crack path and its 

associated stress-intensity factors KI and KII can be conveniently calculated using the appropriate 

crack tip elements, the mesh regeneration schemes and the crack increment criteria (Miranda et 

al. [8]). The finite element method has also been proven to be very well suited for the study of 

fracture mechanics, nevertheless modelling the propagation of a crack through a finite element 

mesh turns out to be difficult because of the modification of the mesh topology. 

In this paper a finite element program is developed and used to analyze the fatigue crack 

growth of 2D structural components under constant amplitude loading. Based on the linear 

elastic fracture mechanics, the fatigue crack propagation is modeled by successive linear 

extensions, which are determined by the stress intensity factors at each crack increment. The 

program will directly predict the fatigue life cycles after the stress intensity factors history is 

completely recorded. Cracks can be introduced arbitrarily by the user at any position in the 

model. The system regenerates the meshes automatically taking into account the new created 

crack surfaces. The self-adaptive procedure takes into account the arbitrarily generated crack 

geometry and the finite element error estimation analysis. The computational scheme of the 

fatigue crack propagation program is adopted from Alshoaibi [9] as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Computational scheme of the fatigue crack propagation program 
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2. Mesh generation and adaptive refinement 

 

In this work, the unstructured triangle mesh is automatically generated by employing the 

advancing front method (Löhner [10]). The latest review of this method can be found in 

Zienkiewicz, and Taylor and Zhu [11]. 

The mesh must satisfy several conditions, depending on the problem. 

 The mesh must conform to the boundary of the region, which may consist of more than one 

connected component. 

 The mesh must be fine enough to produce an acceptable approximation to the original 

problem. 

 The number of elements in the mesh should be small, because the complexity of solving the 

finite element problem depends on the mesh size. 

An interactive graphics pre-processor is used to generate the initial mesh information and the 

boundary conditions of the finite element model. This initial model is solved by an incremental 

theory using von Mises yield criterion. After the solution has converged at the end of each load 

step, the solution errors are estimated. If the error at some point in the model exceeds a specified 

maximum error, the incremental analysis is interrupted and a new finite element model is 

constructed. The system decides automatically where to refine the mesh. If it is necessary, the 

system refines the mesh considering the initial boundary conditions. After the new mesh is 

generated, the solution variables (displacements, stresses, strains, etc.) are mapped from the old 

mesh to the new mesh. The analysis is then restarted from the current step and it is continued 

until the errors again become larger than the specified limit. In the final analysis or in each step, 

the user can visualize the responses using a graphics post-processor. The details description of 

the procedure can be referred to Alshoaibi [9] and Alshoaibi et al. [12]. 

The adaptive procedure provides a regular mesh refinement for the free-boundary curves 

including cracks. The adaptive process is based on a posteriori error estimation. An h-refinement 

type is utilized in this process. The strategy used to refine the mesh throughout analysis process 

is adopted from (Alshoaibi [9]). 

Stress intensity factor: A major achievement in the theoretical foundation of linear elastic 

fracture mechanics was the introduction of the stress intensity factor as a parameter for the 

intensity of stresses near to the crack tip and associated to the energy release rate (Bazant and 

Planas [13]). Ingliss [14] studied the unexpected failure of naval ships, and Griffith [15] 

extended this work using thermodynamic criteria. Using this work, Irwing [16] developed the 

concept of the stress intensity factor. Stress intensity factors are a measure of the change in stress 

within the vicinity of the crack tip. Therefore, it is important to know the crack direction and 

when the crack stops propagating. The stress intensity factor is compared with the fracture 

toughness parameter KIC to determine whether or not the crack will propagate in the case of 

static loading whereas the equivalent stress intensity factor is compared to the threshold stress 

intensity factor in the case of dynamic loading. In the present work the stress intensity factors is 

predicted by using the equivalent domain integral method as illustrated by Alshoaibi [17]. 

 

3. Fatigue crack propagation analysis 

 

In order to simulate fatigue crack propagation under linear elastic condition, the crack path 

direction must be determined. There are several methods used to predict the direction of the 

crack trajectory such as the maximum circumferential stress theory, the maximum energy release 

rate theory and the minimum strain energy density theory. Bittencourt et al. [18] have shown that, 
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if the crack orientation is allowed to change in automatic fracture simulation, the three criteria 

provide basically the same numerical results, since the maximum circumferential stress criterion 

is the simplest, presenting a closed form solution; it is briefly described by Alshoaibi [17] as 

follows: 

The maximum circumferential stress theory Erdogan and Sih [19] asserts that, for isotropic 

materials under mixed-mode loading, the crack will growth in a direction normal to maximum 

tangential tensile stress. In this case, the tangential stress is given by 
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The direction normal to the maximum tangential stress can be obtained by solving 0/d d    

for  . The nontrivial solution is given by: 
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Since fatigue is a cyclic dissipation of energy, in the form of hysteretic loops, which are related 

to a collective damage process, the elapsed time for failure is expressed in terms of the number 

of fatigue cycles (N). The control parameter that is used to evaluate this process is the rate of 

crack growth per cycle (da/dN). Hence, da/dN depends on the applied stress intensity factor 

range and N is the well-known fatigue life term. For crack initiation, the threshold stress intensity 

factor and threshold stress range are associated as: 

th th
K f a      (4) 

Where: f is a function of geometry and loading and 
th

  is analogous to fatigue limit. This 

equation indicated that if 
th

  crack growth does not occur. Practically, during the 

implementation we use the equivalent 
eq th

K K  as the condition for crack to propagate. 

According to this criterion, the equivalent mode I stress intensity factor is obtained as: 

3 22 3 2 2Ieq I IIK K cos ( / ) K cos ( / ) sin( / )        (5) 

To model the stable crack propagation, we use the generalized Paris’ law: 

m
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where C and m are the material properties, a is the crack length, N is the number of loading 

cycles and 
IeqK is obtained by equation (5) by substituting 

IK  and 
IIK  to IK  and 

IIK . 

Then, the number of cycles ifN  for crack propagation from the initial crack length 
ia  to the 

final crack length aif  can be integrated as: 
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The developed program has safety features to automatically stop the calculation if, during any 

loading event, it detects that: (i) Ieq,max IcK K ; (ii) the crack has reached its maximum specified 

size; (iii) one of the borders of the piece is reached by the crack front. 

 

4. Numerical results and analysis 

 

4.1. Two Internal Parallel Cracks 

 

A rectangular Aluminum plate (90mm×180mm) with two internal, parallel and non-angled 

cracks (length = 10 mm for both) is submitted to a cyclic tension (
max  = 160 N/mm, 

min  = 0) 

at both ends as shown in Figure 2a. The horizontal distance between the two tips close to each 

other is 15 mm and the vertical distance is 5mm. The material properties are modules of 

elasticity (E = 74 GPa), Poisson’s ratio (ν = 0.3), fracture toughness (KIc = 60 MPa m ), threshold 

stress intensity factor (ΔKth = 4 MPa m ), Paris constants ( m = 3.32 and C = 1310087136.2  ). The 

fatigue crack growth paths are presented in Figure 2b and the line contours representation of 

maximum principal stress distribution is also presented in Figure 2c. 

In the beginning, both cracks show a pure mode I state with almost identical SIF values. Then, 

mode I factor at A increases higher than of that at B and mode II factor at A becomes negative so 

that the crack path curves towards the opposite crack. Finally, when the crack tips A get closer, 

the mode I factor at A tend to decrease, while mode I factor increases continuously at B. Finally, 

the equivalent mode I SIF at B exceeds the fracture toughness and unstable fracture occurs at the 

crack tips B. 

An enlargement of the cracks tips counters representation of maximum principal stress 

distribution is shown in Figure 3. The evolution of the SIFs at the most interior crack tip (A) and 

at the crack tip near the edge (B) with the crack length is plotted in Figure 4. 

The fatigue life diagram is presented in Figure 5. This prediction of the fatigue crack growth 

path by present study is in good agreement with the experimental results in a similar structure 

reported by Tu and Cai [20] as shown in Figure 6 and also with the numerical results obtained by 

Duflot and Dang [6] and Yan and Dang [2]. The fatigue life of the structure is evaluated as 6840 

cycles, which is in agreement with the results obtained by Duflot and Dang [6] using a meshless 

method. 

Special representation of the final step of fatigue crack propagation of this geometry with 

enlargement including the node number and the element number is shown in Figure 7. 

 

5. Conclusion 

 

The developed program using an adaptive finite element mesh generation strategy is used to 

simulate the fatigue crack propagation of two internal parallel cracks geometry under constant 

amplitude cyclic loading and to predict the fatigue life cycles based on the generalized Paris’ 

equation. The results of the developed program have been successfully validated through direct 

comparisons with the relevant experimental data and similar calculations performed using 

numerical simulation performed by other researchers. The developed program demonstrated 

good predictions of fatigue life and crack propagation paths for 2D structural components under 

linear elastic fracture condition.  
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Figure 2. (a) Two internal parallel cracks plate (b) Crack path and final adaptive mesh (c) countors 
 representation of maximum principal stress 
 

 

 

   
Figure 3. An enlargement of the cracks tips counters representation of maximum principal stress 
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Figure 4. Comparisons of stress intensity factors for two internal parallel cracks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Fatigue life diagram for two internal parallel cracks 
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Figure 6. Experimental results of Tu and Cai [20] 

 

 

 
Figure 7. enlargement of the final step of fatigue crack growth 

 



An Adaptive Finite Element Framework for Fatigue Crack 

                                        Propagation under Constant Amplitude Loading 

 

Int. J. Appl. Sci. Eng., 2015. 13,3     269 

References 

 

 [1]  Portela, A., Aliabadi, M., Rooke, D. P. 1991. The dual boundary element method: effective 

implementation for crack problem. International Journal for Numerical Methods in 

Engineering, 33, 6: 1269–1287. 

 [2]  Yan, A.M. and Nguyen-Dang, H. 1995. Multiple-cracked fatigue crack growth by BEM. 

Computational Mechanics, 16, 5: 273–280. 

 [3] Yan, X. 2006. A boundary element modeling of fatigue crack growth in a plane elastic plate. 

Mechanics Research Communications, 33, 4: 470–481. 

 [4]  Belytschko, T., Gu, L., Lu, Y. Y. 1994. Fracture and crack growth by element-free Galerkin 

methods. Modelling and Simulation in Materials Science and Engineering, 2, 3A: 519–

534. 

 [5]  Belytschko, T., Lu, Y.Y., and Gu, L. 1995. Crack propagation by element-free Galerkin 

methods. Engineering Fracture Mechaincs, 51, 2: 295–315. 

 [6]  Duflot, M. and Nguyen-Dang, H. 2004. A meshless method with enriched weight functions 

for fatigue crack growth. International Journal for Numerical Methods in Engineering, 59, 

14: 1945–1961. 

 [7]  Duflot, M. and Nguyen-Dang, H. 2004. Fatigue crack growth analysis by an enriched 

meshless method. Journal of Computational and Applied mathmatics, 168,1-2: 155–164. 

 [8]  Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F. and Bittencourt, T.N., 

2003. Fatigue life and crack path predictions in generic 2D structural components. 

Engineering Fracture Mechanics, 70: 1259–1279 

 [9]  Alshoaibi, A. M. 2010. Finite Element Procedures for the Numerical Simulation of Fatigue 

Crack Propagation under Mixed Mode Loading. Structural Engineering and Mechanics, 35, 

3: pp.283-299. 

 [10]  Löhner, R. 1997. Automatic unstructured grid generators. Finite Element in Analysis and 

Design, 25, 1-2: 111-134. 

 [11]  Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. 2005. The finite element method: its basis 

and fundamentals. 6th Edition, Elsevier Butterworth-Heinemann. 

 [12]  Alshoaibi, M. Abdulnaser, Hadi, M.S.A. and Ariffin, A.K., 2007 . An adaptive finite 

element procedure for crack propagation analysis. Journal of Zhejiang University of 

Science: An International Journal of Applied Physics and Engineering, 8, 2: 228-236. 

 [13]  Bazant, Z. P. and Planas, J. 1998. Fracture and Size Effect in Concrete and Other 

Quasibrittle Materials. Boca Raton, FL: CRC Press. 

 [14]  Ingliss, C. E. 1913. Stress in a plate due to the presence of cracks and sharp corners. Trans. 

Institute of Naval Architects 55, 219-241. 

 [15]  Griffith, A.A. 1920. The phenomena of rupture and flow in solids. Philosophical 

Transactions of the Royal Society  221: 163–198. 

 [16]  Irwing, G. R. 1957. Analysis of stress and strain near the end of a crack traversing a plate. 

Journal of Applied Mechanics ASME, 24, 361-364 

 [17]  Alshoaibi, M. A. 2013. Adaptive finite element modeling of fatigue crack propagation. 

International Journal of Materials Science and Applications, 2, 3: 104-108 

 [18]  Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., and Sousa, J.L. 1996. Quasi-automatic 

simulation of crack propagation for 2D LEFM problems. Engineering Fractrue Mechanics, 

55, 2: 321-334. 

 [19]  Erdogan, F. & Sih, G. 1963. On the crack extension in plates under plane loading and 

transverse shear. Journal of Basic Engineering 85: 519–27. 



Abdulnaser M. Alshoaibi 

270  Int.  J. Appl. Sci. Eng., 2015. 13,3 

 [20]  Tu, S.T. and Cai, R.Y. 1993. A coupling of boundary elements and singular integral 

equation for the solution of the fatigue cracked body. Stress Analysis, pp. 239–247. 


