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Abstract: This paper presents solutions to the inelastic buckling problem of a thin flat rectangular 

isotropic panel under uniform uniaxial in-plane compression. The case of boundary conditions 

studied is a panel clamped along three edges with one simply supported longitudinal edge (CCCS). 

Stowell’s and Bleich’s plasticity approaches are used in deriving the governing equations. A 

theoretical formulation based on Taylor’s series is used in estimating the shape function which 

satisfied the boundary conditions and resulted to a peculiar shape function for the CCCS panel. 

Values of the panel buckling coefficient are calculated for aspect ratios from 0.1 to 2.0 at intervals 

of 0.1. The results are compared with the solutions from previous studies and the percentage 

differences are found to be consistent. Therefore, the proposed method can be used for the inelastic 

buckling analysis of thin flat rectangular isotropic panels with mixed boundary conditions 

subjected to uniform uniaxial in-plane loads. 

Keywords: Boundary conditions; deflection function; plastic buckling; rectangular panel;    

Taylor’s series; variational principles. 

Nomenclature 

a length of panel 

b width of panel 

h thickness of panel 

k panel buckling coefficient 

m number of half-waves of the buckling mode along the x-direction 

n number of half-waves of the buckling mode along the y-direction 

p aspect ratio 

w transverse deflection 

𝑤′ξ
, 𝑤′η

 the first derivative of the deflection in the ξ and η coordinates respectively 

𝑤′′η
 the second derivative of the deflection in the η coordinate 

x,y Cartesian coordinates in the horizontal and vertical direction respectively 

A amplitude of the shape function 

C clamped edge 

CCCS  rectangular panel with three clamped edges and one longitudinal simply supported 

edge 

D panel flexural rigidity in the elastic range 
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𝐷̅ panel flexural rigidity in the plastic range 

E Young’s modulus 

Esec secant modulus 

Etan tangent modulus 

H buckling curve expression 

J, K unknown constants in the power series 

Nx uniaxial in-plane compressive load on x-plane 

Nx,CR critical buckling load 

S simply supported edge 

ν Poisson ratio 

ξ, η non-dimensional parameters of the x and y coordinates respectively 

σ𝑥 in-plane compressive stress in the x-direction 

τ moduli ratio defined as τ = Etan/E 

1. Introduction 

Thin rectangular panels or plates are widely used in modern engineering structures to transmit 

in-plane and lateral loads. Examples include aircraft wings, bridge decks, ship hulls and grillages, 

platform of offshore structures, tank bottoms, walling units and building roofs. When a thin 

rectangular panel is subjected to in-plane compressive loads and the loads are gradually increased, 

the panel becomes prone to buckling even though lateral loads may not be present. Buckling of 

panels may be classified as elastic buckling or inelastic/plastic buckling depending on the stress-

strain relationship. Inelastic buckling may likely occur if the panel material possesses a low 

proportional limit when compared with the yield stress e.g. aluminum alloys [1]. Inelastic buckling 

loads are always less than their elastic counterparts and in many cases, buckling occurs in the 

inelastic range. It is therefore important to analyze the inelastic buckling behavior of panels in 

order to accurately predict the critical loads in the inelastic range. 

Various plasticity theories have been proposed in the literature to consider the inelastic effect 

but the more commonly used theories are the deformation theory and the flow or incremental 

theory [2]. Comparison of the two theories shows that the deformation theory has a weak 

theoretical formulation and contains fundamental mathematical inconsistencies which are not 

present in the flow theory. However, there is a well-known paradox of inelastic plate buckling in 

which values obtained by the deformation theory of plasticity are generally in better agreement 

with experimental results. Some researchers [3, 4] provided solutions of the inelastic buckling 

paradox by proposing modifications to the flow theory. Although several theoretical and 

experimental studies have been conducted for the inelastic buckling of panels in the past decades, 

a universally accepted solution to the plastic buckling paradox has not been presented. Hence, 

some researchers have continued to use the deformation theory in the inelastic buckling analysis 

of thin rectangular panels in spite of its weak mathematical background. Other plasticity theories 

have been proposed in the literature apart from the deformation and the flow theories e.g. [5]. 

Solutions to inelastic buckling problems of thin rectangular panels subjected to in-plane edge 

loadings have been provided using various methods [2, 3, 6-10]. The use of Fourier series or 

trigonometric series seems to be predominant in studies on plastic buckling of panels. Most 

solutions to inelastic buckling problems of thin rectangular panels were presented for panels of 

common boundary conditions such as rectangular panels with four simply supported edges. In 

many practical cases, however, other combinations of boundary conditions do exist. Due to the 

complicated mathematical structure of the other combination of boundary conditions, obtaining 
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closed form solutions are generally difficult, if not impossible, and using trigonometric series to 

formulate the shape function for certain boundary conditions may be rigorous [11, 12]. Wang and 

Huang [9] used the differential quadrature (DQ) method for the elastoplastic buckling analysis of 

thin rectangular panels subjected to biaxial distributed in-plane loadings and found new solutions 

for CCCC, SSCC and SCCC square panels. Ibearugbulem [13] used the Ritz method and Taylor’s 

series shape function formulation to provide new solutions for the elastic buckling analysis of thin 

rectangular panels subjected to uniaxial in-plane loading under various support conditions. Due to 

the limitations of the trigonometric series, the Taylor’s series may be used to formulate the shape 

function of thin rectangular panels. From available literature, there is dearth of literature in the use 

of Taylor’s series in formulating the shape function in plate buckling analysis, and the Taylor’s 

series has not been used to analyze the inelastic buckling of thin rectangular panels with three 

clamped edges and one simply supported edge in the longitudinal direction (CCCS). 

In this paper, we present a solution to the inelastic buckling of a thin flat rectangular isotropic 

CCCS panel subjected to uniform in-plane uniaxial compression. The shape function which 

satisfied the boundary conditions was formulated using Taylor’s series truncated at the fifth term. 

In order to take care of the inelastic effect, we modified both Stowell’s plasticity theory and 

Bleich’s plasticity theory by applying a work principle and variational principles. 

2. Analytical method 

2.1. Formulation of the stability problem 

Consider a homogenous, rectangular, flat, isotropic panel and assume that the thickness of the 

panel in the z-axis is small compared to the other characteristic dimensions in the x-axis and y-axis 

respectively as postulated in the classical thin panel theory. The thin rectangular panel is subjected 

to uniform in-plane compressive loads along the x-axis. The panel is simply supported along one 

edge in the x-axis and the remaining edges are clamped. This means that in the panel, edges 1, 2, 

and 3 are clamped while edge 4 is simply supported. The edge numbers are shown in Figure 1 and 

the problem definition is illustrated in Figure 2. 

To facilitate the solution of the problem, the Cartesian coordinates are expressed in non-

dimensional axes as: 

𝜉 = 𝑥/𝑎;   𝜂 = 𝑦/𝑏 (1) 

 
Figure 1. Sketch of a rectangular panel showing the edge numbers 
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Figure 2. CCCS rectangular panel under uniaxial in-plane compression 

 

Eight boundary conditions – four along the x-axis and four along the y-axis – are required to 

obtain a unique solution for the CCCS panel. For all the edges of the panel, the deflection at the 

corners must be zero. The moments at the corners of the simply supported edge are equal to zero 

since simply supported edges are free to rotate. The slope varnish along the corners of the clamped 

edges because clamped edges do not rotate. Thus, the first derivatives of w with respect to 𝜉 and 

𝜂 are zero for the corners of the clamped edges, while the second derivative of w with respect to 

𝜂 is zero for the corners of the simply supported edge. The boundary conditions of the CCCS 

panel in non-dimensional parameters are therefore written as:  

𝑤(𝜉 = 0) =  𝑤′ξ(𝜉 = 0) = 0    (2) 

𝑤(𝜉 = 1) = 𝑤′ξ(𝜉 = 1) = 0       (3) 

𝑤(𝜂 = 0) = 𝑤′′𝜂(𝜂 = 0) = 0   (4) 

𝑤(𝜂 = 1) = 𝑤′𝜂(𝜂 = 1) = 0 (5) 

2.2. Theoretical development 

2.2.1. Stowell’s approach 

The theoretical development starts with the derivation of the governing equation using the 

deformation theory of plasticity based on Stowell’s approach. Stowell [14] expressed the 

governing differential equation of equilibrium for the inelastic buckling of a thin, flat, rectangular 

panel under uniform uniaxial in-plane compression along the x-axis as: 

(
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
)

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
−

ℎσ𝑥

𝐷̅

𝜕2𝑤

𝜕𝑥2
= 0     (6) 

In deriving Equation (6), Stowell adopted ½  as the numerical value of the Poisson ratio in the 

inelastic range. The panel material is assumed to be incompressible and isotropic. In Equation (6): 

𝜎𝑥 = 𝑁𝑥/ℎ (7) 

𝐷̅ = 𝐸𝑠𝑒𝑐ℎ3 9⁄  (8) 

Expressing Equation (6) in terms of the non-dimensional parameters given in Equation (1) and 

applying Equation (7), we get: 

(
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
)

𝜕4𝑤

𝜕𝜉4 + 2
𝜕4𝑤

𝜕𝜉2𝜕𝜂2 +
𝜕4𝑤

𝜕𝜂4 −
𝑁𝑥

𝐷̅

𝜕2𝑤

𝜕𝜉2 = 0      (9) 
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Equation (9) can be simplified to: 

1

𝑝2 (
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
)

𝜕4𝑤

𝜕𝜉4 + 2
𝜕4𝑤

𝜕𝜉2𝜕𝜂2 + 𝑝2 𝜕4𝑤

𝜕𝜂4 −
𝑁𝑥𝑏2

𝐷̅

𝜕2𝑤

𝜕𝜉2 = 0   (10) 

𝑝 = 𝑎 𝑏⁄   (11) 

Equation (10) can be transformed using a work principle. Bending problems of thin isotropic 

rectangular panels have been solved using a work principle and direct integration [15]. Instead of 

using traditional equilibrium and variational methods where the shape functions are first assumed, 

Ibearugbulem [15] carried out direct integration of the governing differential equation of the panels 

to obtain suitable shape functions. This approach requires the derivation of deflection equations 

by the simple principle of equilibrium of works performed by the load and the panel reaction 

(resistance). They multiplied the equation of equilibrium of force by the deflection and integrated 

the resulting equation in a closed domain. Applying the approach used in [15], Equation (10) gives: 

𝑁𝑥 =
𝐷̅ ∫ ∫ [

1

𝑝2(
1

4
+

3

4

𝐸𝑡𝑎𝑛
𝐸𝑠𝑒𝑐

)
𝐻𝜕4𝐻

𝜕𝜉4 +2
𝐻𝜕4𝐻

𝜕𝜉2𝜕𝜂2+𝑝2𝐻𝜕4𝐻

𝜕𝜂4 ]
1

0
1

0
𝜕𝜉𝜕𝜂

𝑏2 ∫ ∫
𝐻𝜕2𝐻

𝜕𝜉2 𝜕𝜉𝜕𝜂
1

0
1

0

    (12) 

where 

𝑤 = 𝐴𝐻               (13) 

Equation (12) is the inelastic buckling equation of a thin, flat, rectangular, isotropic panel using 

Stowell’s plasticity approach and a work principle. Note that from Equation (13), the product of 

the terms on the right-hand side of the equation will be zero if the deflection is zero. This condition 

can only be satisfied if either A = 0 or H = 0. If A = 0, then we will arrive at a trivial solution where 

the panel maintains a straight configuration and remains flat under the action of any in-plane load. 

Therefore, A cannot be zero if the deflection is zero. 

Assume that the shape function of thin rectangular panels expressed in the form of Taylor’s 

series is both continuous and differentiable. Truncating the infinite series at the fifth term i.e. m = 

n = 4, the Taylor’s series formulated shape function can be written as: 

𝑤 = ∑ ∑ 𝐽𝑚𝐾𝑛
4
𝑛=0

4
𝑚=0 𝜉𝑚𝜂𝑛 (14) 

Expanding Equation (14) in non-dimensional parameters gives: 

𝑤 = 𝐴(𝐽0 + 𝐽1𝜉 + 𝐽2𝜉2 + 𝐽3𝜉3 + 𝐽4𝜉4)(𝐾0 + 𝐾1𝜂 + 𝐾2𝜂2 + 𝐾3𝜂3 + 𝐾4𝜂4) (15) 

The boundary conditions expressed in Equations (2)–(5) are now applied in Equation (15). This 

gives: 

𝑤 =  𝐽4𝐾4[(𝜉2 − 2𝜉3 + 𝜉4)(0.5𝜂 − 1.5𝜂3 + 𝜂4)] (16) 

Equation (16) is the peculiar shape function and the expression for the transverse deflection of 

the CCCS panel. Comparing Equations (13), (15) and (16), it can be shown that: 

𝐻 =  (𝜉2 − 2𝜉3 + 𝜉4)(0.5𝜂 − 1.5𝜂3 + 𝜂4) (17) 

In order to determine the critical buckling load of the panel, numerical values of the integrals in 

Equation (12) are first calculated. Applying variational principles for the CCCS boundary 

conditions yields: 

∫ ∫ 𝐻
1

0

1

0

𝜕4𝐻

𝜕𝜉4 𝜕𝜉𝜕𝜂 = 0.006031746      (18) 
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∫ ∫ 2𝐻
1

0

1

0

𝜕4𝐻

𝜕𝜉2𝜕𝜂2 𝜕𝜉𝜕𝜂 = 0.003265306           (19) 

∫ ∫ 𝐻
1

0

1

0

𝜕4𝐻

𝜕𝜂4 𝜕𝜉𝜕𝜂 = 0.002857143    (20) 

∫ ∫ 𝐻
1

0

1

0

𝜕2𝐻

𝜕𝜉2 𝜕𝜉𝜕𝜂 = 0.0001436130      (21) 

Substituting the numerical values of the integrals in Equations (18)–(21) into Equation (12) 

gives: 

𝑁𝑥 =
𝐷̅

𝑏2 [

0.006031746

𝑝2 (
1

4
+

3

4

𝐸𝑡𝑎𝑛
𝐸𝑠𝑒𝑐

)+0.003265306+0.002857143𝑝2

0.0001436130
]          (22) 

Inelastic buckling equation can be expressed as: 

𝑁𝑥 =
𝐷̅𝜋2

𝑏2 𝑘       (23) 

Expressing Equation (22) in form of Equation (23) gives Equation (24). 

𝑘 =
4.25549

𝑝2 (
1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
) +  2.30372 + 2.01576𝑝2     (24) 

2.2.2. Bleich’s approach 

Bleich [5] proposed a simplified theory for plate plastic buckling and expressed the differential 

equation governing the behaviour of the plate as: 

𝜏
𝜕4𝑤

𝜕𝑥4 + 2√𝜏
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤

𝜕𝑦4 −
𝑁𝑥

𝐷

𝜕2𝑤

𝜕𝑥2 = 0          (25) 

where 

𝜏 = 𝐸𝑡𝑎𝑛 𝐸⁄        (26) 

It should be noted that in Equation (25), the flexural rigidity in the elastic range is used in the 

analysis, and the elastic Young’s modulus is used instead of the secant modulus in the moduli ratio. 

Expressing Equation (25) in non-dimensional coordinates gives: 

𝜕4𝑤

𝜕𝜉4 + 2√𝜏
𝜕4𝑤

𝜕𝜉2𝜕𝜂2 +
𝜕4𝑤

𝜕𝜂4 −
𝑁𝑥

𝐷

𝜕2𝑤

𝜕𝜉2 = 0          (27) 

Applying the technique used in deriving Equation (12) in Equation (27) yields: 

𝑁𝑥 =

𝐷

𝑏2 ∫ ∫ [
𝜏

𝑝2
𝐻𝜕4𝐻

𝜕𝜉4 +2√𝜏
𝐻𝜕4𝐻

𝜕𝜉2𝜕𝜂2+𝑝2𝐻𝜕4𝐻

𝜕𝜂4 ]
1

0
1

0 𝜕𝜉𝜕𝜂

∫ ∫
𝐻𝜕2𝐻

𝜕𝜉2 𝜕𝜉𝜕𝜂
1

0
1

0

       (28) 

The buckling load and the panel buckling coefficient are expressed as given in Equations (29) 

and (30) respectively. 

𝑁𝑥 =
𝐷

𝑏2 [

0.006031746𝜏

𝑝2 +0.003265306√𝜏+0.002857143𝑝2

0.0001436130
]          (29) 

𝑘 =
4.25549𝜏

𝑝2 +  2.30372√𝜏 + 2.01576𝑝2          (30) 
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3. Results and discussion 

The critical inelastic buckling equation obtained from the present study using the approaches 

proposed by [14] and [5] are expressed in Equations (31) and (32) respectively. 

𝑁𝑥,𝐶𝑅
=

𝐷̅𝜋2

𝑏2
[

4.25549

𝑝2
(

1

4
+

3

4

𝐸𝑡𝑎𝑛

𝐸𝑠𝑒𝑐
) +  2.30372 + 2.01576𝑝2]      (31) 

𝑁𝑥,𝐶𝑅
=

𝐷𝜋2

𝑏2 [
4.25549

𝑝2 (
𝐸𝑡𝑎𝑛

𝐸
) +  2.30372 (√

𝐸𝑡𝑎𝑛

𝐸
) + 2.01576𝑝2] (32) 

It may be noted from Equations (31) and (32) that the numerical values of the integrals of the 

governing equation are the same because both equations are approximate solutions obtained using 

Taylor’s series shape function (for the CCCS plate). The differences in both equations exist as a 

result of differences in flexural rigidity and moduli ratio. Stowell [14] used plastic flexural 

rigidity,𝐷̅, and Etan/Esec as the moduli ratio. Bleich [5], on the other hand, used the flexural rigidity 

of the plate in the elastic range, D, and adopted Etan/E as the moduli ratio. The 𝐷̅ is a function of 

Esec as seen in Equation (8), while D is a function of E. Thus, for a panel with a known aspect ratio, 

the buckling coefficient and the critical plastic buckling load can be calculated if the actual values 

of Etan, Esec, E and ν are known. A comprehensive knowledge of the stress-strain curve of the panel 

material in the inelastic region is required to calculate the values of Etanand Esec from the stress-

strain curve. The factors Etan/Esec and Etan/E are numerically equal to unity in elastic buckling but 

their values are always less than unity in inelastic buckling. For a typical aluminum alloy, E is 

greater than Etan and Esec, and in the plastic range, Esec is greater than Etan. The elastic flexural 

rigidity is mathematically expressed as: 

𝐷 =
𝐸ℎ3

12(1−ν2)
                                                                (33) 

The critical load equation for the elastic buckling of uniaxially compressed thin rectangular 

isotropic panels of various boundary conditions was derived in [13] and the critical load for the 

CCCS panel is expressed as: 

𝑁𝑥,𝐶𝑅
= (

4.25

𝑝2 + 2.015𝑝2 +  2.303)
𝜋2𝐷

𝑏2           (34) 

Table 1 shows values of k via Stowell’s approach for aspect ratios ranging from 0.1 to 2.0 at 

increments of 0.1 for numerical values of Etan/Esec equal to 0.5, 0.6, 0.7, 0.8 and 0.9. From Table 

1, it may be observed that the buckling coefficient increases with moduli ratio. It is also observed 

that the percentage difference between the two solutions improves as the aspect ratio increases 

from 0.1 to 2.0. The percentage differences between the present study and [13] for Etan/Esec = 0.9 

range from−0.656 percent to−7.340 percent. Reference solutions were not available in open 

literature for validating the elastic buckling results for the CCCS boundary conditions [13]. Hence, 

the percentage differences obtained in this study are therefore compared with the percentage 

differences for the panel with four simply supported edges (SSSS plate) whose solutions have been 

validated. Table 2 shows the percentage differences between solutions for inelastic plate buckling 

(Etan/Esec = 0.9) and solutions from [13] for values of k using selected values of aspect ratio. The 

boundary conditions presented in Table 2 are CCCS and SSSS. 

For the percentage differences shown in Table 2, the values at p = 0.1 represent the maximum 

percentage differences while the values at p = 2.0 are the minimum percentage differences. It can 

be observed that the maximum and minimum percentage differences for the CCCS and SSSS 

boundary conditions have similar numerical values. As reported in [13], the elastic buckling 
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solutions for the SSSS panel boundary conditions compared favorably with those of previous 

investigations. According to [13], the mean percentage difference between [13] and [6] is 0.069% 

for 0.1 ≤p≤ 1.0 at intervals of 0.1 for the SSSS boundary conditions. For the inelastic buckling 

of the SSSS panel, the mean percentage difference between [16] and [6] is 0.091%. These 

differences are very close and are acceptable in statistics. 

 
Table 1. Values of k for CCCS plate under uniform uniaxial in-plane loads. 

 

p 

Present Study using Stowell’s approach 
Ibearugbulem 

[13] 

 

αa 

 Etan/Esec= 0.5 Etan/Esec= 0.6 Etan/Esec= 0.7 Etan/Esec= 0.8 Etan/Esec= 0.9 

0.1 268.292 300.208 332.124 364.041 395.957 427.323 −7.340 

0.2 68.876 76.855 84.834 92.814 100.793 108.634 −7.218 

0.3 32.037 35.583 39.130 42.676 46.222 49.707 −7.011 

0.4 19.249 21.244 23.239 25.234 27.228 29.188 −6.715 

0.5 13.446 14.723 16.000 17.276 18.553 19.808 −6.336 

0.6 10.417 11.304 12.191 13.077 13.964 14.832 −5.865 

0.7 8.719 9.371 10.022 10.673 11.325 11.964 −5.341 

0.8 7.750 8.248 8.747 9.246 9.744 10.233 −4.779 

0.9 7.220 7.614 8.008 8.402 8.796 9.182 −4.204 

1.0 6.979 7.298 7.617 7.937 8.256 8.568 −3.641 

1.1 6.941 7.205 7.468 7.732 7.996 8.254 −3.126 

1.2 7.053 7.275 7.497 7.718 7.940 8.156 −2.648 

1.3 7.284 7.473 7.662 7.851 8.040 8.223 −2.225 

1.4 7.612 7.774 7.937 8.100 8.263 8.421 −1.876 

1.5 8.021 8.163 8.305 8.447 8.589 8.726 −1.570 

1.6 8.503 8.628 8.752 8.877 9.002 9.122 −1.316 

1.7 9.050 9.160 9.270 9.381 9.491 9.597 −1.105 

1.8 9.656 9.754 9.853 9.951 10.050 10.143 −0.917 

1.9 10.317 10.406 10.494 10.583 10.671 10.754 −0.772 

2.0 11.032 11.111 11.191 11.271 11.351 11.426 −0.656 

aα means percentage difference between k from Present Study (Etan/Esec = 0.9) and Ibearugbulem [13]. 

 
 

Table 2. Percentage differences between selected elastic and inelastic values of k. 
p 

 

CCCS panel SSSS panel 

Inelastic k Elastic k Difference (%) Inelastic ka Elastic kb Difference (%) 

0.1 395.957 427.323 −7.340 94.6305 102.110 −7.325 
0.2 100.793 108.634 −7.218 25.1954 27.065 −6.908 

0.5 18.553 19.808 −6.336 5.9554 6.254 −4.775 

1.0 8.256 8.568 −3.641 3.9277 4.002 −1.857 

2.0 11.351 11.426 −0.656 * * * 

* Means not available;a means solutions from Onwuka, et al. [16];b means solutions from Ibearugbulem [13]. 
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4. Summary and conclusions 

A new method is presented and used to provide approximate solutions for the inelastic buckling 

analysis of a thin flat rectangular isotropic panel subjected to uniform uniaxial in-plane 

compression with one longitudinal simply supported edge and three clamped edges. The governing 

plasticity equations were derived using both Stowell’s and Bleich’s approaches. The Taylor’s series 

truncated at the fifth term was used to formulate the shape function. The idea of the proposed 

method is to provide a simple alternative means of estimating the deflections and plastic buckling 

coefficients of thin rectangular isotropic panels. If the panel buckling coefficients for the aspect 

ratios are known, it would be possible to predict the inelastic buckling loads and stresses. It is 

expected that the new results will provide other researchers with data which can be used for 

comparing their results. The proposed method could be extended to inelastic buckling of thin flat 

rectangular isotropic panels of other boundary conditions under uniform in-plane loading. 

From the results of the study, the following conclusions are drawn: 

1. The principle of equilibrium of works can be used to derive the inelastic buckling load equation 

of a thin flat rectangular isotropic plate subjected to uniaxial in-plane loads. 

2. Taylor’s series function is adequate for formulating the shape function of a thin flat rectangular 

isotropic plate with three clamped edges and one simply supported edge in the longitudinal 

direction. 

3. The values of the plastic buckling coefficient obtained by the present method are slightly less 

than those of elastic buckling coefficient. 
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