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Abstract: This paper presents a numerical method to solve singularly perturbed delay differential 
equations. The solution of this problem exhibits layer or oscillatory behaviour depending on the 
sign of the sum of coefficients in reaction terms. A fourth order finite difference scheme on a 
uniform mesh is developed. The stability and convergence of the proposed method have been 
established. The effect of delay parameter (small shift) on the boundary layer(s) has also been 
analyzed and depicted in graphs. The applicability of the proposed scheme is validated by 
implementing it on four model examples. To show the accuracy of the method, the results are 
presented in terms of maximum absolute errors. 
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1. Introduction 

A singularly perturbed delay differential equation is an ordinary differential equation in which 
the highest derivative is multiplied by a small parameter and involving at least one delay team. 
The smoothness of the solutions of such singularly perturbed delay differential equation 
deteriorates when the parameter tends to zero. Such problems arise frequently in the study of 
control theory [1], in determining the expected time for the generation of action potentials in nerve 
cells by random synaptic inputs in dendrites [2], in the modeling of activation of a neuron [3] and 
many more. A well-known fact is that the solution of such problems display sharp boundary or 
interior layers when ε is very small, i.e., the solution varies rapidly in some parts and varies slowly 
in some other parts. So the treatment of singularly perturbed problems (SPPs) presents severe 
difficulties that have to be addressed to ensure accurate numerical solutions [4-6]. Thus more 
efficient but simpler computational techniques are required to solve SPPs. 

Recently, some researchers are tried to develop a numerical methods for solving singularly 
perturbed delay differential equations. For examples, Gemechis et al. [7] presented numerical 
solution of singularly perturbed delay reaction-diffusion equations with layer or oscillatory 
behavior, earlier researchers [8-10] develop some numerical methods to solve singularly perturbed 
delay differential equations. Kadalbajoo and Ramesh [11] states that, the accuracy of the problem 
increased by increasing the resolution of the grid which might be impractical in some cases like 
higher dimensions. Pratima and Sharma [12] states, till date ε-uniformly convergent methods have 
not been sufficiently developed for a wide class of singularly perturbed delay differential equations. 
However, this paper present a uniformly convergent and more accurate fourth order numerical 
method for solving singularly perturbed delay reaction-diffusion equations. 
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2. Description of the method 

Consider a linear singularly perturbed delay reaction-diffusion equation of the form: 
( ) ( ) ( ) ( ) ( ) ( ) , [0, 1]y x a x y x b x y x f x x           (1) 

with the interval and boundary conditions, 
( ) ( ) , 0y x x x      and (1)y   (2) 

where   is a perturbation, 0 1   and   is also a delay parameter, 0 1  ; 
( ), ( ), ( )a x b x f x  and ( )x  are bounded smooth functions in  0,1 and   is a given constant. 

The layer or oscillatory behaviour of the problem under consideration is maintained for 0   
but sufficiently small, depending on the sign of ( ) ( )a x b x , for all  0,1x . If ( ) ( ) 0a x b x  , 

the solution of the problem in Equations (1) and (2) exhibits layer behaviour, and if 
( ) ( ) 0a x b x  , it exhibits oscillatory behaviour. Therefore, if the solution exhibits layer 

behaviour, there will be two boundary layers which will occur at both end points 0x  and 1x   
(see Reference [7]). 
By using Taylor series expansion in the neighborhood of the point x , we have: 

2( ) ( ) ( ) o( )y x y x y x        (3) 

Substituting Equation (3) into Equation (1), we obtain an asymptotically equivalent singularly 
perturbed two point boundary value problem of the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )Ly x y x p x y x q x y x r x       (4) 

under the boundary conditions,  

0(0) and (1)y y    (5) 

where, 
( )

( )
a x

p x




 ,   

( ) ( ) ( )
( ) and ( )

a x b x f x
q x r x

 


  . 

The transition from Equation (1) to Equation (4) is admitted, because of the condition that 
0 1   is sufficiently small. Further details on the validity of this transition can be found in 
Reference [13]. 
  Now, dividing the interval [0,1]  into N equal parts with constant mesh length h , we have 

0 , 0,1, 2, ,ix x ih i N   K . Let ( ) for [0,1]i i iy y x x  .   

Assuming that ( )y x  has continuous derivatives on [0,1] and making use of Taylor’s series 

expansions of 1iy   and 1iy  up to 7( )O h , we get the finite difference approximations for iy  and 

iy as: 

2 4
(5)1 1

12 6 120
i i

i i i

y y h h
y y y

h
       (6) 

where, 
6

(7)
1 1( )

7!

h
y   , for  1 1,i ix x  .  
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and 

2 4
(4) (6)1 1

22

2

12 360
i i i

i i i

y y y h h
y y y

h
        (7) 

where, 
6

(8)
2 2( )

8!

h
y   , for  2 1,i ix x  . 

Substituting Equations (6) and (7) into Equation (4) and simplifying, we obtain: 

   
2 2 4

(4) (5)
1 1 1 12

1
2

2 6 12 120
i

i i i i i i i i i i i i i

p h h h
y y y y y p y y p y q y r

h h
               (8) 

where, 
4

(6)
2 1 2( )

360 i

h
y p       is the local truncation error and ( ) ,i ip x p ( ) ,i iq x q

( ) .i ir x r  

By successively differentiating both sides of Equation (4) and evaluating at ix , and using into 

Equation (8), we obtain: 

   1 1 1 12

1
2

2
i

i i i i i i i i i i i i

p
y y y y y A y B y C y H

h h             , for 1, 2, , 1i N L  (9) 

where,

             

      

        

  
 

2 2 4
2 2 2

2 2 4

2

2 2

2 2 3 3 2
6 12 120

2
6 12 120

3 2

6 12

i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i

i i i i i i i i

i i i i i i

h h h
A p p p q p p p p q p p q p p p q

h h h
B p p q p p q p q p p p q p p q p

q p q p q p p q

h h
C p q p q q

                

                  

        

       

 

4
2

2 4 2 4 4
2 2

2
120

3
12 120 12 120 120

i i i i i i i i i i i

i i i i i i i i i i i i

h
p p q p q q q p p q q

h h h h h
H r p p p p q r p r p r

           

   
             

   

 

Now, using central difference approximation for andi iy y   in Equation (9) and further 

simplifying, we get: 

1 1 , for 1, 2,..., 1N
i i i i i i iL E y F y G y H i N        (10) 

where,  

2 2

1

2 2
i i i

i

p A B
E

h h h h
     

2 2

22 i
i i

A
F C

h h
    

2 2

1

2 2
i i i

i

p A B
G

h h h h
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The tri-diagonal system in Equation (10) can be easily solved by the method of Discrete Invariant 
Imbedding Algorithm. 

3. Stability and convergence analysis 

Case 1: Layer behaviour  . . ( ) ( ) 0, for (0,1). Thus ( ) 0 , since 0i e a x b x x q x       

Lemma 1. 
If (0) 0y   and ( ) 0Ly x  , for all  0,1x , then the solution ( ) 0y x  for all  0,1x for 

Equations (4) and (5). 

Proof. 
Suppose  0,1t , such that 

(0,1)
( ) min ( ) and ( ) 0

x
y t y x y t


  . Since,  0,1t  and is a point of 

minima, then ( ) 0y t   and ( ) 0y t  . 
Therefore, we have: 

( ) ( ) ( ) ( ) ( ) ( ) 0Ly t y t p t y t q t y t      ,  

since ( ) 0y t   (by the assumption) and ( ) 0q t  . But, this is a contradiction. Then, it follows 

that ( ) 0y t   and therefore, ( ) 0y x   for all  0,1x . 

Theorem 1. 

If the solution of the problem in Equations (4) and (5) satisfies 

 (0,1)
( ) max (0) , max ( )

x
y x C y Ly x


   

for some constant 1C  , then the solution is stable.
 

Proof. 

We define two functions,
  (0,1)

max (0) , max ( ) ( )
x

C y Ly x y x 


  .

 
Then, we get (0) 0    and 

 (0,1)
( ) ( ) max (0) , max ( ) ( ) 0 , since ( ) 0

x
L x C q x y Ly x Ly x q x 


   

 

and for suitable choice of 

C. Therefore, by Lemma 1, we get,  ( ) 0 , for all 0,1x x    .
 
So,  

 (0,1)
( ) max (0) , max ( ) .

x
y x C y Ly x


  

Hence, the stability of the solutions of the problem in Equations (4) and (5) is proved for the case 
of layer behaviour. 

Lemma 2. 
The finite difference operator NL

 
in Equation (10) satisfies the discrete minimum principle. i.e. 

if iw is any mesh function such that 0 0w   and 0N
iL w  , for all  0,1ix  , then 0iw   for 

all  0,1x . 
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Proof. 
Suppose there exists a positive integer k  such that 0kw   and 

0
k i

i N
w min w

 
 . 

Then, from Equation (10), we have: 

 

1 1
N

k k k k k k kL w E w F w G w   

 
      

      

2 2
2

12

2 2
2

12

1
3 3 2 2

12 6 12 120

1
3 3 2 2

12 6 12 120

1
2

2 24

k k k k
k k k k k k k k k k k k k

k k k k
k k k k k k k k k k k k k

k
k

p p q h p
p q p p q p p p q p p w w

h

p p q h p
p q p p q p p p q p p w w

h

p
h p q

h





                     
   
                     
   

      

         
3

2
1 1

12

3 2
240

k
k k k k k k k

k
k k k k k k k k k k k k k k k k k

k k

p
p p p q p q

h p
p p q p p q p q p q p q p p q w w

C w

 

        
 


                    




 

For sufficiently small h  and for suitable value of kp , we obtain 0N
kL w  . Since, 0kw   (by 

the assumption) and 0k kC q  . But, this is a contradiction. Hence, 0iw   for all  0,1ix  . 

Theorem 2.  
The finite difference operator NL

 
in Equation (10) is stable for ( ) ( ) 0a x b x  , if iw is any 

mesh function, then  0
(0,1)

max , max
i

i i
x

w C w Lw


 , for some constant 1C  . 

Proof. 

We define two functions,
  0

(0,1)
max , max

i
i i i

x
C w Lw w 


  .

 
Then, similar to Theorem 1, we get 

0 0    and  0
(0,1)

max , max 0
i

i i i i
x

L Cq w Lw Lw 


   , since 0 0i i ia b q     and 1C  .

 
Therefore by Lemma 2 we get 

 0, for all 0,1 .i ix     (0,1)
max , max 0

i
i o i i

x
C w Lw w 


    .

 

Thus,  (0,1)
max , max

i
i o i

x
w C w Lw


 . 

This proves the stability of the scheme for the case of layer behaviour. 

Case 2: Oscillatory behaviour  . . ( ) ( ) 0, for (0,1). Thus ( ) 0 , as 0i e a x b x x q x      .  

The continuous maximum principle and stability of the solution of Equations (4) and (5) are 
presented as follows for the case of oscillatory behaviour.  
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Lemma 3. 
If (0) 0y   and ( ) 0Ly x  , for all  0,1x , then the solution ( ) 0y x   for all  0,1x  for 

Equations (4) and (5). 

Proof. 
Suppose  0,1t , such that 

(0,1)
( ) max ( ) and ( ) 0

x
y t y x y t


  . Since,  0,1t  and is a point of 

maxima, therefore ( ) 0y t   and ( ) 0y t  . Therefore, we have:  

( ) ( ) ( ) ( ) ( ) ( ) 0Ly t y t p t y t q t y t      ,  

since ( ) 0y t   (by the assumption) and ( ) 0q t  . But, this is a contradiction. Hence, 

 ( ) 0 , for all 0,1 .y x x 
 

Theorem 3. 

The solution of the problem in Equations (4) and (5) satisfies  (0,1)
( ) max (0) , max ( )

x
y x K y Ly x


 , 

for some constant 1.K   

Proof. 
The proof is analogous to Theorem 1. Hence, the stability of the solutions of the problem in 
Equations (4) and (5) is proved for the case of oscillatory behavior. Now, we present the stability 
of the discrete problem in Equation (10) for the case of oscillatory behavior.  

Lemma 4. 
The finite difference operator NL

 
in Equation (10) satisfies the discrete maximum principle, if 

iw is any mesh function such that 0 0w  and 0N
iL w  , for all  0,1ix  , then 0iw   for all

 0,1x . 
 

Proof. 
Suppose that there exists a positive integer k  such that 0kw   and 

0
k i

i N
w max w

 
 . Then, from 

Equation (10), we have  

 1 1
N

k k k k k k kL w E w F w G w   

      

      

      

2 2
2

12

2 2
2

12

1
3 3 2 2

12 6 12 120

1
3 3 2 2

12 6 12 120

1
2

2 24

k k k k
k k k k k k k k k k k k k

k k k k
k k k k k k k k k k k k k

k
k k

p p q h p
p q p p q p p p q p p w w

h

p p q h p
p q p p q p p p q p p w w

h

p
h p q

h





                      
  

                     
   

       

         
3

2
1 1

12

3 2
240

k
k k k k k k

k
k k k k k k k k k k k k k k k k k

k k

p
p p p q p q

h p
p p q p p q p q p q p q p p q w w

C w
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For sufficiently small h  and for suitable value of kp , we obtain 0N
kL w  . Since, 0kw   (by 

the assumption) and 0k kC q  . But, this is a contradiction. Hence, 0iw   for all  0,1ix  . 

Theorem 4. 

The finite difference operator NL
 
in Equation (10) is stable for ( ) ( ) 0a x b x  ,  . . ( ) 0i e q x  , 

if iw is any mesh function, then  0
(0,1)

max , max
i

i i
x

w K w Lw


 , for some constant 1.K   

Proof. 
The proof is similar to Theorem 2. This proves the stability of the scheme for the case of oscillatory 
behaviour. 

Definition (Uniform convergence) 

Let y be a solution of Equations (1) and (2). Consider a difference scheme for solving Equations 

(1) and (2). If the scheme has a numerical solution Ny that satisfies N py y C h  , where 

0C  and 0p   are independent of   and of the mesh size h , then we say the scheme 

uniformly converges to	 	with respect to the norm .  [14].   

Theorem 5. 
Let ( )y x  be the analytical solution of the problem in Equation (4) and Equation (5) and ( )Ny x  
be the numerical solution of the discretized problem of Equation (10). Then, * 4Ny y C h   for 

sufficiently small h  and *C  is positive constant. 

Proof. 
Multiplying both sides of Equation (10) by 2h , we obtain 

     1 11 2 1 ( ) 0i i i i i i i iu y v y w y g h            (11) 

where,  
6

(6) 8
2( ) ( )

360i

h
h y O h  

 
is a local truncation error, for 1, 2 ,..., 1i N  . 

  

2

2

2 2

2

2 2

i i i i

i i i

i i i i

i i

h h
u p A B

v A h C

h h
w p A B

g h H

  

 

   



 

Incorporating the boundary conditions 0 0 0( ) , (1)Ny x y y     
 
in Equation (11), we get 

the systems of equations of the form:   

  ( ) 0D R y Z h     (12) 
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where, 
2 1 0 0

1 2 1 0

0

0 1 2

D

 
   
    
 
 
    

L

L

M O M
,   

1 1

2 2 2

1 1

0 0

0

0

0 N N

v w

u v w

R

u v 

 
 
 
    
 
 
   

L

L

M O M

 are tri-diagonal matrices of 

order 1N  , and  

     1 1 2 3 1 11 (0) , , , , 1 ,
T

N NZ g u g g g w          L   4( ) andh O h 

     1 2 1 1 2 1, , , , ( ) , , , , 0 0, 0, ,0
T TT

N Ny y y y h      L L L   

are the associated vectors of Equation (12). 
Let 1 2 1, , ,N N N N T

Ny y y y y   L
 
be the solution which satisfies the Equation (12), then we 

have: 

  0ND R y Z    (13) 

Let , for 1, 2 , , 1N
i i ie y y i N   L  be the discretization error, then,  1 2 1, , ,N T

Ny y e e e   L .  

Subtracting Equation (12) from Equation (13), we get 

   ( )ND R y y h    (14) 

Let 1ip M , 2 3,i ip M p M   , 1 2 3, ,i i iq K q K q K     

Let ijr be the  ,
th

i j element of the matrix R , then for 1, 2, , 2i N L  

 

    

2 21
, 1 1 1 2 1

3
21

1 2 3 2 1 2 1 1 1 2 1

2
2 6 12

2 3 3 2
120 2

i i i

i

M h h
r w h M M M K

Bh M
M M M K M M K M M M K


     



         


  

For 2,3, , 1i N L      

 

 

    

2 21
, 1 1 1 2 1

3
21

1 2 3 2 1 2 1 1 1 2 1

2
2 6 12

2 3 3 2
120 2

i i i

i

M h h
r u h M M M K

Bh M
M M M K M M K M M M K


     



         



      

Thus, for sufficiently small h , we have 
, 11 0i ir    , 1, 2, , 2i N L  

, 11 0i ir    , 2,3, , 1i N L . 

Hence, the matrix  D R is irreducible [15]. 

Let iS  be the sum of the elements of the thi row of the matrix  D R , then; 
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2
2

3 4

11
1 1

2 12 6 12

1 1
2 , for 1

24 12

i i i
i i i i

i i i i i i i i i

p p p
S v w h h q

h p p p q p q p p q O h i

           
   
            
 

 

   2 4 , for 2,3, , 2i i i i iS u v w h q O h i N       L  

     

2
2

3 4

11
1 1

2 12 6 12

1 1
2 , for 1

24 12

i i i
i i i i

i i i i i i i i i

p p p
S u v h h q

h p p p q p q p p q O h i N

           
   
              
 

 

Let * *
1* 1 1* 11 1 1 11 1 1 1

min , max , min , maxi i i ii N i Ni N i N
M p M p K q K q

          
    , then: 

* *
1* 1 1 1* 1 10 and 0M M M K K K       

For sufficiently small h ,  D R is monotone [15-16]. 

Hence,   1
D R

 exists and   1
0D R

  . 

From the error Equation (14), we have: 

  1
( )Ny y D R h    (15) 

For sufficiently small h , we have: 

2
1*

11
K , for 1

12iS h i   

2
1*

2
1* 1*

1 1

K , for 2,3, , 2

11
K , for 1 , where, min

12

i

i i
i N

S h i N

S h i N K q
  

  

   

L
 

Let   1

,i k
D R

 be the  ,
th

i k element of   1
D R

  and we define, 

   
1

1 1

,1 1
1

max
N

i ki N
k

D R D R


 

  


  
 
and 

1 1
( ) max i

i N
h 

  
  (16) 

Since   1

,
0

i k
D R

  , then from the theory of matrices, we have 

 
1

1

,
1

. 1
N

ki k
k

D R S






  , 1, 2, , 1i N L . 

Hence,   1

2 *,1
1

1 12
, for 1

11i
D R k

S h Q
    , since 0 1  . (17) 
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  1

2 *, 1
1

1 12
, for 1

11i N
N

D R k N
S h Q






      (18) 

Further,  
2

1

2 *,
2

2 2

1 1
, for 2,3, , 2

min

N

i k
k k

k N

D R k N
S h Q





  

     L  (19) 

where, *

1 1
min i ii N

Q a b
  

  , since 
( ) ( )

( ) i i
i

a x b x
q x


   

 
. 

Now, from Equations (15)   (19), we get 
(6)

4 * 42
*

( )7

792
N y

y y h C h
Q

 
   

 
 (20) 

where, 
(6)

* 2
*

( )7

792

y
C

Q

 
  

 
, which is independent of perturbation parameter   and mesh size 

.h This establishes that the present method is of fourth order uniformly convergent. 

4. Numerical examples and results 

To demonstrate the applicability of the method, we implemented the method on four numerical 
examples, two with twin boundary layers and two with oscillatory behaviour. Since, those 
examples have no exact solution, so the numerical solutions are computed using double mesh 
principle. The maximum absolute errors are computed using double-mesh principle given by 

2max ,
hh

h i i
i

Z y y  1...,,2,1  Ni  (21) 

where h
iy  is the numerical solution on the mesh   1

1

N

ix


at the nodal point ix and 0 ,ix x ih 

1, 2,..., 1i N   and 2
h

iy  is the numerical solution on a mesh, obtained by bisecting the original 

mesh with N  number of mesh intervals [4]. 

Example 1.  
Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour,  

( ) 0.25 ( ) ( ) 1y x y x y x        

under the interval and boundary conditions  
( ) 1, 0y x x     and (1) 0y  . 

The maximum absolute errors are presented in Tables 1 and 2 for different values of   and .  
The graph of the computed solution for 0.01   and different values of  is also given in  
Figure 1. 

Example 2.  
Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour, 

( ) 2 ( ) ( ) 1y x y x y x       

under the interval and boundary conditions 
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( ) 1, 0y x x     and (1) 0y  . 

The maximum absolute errors are presented in Tables 3 and 4 for different values of   and .  
The graph of the computed solution for 0.01   and different values of   is also given in 
Figure 2. 

Table 1. The maximum absolute errors of Example 1, for different values of  with 0.1  . 

   100N   200N   300N   400N   500N   

Our Method 
0.03 1.2007e-09 7.5051e-10 1.4815e-11 4.6660e-12 1.9661e-12 
0.05 1.2135e-09 7.5860e-10 1.4980e-11 4.7337e-12 1.9339e-12 
0.09 1.2290e-09 7.6818e-10 1.5168e-11 4.7632e-12 2.0450e-12 

Results in [10] 
0.03 2.1999e-03 1.1041e-03 7.3705e-04 5.5315e-04 4.4269e-04 
0.05 2.2012e-03 1.1049e-03 7.3749e-04 5.5345e-04 4.4293e-04 
0.09 2.1999e-03 1.1038e-03 7.3676e-04 5.5289e-04 4.4247e-04 

Table 2. The maximum absolute errors of Example 1, for different values of   with 0.5  . 

   42N   
52N   

62N   
72N   

82N   
Our Method 

42  4.7163e-06 2.9533e-07 1.8473e-08 1.1546e-09 7.2184e-11 
52  1.6851e-05 1.0582e-06 6.6233e-08 4.1407e-09 2.5883e-10 
62  6.1305e-05 3.9010e-06 2.4413e-07 1.5281e-08 9.5513e-10 
72  2.3541e-04 1.5098e-05 9.4835e-07 5.9419e-08 3.7143e-09 
82  9.2982e-04 5.9195e-05 3.7478e-06 2.3512e-07 1.4703e-08 
92 3.5840e-03 2.3115e-04 1.4856e-05 9.3248e-07 5.8449e-08 
102  1.1856e-02 9.1935e-04 5.8565e-05 3.7066e-06 2.3261e-07 

Results in [10] 
42  1.8632e-02 9.6189e-03 4.8865e-03 2.4643e-03 1.2376e-03 
52  2.8161e-02 1.4818e-02 7.6255e-03 3.8713e-03 1.9509e-03 
62  3.7958e-02 2.0967e-02 1.0977e-02 5.6273e-03 2.8498e-03 
72  5.0640e-02 2.8316e-02 1.5267e-02 7.9105e-03 4.0287e-03 
82  6.3580e-02 3.7706e-02 2.0984e-02 1.1012e-02 5.6555e-03 
92 8.3843e-02 5.0477e-02 2.8297e-02 1.5261e-02 7.9111e-03 
102  9.9137e-02 6.3529e-02 3.7660e-02 2.0974e-02 1.1011e-02 

 
Figure 1. The numerical solution of Example 1 with ε =0.01 and N = 100. 
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Table 3. The maximum absolute errors of Example 2, for different values of  with 0.1  . 

   100N   200N   300N   400N   500N   

Our Method 
0.03 5.9892e-09 3.7452e-10 7.3976e-11 2.3404e-11 9.5863e-12 
0.05 3.3028e-09 2.0657e-10 4.0807e-11 1.2909e-11 5.2809e-12 
0.09 4.6352e-09 2.8949e-10 5.7180e-11 1.8085e-11 7.4190e-12 

Results in [10] 
0.03 3.1674e-03 1.6058e-03 1.0754e-03 8.0837e-04 6.4760e-04 
0.05 3.1437e-03 1.5949e-03 1.0685e-03 8.0338e-04 6.4367e-04 
0.09 3.0784e-03 1.5660e-03 1.0502e-03 7.9000e-04 6.3310e-04 

Table 4. The maximum absolute errors of Example 2, for different values of   with 0.5  . 

   42N   
52N   

62N   
72N   

82N   
Our Method 

42  1.7218e-05 1.0980e-06 6.9308e-08 4.3372e-09 2.7116e-10 
52  8.6267e-05 5.7179e-06 3.5965e-07 2.2514e-08 1.4086e-09 
62  4.0309e-04 2.6120e-05 1.6483e-06 1.0385e-07 6.4944e-09 
72  1.6675e-03 1.1001e-04 7.1717e-06 4.5007e-07 2.8201e-08 
82  5.7218e-03 4.6571e-04 2.9880e-05 1.8861e-06 1.1867e-07 
92 1.5760e-02 1.8472e-03 1.2042e-04 7.7976e-06 4.8901e-07 

102  3.3872e-02 6.2077e-03 4.9356e-04 3.1554e-05 1.9940e-06 

Results in [10] 
42  2.1118e-02 1.1692e-02 6.1941e-03 3.1887e-03 1.6178e-03 
52  2.7872e-02 1.6023e-02 8.6367e-03 4.4957e-03 2.2948e-03 
62  3.5711e-02 2.1293e-02 1.1869e-02 6.2731e-03 3.2240e-03 
72  4.6679e-02 2.8350e-02 1.6107e-02 8.6728e-03 4.5120e-03 
82  5.4895e-02 3.6018e-02 2.1373e-02 1.1929e-02 6.2847e-03 
92 5.7371e-02 4.7254e-02 2.8581e-02 1.6140e-02 8.6961e-03 

102  5.7878e-02 5.5695e-02 3.6153e-02 2.1406e-02 1.1956e-02 

 

 
Figure 2. The numerical solution of Example 2 with ε =0.01 and N = 100. 
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Example 3.  
Consider the singularly perturbed delay reaction-diffusion equation with oscillatory behaviour, 

( ) 0.25 ( ) ( ) 1y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 0y  .  

The maximum absolute errors are presented in Table 5 for different values of  . The graph of 
the computed solution for 0.001   and different values of  is also given in Figure 3. 

Table 5. The maximum absolute errors of Example 3, for different values of  with 0.1  . 

   100N   200N   300N   400N   500N   

Our Method 
0.03 3.9856e-08 2.4916e-09 4.9143e-10 1.5603e-10 6.1932e-11 
0.05 3.8949e-08 2.4343e-09 4.8003e-10 1.5358e-10 7.0907e-11 
0.09 3.7554e-08 2.3446e-09 4.6287e-10 1.6033e-10 6.1303e-11 

Results in [10] 
0.03 2.5991e-03 1.2872e-03 8.5528e-04 6.4039e-04 5.1179e-04 
0.05 2.6270e-03 1.3013e-03 8.6474e-04 6.4750e-04 5.1749e-04 
0.09 2.6813e-03 1.3289e-03 8.8320e-04 6.6139e-04 5.2863e-04 
 

 
Figure 3. The numerical solution of Example 3 with ε =0.001 and N = 100. 
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( ) ( ) 2 ( ) 1y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 0y  .  

The maximum absolute errors are presented in Table 6 for different values of  . The graph of 
the computed solution for 0.001   and different values of  is also given in Figure 4. 
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Table 6. The maximum absolute errors of Example 4, for different values of  with 0.1  . 

   100N   200N   300N   400N   500N   

Our Method 
0.03 1.5497e-07 9.6846e-09 1.9131e-09 6.0394e-10 2.4770e-10 
0.05 1.5900e-07 9.9375e-09 1.9630e-09 6.2120e-10 2.5444e-10 
0.09 1.7208e-07 1.0754e-08 2.1244e-09 6.7226e-10 2.7451e-10 

Results in [10] 
0.03 1.5929e-02 7.4850e-03 4.8816e-03 3.6202e-03 2.8764e-03 
0.05 1.5470e-02 7.2782e-03 4.7473e-03 3.5209e-03 2.7975e-03 
0.09 2.1396e-02 1.0097e-02 6.5922e-03 4.8916e-03 3.8879e-03 
 

 
Figure 4. The numerical solution of Example 4 with ε =0.001 and N = 100. 

Illustration of the effect of delay on the solution 

The above graphs (Figures 1-4) show the numerical solutions obtained by the present method 
for different values of delay parameter  . 

The rate of convergence ( )  

In the same way in Equation (21) one can define 
2

hZ  by replacing h  by 2
h  and 1N   

by 2 1N  , that is: 

  2 4

2
max

h h

h i i
i

Z y y  , for .12...,,2,1  Ni  

The computational rate of convergence   is also obtained by using the double mesh principle 
defined as in [4]. 

  
   

2
log log

log 2

h hZ Z


  
  . 

The following tables (i.e., Tables 7 and 8) shows the rate of convergence   of the present method 
for different values of the mesh size h . 
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Table 7. Rate of Convergence   for 0.1   and 0.05  . 
 h  2/h  hZ  4/h  2/hZ    

Example 1  
 1/100 1/200 1.2135e-09 1/400 7.5855e-11 3.9998 

1/200 1/400 7.5860e-11 1/800 4.9848e-12 3.9277 
1/300 1/600 1.4980e-11 1/1200 9.4408e-13 3.9880 

Example 2  
 1/100 1/200 3.3028e-09 1/400 2.0653e-10 3.9993 

1/200 1/400 2.0657e-10 1/800 1.2909e-11 4.0002 
1/300 1/600 4.0807e-11 1/1200 2.5474e-12 4.0017 

Table 8. Rate of Convergence   for 0.1   and 0.03  . 
 h  2/h  hZ  4/h  2/hZ    

Example 3  
 1/100 1/200 3.9856e-08 1/400 2.4913e-09 3.9998 

1/200 1/400 2.4916e-09 1/800 1.5603e-10 3.9971 
1/300 1/600 4.9143e-10 1/1200 3.0611e-11 4.0049 

Example 4  
 1/100 1/200 1.5497e-07 1/400 9.6846e-09 4.0001 

1/200 1/400 9.6846e-09 1/800 6.0394e-10 4.0032 
1/300 1/600 1.9131e-09 1/1200 1.1975e-10 3.9978 

5. Discussion and conclusion 

Fourth order numerical method for solving singularly perturbed delay reaction-diffusion 
equations with twin layers and oscillatory behaviour has been presented. To demonstrate the 
efficiency of the method, four model examples without exact solutions have been considered for 
different values of the perturbation parameter   and delay parameter  . The numerical 
solutions are tabulated (Tables 1 to 6) in terms of maximum absolute errors and observed that the 
present method improves the findings of Swamy et al. [10]. Also, it is significant that all of the 
maximum absolute errors decrease rapidly as N increases. The stability and -uniform 
convergence of the method are investigated and established well. The results presented in Tables 
7 and 8 confirmed that computational rate of convergence as well as theoretical estimates indicate 
that method is a fourth order convergent. 

Further, to investigate the effect of delay on the solution of the problem, numerical solutions 
have been presented using graphs. Accordingly, when the order of the coefficient of the delay 
term is of (1)o , the delay affects the boundary layer solution but maintains the layer behaviour 
(Figure 1). When the delay parameter is of ( )O  , the solution maintains layer behaviour 
although the coefficient of the delay term in the equation is of (1)O  and as the delay increases, 
the thickness of the left boundary layer decreases while that of the right boundary layer increases 
(Figure 2). For the oscillatory behaviour case, one can conclude that the solution oscillates 
throughout the domain for different values of delay parameter   (Figures 3 and 4). In a concise 
manner, the present method gives more accurate solution and is uniformly convergent for solving 
singularly perturbed delay reaction-diffusion equations with twin layers and oscillatory 
behaviour. 
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