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Fourth Order Numerical Method for Singularly Perturbed
Delay Differential Equations
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Abstract: This paper presents a numerical method to solve singularly perturbed delay differential
equations. The solution of this problem exhibits layer or oscillatory behaviour depending on the
sign of the sum of coefficients in reaction terms. A fourth order finite difference scheme on a
uniform mesh is developed. The stability and convergence of the proposed method have been
established. The effect of delay parameter (small shift) on the boundary layer(s) has also been
analyzed and depicted in graphs. The applicability of the proposed scheme is validated by
implementing it on four model examples. To show the accuracy of the method, the results are
presented in terms of maximum absolute errors.
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1. Introduction

A singularly perturbed delay differential equation is an ordinary differential equation in which
the highest derivative is multiplied by a small parameter and involving at least one delay team.
The smoothness of the solutions of such singularly perturbed delay differential equation
deteriorates when the parameter tends to zero. Such problems arise frequently in the study of
control theory [1], in determining the expected time for the generation of action potentials in nerve
cells by random synaptic inputs in dendrites [2], in the modeling of activation of a neuron [3] and
many more. A well-known fact is that the solution of such problems display sharp boundary or
interior layers when ¢ is very small, i.e., the solution varies rapidly in some parts and varies slowly
in some other parts. So the treatment of singularly perturbed problems (SPPs) presents severe
difficulties that have to be addressed to ensure accurate numerical solutions [4-6]. Thus more
efficient but simpler computational techniques are required to solve SPPs.

Recently, some researchers are tried to develop a numerical methods for solving singularly
perturbed delay differential equations. For examples, Gemechis et al. [7] presented numerical
solution of singularly perturbed delay reaction-diffusion equations with layer or oscillatory
behavior, earlier researchers [8-10] develop some numerical methods to solve singularly perturbed
delay differential equations. Kadalbajoo and Ramesh [11] states that, the accuracy of the problem
increased by increasing the resolution of the grid which might be impractical in some cases like
higher dimensions. Pratima and Sharma [12] states, till date e-uniformly convergent methods have
not been sufficiently developed for a wide class of singularly perturbed delay differential equations.
However, this paper present a uniformly convergent and more accurate fourth order numerical
method for solving singularly perturbed delay reaction-diffusion equations.
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2. Description of the method

Consider a linear singularly perturbed delay reaction-diffusion equation of the form:

£y"(x)+a(x)y(x = 6) +b(x)y(x) = f(x), x€[0,1] (1
with the interval and boundary conditions,
Y(xX) = ¢(x), —5<x<0 and y()=p @)

where ¢ is a perturbation, 0<e<<1l and o6 is also a delay parameter, 0<0 <<1 ;
a(x), b(x), f(x) and ¢(x) are bounded smooth functions in (0,1)and S is a given constant.
The layer or oscillatory behaviour of the problem under consideration is maintained for 6 #0
but sufficiently small, depending on the sign of a(x)+b(x), forall xe (O, l) Jdf a(x)+b(x) <0,
the solution of the problem in Equations (1) and (2) exhibits layer behaviour, and if
a(x)+b(x)>0 , it exhibits oscillatory behaviour. Therefore, if the solution exhibits layer

behaviour, there will be two boundary layers which will occur at both end points x=0and x=1
(see Reference [7]).
By using Taylor series expansion in the neighborhood of the point x , we have:

Y(x=3) = y(x)=y'(x) +0(57) 3)

Substituting Equation (3) into Equation (1), we obtain an asymptotically equivalent singularly
perturbed two point boundary value problem of the form:

Ly(x) = y"(x)+ p(x)y'(x) + g(x) y(x) = r(x) 4)
under the boundary conditions,
y(0)=¢, and y(1) = f )
where, p(r)= 240 gy 2 GOFPD) g - LD
& & &

The transition from Equation (1) to Equation (4) is admitted, because of the condition that
0< o <<1 is sufficiently small. Further details on the validity of this transition can be found in
Reference [13].

Now, dividing the interval [0,1] into N equal parts with constant mesh length %, we have

x, =x,+ih, i=0,1,2 K ,N.Let y =y(x,) for x, €[0,1].
Assuming that y(x) has continuous derivatives on [0,1] and making use of Taylor’s series
expansionsof ., and y,_ upto O(h’),we get the finite difference approximations for y/ and
v/ as:
2 4

e R T A

== - — ' — 7 47 6
yl 2h 6 yz 120 yl 1 ( )

h6
where, 7, =—?y(7’(§1) ,for & e[x,, x,].
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and
irr= Yie1t — 2);;' + )i _ h_2 i(4)_h_4 i(6)+ 7, (7)
h 12 360
h6
where, 7, =—§y(8)(§2), for & e[x_, x].
Substituting Equations (6) and (7) into Equation (4) and simplifying, we obtain:
1 )2 n n n
— (v =2y 4y )+(y. =y )——p ) —— YV - —p O 4 gy =r+1 8
7 Vi =240 )4 =) = P = T e Pl = ®)

4

h
where, 7= 360 y(&) = pr,—t, is the local truncation error and p(x.) = p,, ¢(x,)=¢.,

r(x)=r.
By successively differentiating both sides of Equation (4) and evaluating at x,, and using into
Equation (8), we obtain:

1 ] ” ’ .
?(yiﬂ _2yi+yi—1)+2p_}ll(yi+l_yi—l)+A[yi+Biyi+Ciyi :Hi’ for l=1’2’L ’N_l (9)
where,
A,:h_zp?—h_z(pg—pr—q)——4p,(Zp,p.'—?)pf'—3q,’+p,(pf+q,)—p,(p,2—2p4'—q4))
1 6 1 12 1 1 1 120 1 1 1 1 1 1 1 1 1 1 1 1
n n n
B, =~ (pi+a,)= (P (pl+ )= pI=241) = = pi{pi(pl+ )+ p. (P +a)) = Pl
=3¢/ +pg,—(pl+4,) (P! 27~ 4,)}
n 2 h
C=—pqg-—(pqg—-q9")-—pl pad+pqg—q9"-q(p’-2p —q.))+q,
= pd =5 (pai=a7)- o pi(plai+ pal-a7-a (] -2p1-4,))+ 4
" /N ) oot /N
H=r+—p+—p|\p -3p,—q,) |r/+| ——p; |r'+—pr"
b [121)1 120p’(p’ b q,) 12 1207 ) T 1200
Now, using central difference approximation for ' and y/ in Equation (9) and further
simplifying, we get:
Y=Ey —-Fy+Gy, =H,, fori=12,.,N-1 (10)
where,
gt P 4 B
"R 2h kP 2k
F=2a2hog
G = 12+&+i;' —+
h™ 2h h™ 2h
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The tri-diagonal system in Equation (10) can be easily solved by the method of Discrete Invariant
Imbedding Algorithm.

3. Stability and convergence analysis

Case 1: Layer behaviour (ie. a(x)+b(x)<0, for x € (0,1). Thus g(x) <0, since & > 0)

Lemma 1.
If »(0)>0 and Ly(x)<0, for all xe(0,1), then the solution y(x)>0 for all xe(0,1)for

Equations (4) and (5).
Proof.
Suppose ¢ (0,1), such that y(r)= n}grll)y(x) and y(t)<0. Since, #¢{0,1} and is a point of

minima, then '(¢)=0 and »"(¢£)>0.
Therefore, we have:

Ly(®)=y"O)+ p()y' @) +q@)y() >0,
since y(¢) <0 (by the assumption) and ¢(¢) <0. But, this is a contradiction. Then, it follows
that y(¢)>0 and therefore, y(x)>0 forall xe(0,1).

Theorem 1.

If the solution of the problem in Equations (4) and (5) satisfies
|y(x)| < Cmax {|y(0) , max |Ly(x)|}

xe(0,1)

for some constant C >1, then the solution is stable.

Proof.

We define two functions, y* = C max {| v(0)

, m(%ul()|Ly(x)|} * y(x). Then, we get w*(0)>0 and

Ly (x) = Cg(x)max{|3(0)

C. Therefore, by Lemma 1, we get, y*(x)>0, forall xe(0,1). So,

’H{f})f) |Ly(x)|} + Ly(x) <0, since g(x) <0 and for suitable choice of

|y(x)| < Cmax {|y(0) , )I(gg)l;) |Ly(x)|} .

Hence, the stability of the solutions of the problem in Equations (4) and (5) is proved for the case
of layer behaviour.

Lemma 2.
The finite difference operator L" in Equation (10) satisfies the discrete minimum principle. i.e.
if w,is any mesh function such that w, >0 and L"w, <0, for all x, €(0,1), then w, >0 for

allx e(0,1).
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Proof.

Suppose there exists a positive integer k£ suchthat w, <0 and w, = 0min w;.
<i<N

Then, from Equation (10), we have:

N —
L'w,=Ew,_, —Ew, +Gow,

1 ; A hz n ! / / !
- {[?+%+%+%J+7ﬁ"( 3p +34; —py (P +a.)+ 2. (P} —2P, — 4 ) -2, )}(wk_l —w,)

l : A hz n ! / / !
+{(ﬁ+%+%+%J+?IZ)k( 3p; +3q,—p, (pk +Qk)+pk (p/f —2p, _qk)_zpkpk )}(Wkﬂ _Wk)

1 n ’ ’ ’
+{%+h(£(pk +2q, — PPy _pk‘]k)+%(pk +Qk)j

n h3pk
240

+Cw,

(~24 (P +a0) =P (1} +4)+ P! +34 P} +(p,i+qk)(p§—2pll—qk))}(wkﬂ ~w,)

For sufficiently small /4 and for suitable value of p, , we obtain L“w, >0. Since, w, <0 (by

the assumption) and C, — ¢, <0. But, this is a contradiction. Hence, w, >0 forallx, €(0,1).

Theorem 2.
The finite difference operator L in Equation (10) is stable for a(x)+b(x)<0,if w,is any

mesh function, then |wl| < Cmax {|wO

, max |Lwl. }, for some constant C>1.

x;€(0,1)

Proof.

We define two functions, 1//,,i = C'max {|w0 , max |Lm|} +w,. Then, similar to Theorem 1, we get

x;€(0,1)

wy >0 and Ll//i+ECq[max{|w0, (aX|Lwi| +Lw, <0,since a,+b <0=¢g, <0 and C=1.

x;€(0,1)

Therefore by Lemma 2 we get

w' >0, forall x, (0,1). > y; ECmax{|w0 , max |Lwl.|}iwi >0.

x;€(0,1)

Thus,

wl.| < Cmax {|Wo
x;€(0,1)

, max |Lwl.|} .

This proves the stability of the scheme for the case of layer behaviour.

Case 2: Oscillatory behaviour (i.e. a(x)+b(x)>0, for x € (0,1). Thus ¢(x)>0, as £ >0).

The continuous maximum principle and stability of the solution of Equations (4) and (5) are
presented as follows for the case of oscillatory behaviour.
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Lemma 3.
If y(0)>0 and Ly(x)20, for all xe(0,1), then the solution y(x)>0 for all xe(0,1) for

Equations (4) and (5).
Proof.
Suppose 7€(0,1), such that y(r)= rr}eouf)y(x) and y(t)<0. Since, t¢{0,1} and is a point of
maxima, therefore )'(r)=0 and y"(¢) <0. Therefore, we have:
Ly(t)=y"(0)+ p(0)y'() +q(H) y(1) <0,
since y(t)<0 (by the assumption) and ¢(¢)>0 . But, this is a contradiction. Hence,

y(x) >0, forall x(0,1).

Theorem 3.

The solution of the problem in Equations (4) and (5) satisfies | y(x)| <K max{

, max
x€(0,1)
for some constant K >1.

Proof.

The proof is analogous to Theorem 1. Hence, the stability of the solutions of the problem in
Equations (4) and (5) is proved for the case of oscillatory behavior. Now, we present the stability
of the discrete problem in Equation (10) for the case of oscillatory behavior.

Lemma 4.
The finite difference operator L" in Equation (10) satisfies the discrete maximum principle, if
w, is any mesh function such that w,>0and L"w, >0, for allx, €(0,1), thenw, >0 for all

xe(0,1).

Proof.

Suppose that there exists a positive integer &k suchthat w, <0 and w, = maxw,. Then, from
0<i<N

Equation (10), we have

N
L'w, = Eow, = Ew, +Gw,,

1 2 J h , .
:{(F'F%‘l'%‘FfSJ 12’8{ ( 3pk +3‘]k Dy (pk+qk)+pk (plf -2p, _qk)_zpkpk )}(Wk—l _Wk)

1 / W ,
B} ot - 202020 )

1
{p“h( 3 \Pl+24i=prl—pa )+ f;(Pﬁ%)j

(<2t (Pl +a) - i (Pl + )+ f +34] —pedi +(Pl+a,) (L —21 —qk))}(wm ~We1)
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For sufficiently small % and for suitable value of p, , we obtain L"w, <0. Since, w, <0 (by

the assumption) and C, — ¢, > 0. But, this is a contradiction. Hence, w, >0 forallx, €(0,1).

Theorem 4.
The finite difference operator L" in Equation (10) is stable for a(x)+b(x)>0, (i.e. q(x) > O) ,

, max |Lwl.

} , for some constant K >1.
x;€(0,1)

if w, is any mesh function, then |wl| < K'max {|w0

Proof.
The proof is similar to Theorem 2. This proves the stability of the scheme for the case of oscillatory
behaviour.

Definition (Uniform convergence)
Let y be a solution of Equations (1) and (2). Consider a difference scheme for solving Equations
(1) and (2). If the scheme has a numerical solution y" that satisfies H y—y" HS Ch” , where

C>0and p>0 are independent of & and of the mesh size /4, then we say the scheme

uniformly converges to y with respect to the norm |||| [14].

Theorem 5.
Let y(x) be the analytical solution of the problem in Equation (4) and Equation (5) and " (x)

be the numerical solution of the discretized problem of Equation (10). Then, ‘ y=y" H <C'h* for

sufficiently small 4 and C is positive constant.

Proof.
Multiplying both sides of Equation (10) by —4*, we obtain
(—1+u,.)yH "'(2""’,-))’,- +(—1+w,.)y,.+1 +g,+7,(h)=0 (11)

h6
where, 7,(h) Z%y(é) (&) +0(h8) is a local truncation error, for i=1,2,....N—1.

h h
u=—p —A+—B,
1 2pl 1 2 1
v, =24,-h’C,
h h

w=——p —A ——B.
1 2pl 1 2 1
gi:h2Hi

Incorporating the boundary conditions y, =é(x,) =¢,, v, =y(1)=F in Equation (11), we get
the systems of equations of the form:

(D+R)y+Z+7(h)=0 (12)
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where,
(2 -1 0 L O] v, w, 0 L 0]
-1 2 -1 L 0 w, v, w, L 0
D=lo - - — R=|l0 - -— — | are tri-diagonal matrices of
M 0] M, M 0] M
0 - - -1 2] 10— = uyy vy

order N —1,;1nd
Z=[(g1+(—l+ul)¢(0)), g,, 8,1 ,(gN71+(—l+wN71)ﬂ)]T, T(h)ZO(h4) and

T = T
y = [,prz >L 5yN_1:| T’ T(h) = [Tl 5 Tz ’L 7TN_1 ] > O = [Oa 07L 70]
are the associated vectors of Equation (12).
Let y" = [ oyl L, yﬂ’f_l] "~y be the solution which satisfies the Equation (12), then we

have:

(D+R)y"+Z=0 (13)

Let ¢ =y,—y", fori=1,2,L ,N-1 be the discretization error, then, y-y" =[e,e,,L ,e,]".
Subtracting Equation (12) from Equation (13), we get

(D+R)(y" —y)=1(h) "
Let |pi|SM1’ p;|SM2, pi"|SM3, Qi|SK1, ‘1;|SK2’ qi" <K,
Let r,.jbe the (i,j)th element of the matrix R, thenfor i=1,2,.L ,N-2
M, h h
‘rz‘m :|Wf|5h{71+gM12+E(M12—2M2—K1)
WM 5
’ 1201 (2M1M2_3M3_3K2+M1(M2+K1)_M1(M12—2M2_K1))+?}

For i=2,3,L ,N-1

7| = | < h{%+%Mﬁ +%(Mf -2M,-K,)

M, ) B,
s (20,M, =3M, =3K, + M, (M, +K,) - M, (M, —2M2—K1))+?’

Thus, for sufficiently small /%, we have

—1+\r,.,,.+1 <0, i=1,2,L ,N-2

~1+ 4| <0, i=2,3,L ,N-1.
Hence, the matrix (D + R)is irreducible [15].
Let S, be the sum of the elements of the i” row of the matrix (D +R), then;
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S =1+v,+w =1+h| — pl_HQi
6 12

1 .
( P,PHLPI% Pl_2ql)—EPl(P,+q1)j+0(h4),forz:l

S =u+v.+w =h2(—q,.)+0(h4), fori=2,3L ,N-2

S, =1+u,+v, =1+h| L |+ 4’ &—Eqi
2 12 6 12

1 1 ‘
”’3(24( ppi- P,‘],+P,+2‘I,)+Ep,(p,+q,)j+0(h4), for i=N-1

Let M. = min
I<i<N-1

= max
I<i<N-1

= max

1*
1<i<N-1

1<i<N-1

0<M,.<M,<M; and 0< K, <K, <K,

For sufficiently small /, (D + R)is monotone [15-16].
Hence, (D+ R)_1 exists and (D + R)_1 >0.

From the error Equation (14), we have:

y=3" <2+ R)lem] a5)
For sufficiently small /%, we have:
S, > %thl*, fori=1

S.> h’K,,, fori=2,3L ,N-2

S, > %h K., fori=N-1,  where, K.= min | |

1<i<N-1

Let (D+R) be the (i,k)th element of (D+R)_1 and we define,

H(D+R)71H: max f(D+R);1 and ||z'(h)||— max |z'| (16)

<i<N-— <i<
I<i<N lk:l I<i<N-1

Since (D + R);;C > 0, then from the theory of matrices, we have

N-1
(D+R) S, =1, i=1,2,L ,N-1.
k=1
a1 12 .
Hence, (D+R) <—<—5—, fork=1,since 0<e&<<1. (17)
1S 11RO
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(D+R);1HSL<%, for k=N-1 (18)
: Sy, 11h°0
& -1 1 1
Further, » (D+R)  <— <——, for k=2,3L ,N-2 (19)
p " min S, A’Q
2<k<N-2
where, Q" = min |ai +b,|, since q(x,) :(Mj
1Si<N-1 &
Now, from Equations (15) — (19), we get
(6)
ly— 3| e | 28 |t — oo 0)
792 QO
(6)
where, C = 7—;2()/7(?2)] , which is independent of perturbation parameter & and mesh size

h. This establishes that the present method is of fourth order uniformly convergent.

4. Numerical examples and results

To demonstrate the applicability of the method, we implemented the method on four numerical
examples, two with twin boundary layers and two with oscillatory behaviour. Since, those
examples have no exact solution, so the numerical solutions are computed using double mesh
principle. The maximum absolute errors are computed using double-mesh principle given by

. i=12,.,N-1 (21)

Z, =max|y' —y

where y!' is the numerical solution on the mesh {xl.}]\h1 at the nodal pointx, andx, = x, + ih,

1
i=12,.,N—-1 and yi% is the numerical solution on a mesh, obtained by bisecting the original
mesh with N number of mesh intervals [4].

Example 1.
Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour,
eY"(x)+025p(x—0)—y(x) =1
under the interval and boundary conditions
y(x)=1,-0<x<0 and y(1)=0.
The maximum absolute errors are presented in Tables 1 and 2 for different values of ¢ and o.

The graph of the computed solution for £=0.01 and different values of ois also given in
Figure 1.

Example 2.
Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour,

ey"(x)=2y(x=06)-y(x) =1

under the interval and boundary conditions

26 Int. J. Appl. Sci. Eng., 2018. 15, 1
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The maximum absolute errors are presented in Tables 3 and 4 for different values of & and o.
The graph of the computed solution for £=0.01 and different values of & is also given in

Figure

2.

Table 1. The maximum absolute errors of Example 1, for different values of & with &£ =0.1.

sS4 N =100 N =200 N =300 N =400 N =500
Our Method
0.03 1.2007¢-09 7.5051e-10 1.4815e-11 4.6660e-12 1.9661e-12
0.05 1.2135e-09 7.5860e-10 1.4980e-11 4.7337e-12 1.9339¢-12
0.09 1.2290e-09 7.6818¢e-10 1.5168e-11 4.7632e-12 2.0450e-12
Results in [10]
0.03 2.1999¢-03 1.1041e-03 7.3705¢-04 5.5315e-04 4.4269¢-04
0.05 2.2012e-03 1.1049¢-03 7.3749¢-04 5.5345e-04 4.4293e-04
0.09 2.1999¢-03 1.1038e-03 7.3676¢-04 5.5289¢-04 4.4247e-04

Table 2. The maximum absolute errors of Example 1, for different values of ¢ with 6 =0.5¢.

ev  N=2* N=2° N=2° N=27 N=2}
Our Method
94 4.7163¢-06 2.9533¢-07 1.8473¢-08 1.1546¢-09 7.2184e-11
75 1.6851¢-05 1.0582¢-06 6.6233¢-08 4.1407¢-09 2.5883¢-10
96 6.1305¢-05 3.9010e-06 2.4413¢-07 1.5281¢-08 9.5513¢-10
-7 2.3541e-04 1.5098¢-05 9.4835¢-07 5.9419¢-08 3.7143e-09
98 9.2982¢-04 5.9195¢-05 3.7478e-06 2.3512¢-07 1.4703¢-08
79 3.5840e-03 2.3115¢-04 1.4856¢-05 9.3248e-07 5.8449¢-08
710 1.1856e-02 9.1935¢-04 5.8565e-05 3.7066¢-06 2.3261e-07
Results in [10]
94 1.8632¢-02 9.6189¢-03 4.8865¢-03 2.4643e-03 1.2376e-03
7S 2.8161e-02 1.4818e-02 7.6255¢-03 3.8713e-03 1.9509¢-03
96 3.7958e-02 2.0967¢-02 1.0977¢-02 5.6273¢-03 2.8498¢-03
27 5.0640e-02 2.8316e-02 1.5267e-02 7.9105¢-03 4.0287¢-03
98 6.3580e-02 3.7706e-02 2.0984¢-02 1.1012¢-02 5.6555¢-03
79 8.3843¢-02 5.0477e-02 2.8297¢-02 1.5261e-02 7.9111e-03
710 9.9137¢-02 6.3529¢-02 3.7660e-02 2.0974¢-02 1.1011e-02

1

0.5F

y-numerical solution

-0.5- A

— -~ 5=0.03
-~ 5§=0.05|
&= 0.09

! L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. The numerical solution of Example 1 with £ =0.01 and N = 100.
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Table 3. The maximum absolute errors of Example 2, for different values of & with & =0.1.

S N =100 N =200 N =300 N =400 N =500
Our Method
0.03 5.9892¢-09 3.7452¢-10 7.3976e-11 2.3404e-11 9.5863e-12
0.05 3.3028e-09 2.0657e-10 4.0807e-11 1.2909e-11 5.2809¢e-12
0.09 4.6352¢-09 2.8949¢-10 5.7180e-11 1.8085e-11 7.4190e-12
Results in [10]
0.03 3.1674¢-03 1.6058e-03 1.0754¢-03 8.0837¢-04 6.4760e-04
0.05 3.1437e-03 1.5949¢-03 1.0685e-03 8.0338e-04 6.4367e-04
0.09 3.0784e-03 1.5660e-03 1.0502e-03 7.9000e-04 6.3310e-04

Table 4. The maximum absolute errors of Example 2, for different values of & with & =0.5¢.

¥ N=2 N=2 N=2° N=2 N=2*
Our Method
24 1.7218e-05 1.0980e-06 6.9308e-08 4.3372e-09 2.7116e-10
25 8.6267¢-05 5.7179¢-06 3.5965e-07 2.2514¢-08 1.4086¢-09
26 4.0309¢-04 2.6120e-05 1.6483¢-06 1.0385¢-07 6.4944¢-09
27 1.6675e-03 1.1001e-04 7.1717e-06 4.5007e-07 2.8201e-08
28 5.7218e-03 4.6571e-04 2.9880e-05 1.8861¢-06 1.1867¢-07
29 1.5760e-02 1.8472¢-03 1.2042¢-04 7.7976e-06 4.8901e-07
2-10 3.3872e-02 6.2077e-03 4.9356¢-04 3.1554e-05 1.9940e-06
Results in [10]
24 2.1118e-02 1.1692¢-02 6.1941e-03 3.1887¢-03 1.6178e-03
25 2.7872e-02 1.6023e-02 8.6367e-03 4.4957¢-03 2.2948e-03
26 3.5711e-02 2.1293¢-02 1.1869¢-02 6.2731e-03 3.2240e-03
=7 4.6679¢-02 2.8350e-02 1.6107e-02 8.6728¢-03 4.5120e-03
28 5.4895e-02 3.6018e-02 2.1373e-02 1.1929¢-02 6.2847e-03
29 5.7371e-02 4.7254¢-02 2.8581e-02 1.6140¢e-02 8.6961e-03
210 5.7878e-02 5.5695e-02 3.6153e-02 2.1406¢e-02 1.1956¢-02

y-numerical solution

Figure 2, The numerical solution of Example 2 with £ =0.01 and N = 100.
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Example 3.
Consider the singularly perturbed delay reaction-diffusion equation with oscillatory behaviour,

eY"(x)+0.25y(x=0)+y(x)=1
under the interval and boundary conditions
y(x)=1,-06<x<0 and y(1)=0.

The maximum absolute errors are presented in Table 5 for different values of ¢. The graph of
the computed solution for £=0.001 and different values of ¢ is also given in Figure 3.

Table 5. The maximum absolute errors of Example 3, for different values of & with £ =0.1.

s N =100 N =200 N =300 N =400 N =500
Our Method

0.03 3.9856¢-08 2.4916e-09 4.9143e-10 1.5603e-10 6.1932e-11

0.05 3.8949¢-08 2.4343e-09 4.8003e-10 1.5358e-10 7.0907e-11

0.09 3.7554¢-08 2.3446¢-09 4.6287e-10 1.6033e-10 6.1303e-11
Results in [10]

0.03 2.5991e-03 1.2872¢-03 8.5528e-04 6.4039¢-04 5.1179¢-04

0.05 2.6270e-03 1.3013¢-03 8.6474¢-04 6.4750e-04 5.1749¢-04

0.09 2.6813e-03 1.3289¢-03 8.8320e-04 6.6139¢-04 5.2863¢-04

y-numerical solution

-3

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 3. The numerical solution of Example 3 with £ =0.001 and N = 100.

Example 4.
Consider the singularly perturbed delay reaction-diffusion equation with oscillatory behaviour,

eY'(xX)+y(x—0)+2y(x)=1
under the interval and boundary conditions
y(x)=1,-6<x<0 and y(1)=0.

The maximum absolute errors are presented in Table 6 for different values of ¢ . The graph of
the computed solution for &£ =0.001 and different values of ¢ is also given in Figure 4.
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Table 6. The maximum absolute errors of Example 4, for different values of & with & =0.1.

s N =100 N =200 N =300 N =400 N =500
Our Method

0.03 1.5497¢-07 9.6846¢-09 1.9131e-09 6.0394e-10 2.4770e-10

0.05 1.5900e-07 9.9375e-09 1.9630e-09 6.2120e-10 2.5444e-10

0.09 1.7208e-07 1.0754¢-08 2.1244¢-09 6.7226¢-10 2.7451e-10
Results in [10]

0.03 1.5929¢-02 7.4850e-03 4.8816¢-03 3.6202¢-03 2.8764¢-03

0.05 1.5470e-02 7.2782e-03 4.7473e-03 3.5209¢-03 2.7975e-03

0.09 2.1396e-02 1.0097e-02 6.5922¢-03 4.8916e-03 3.8879¢-03

18

16

o\
§=0
— ~ ~ §=0.003

1.4 -

12

0.8

0.6

y-numerical solution

0.4

0.2

0.2 I I I I I I I I I
[¢]

Figure 4. The numerical solution of Example 4 with € =0.001 and N = 100.
Ilustration of the effect of delay on the solution

The above graphs (Figures 1-4) show the numerical solutions obtained by the present method
for different values of delay parameter o .

The rate of convergence (p)

In the same way in Equation (21) one can define Z V by replacing % by % and N -1
2

by 2N —1, thatis:

o

v/ —y/4 for i =1,2,..,2N~-1.

Z,, = max
5 .

1

The computational rate of convergence p is also obtained by using the double mesh principle
defined as in [4].

(log(Zh)—log(Z%)j |

log 2
The following tables (i.e., Tables 7 and 8) shows the rate of convergence p of the present method
for different values of the mesh size /4.

p:
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Table 7. Rate of Convergence p for £=0.1 and 6=0.05.

h hl/2 Z, hl4 Z,, p
Example 1
1/100  1/200 1.2135e-09 1/400 7.5855¢-11 3.9998
1/200  1/400 7.5860e-11 1/800 4.9848e-12 3.9277
1/300  1/600 1.4980e-11 1/1200 9.4408e-13 3.9880
Example 2
1/100  1/200 3.3028e-09 1/400 2.0653e-10 3.9993
1/200  1/400 2.0657e-10 1/800 1.2909¢-11 4.0002
1/300  1/600 4.0807e-11 1/1200 2.5474e-12 4.0017
Table 8. Rate of Convergence p for £=0.1 and 6 =0.03.
h h/2 Z, hl4 Z,, P
Example 3
1/100  1/200 3.9856e-08 1/400 2.4913e-09 3.9998
1/200  1/400 2.4916e-09 1/800 1.5603e-10 3.9971
1/300  1/600 4.9143e-10 1/1200 3.0611e-11 4.0049
Example 4
1/100  1/200 1.5497¢-07 1/400 9.6846¢-09 4.0001
1/200  1/400 9.6846€-09 1/800 6.0394e-10 4.0032
1/300  1/600 1.9131e-09 1/1200 1.1975e-10 3.9978

5. Discussion and conclusion

Fourth order numerical method for solving singularly perturbed delay reaction-diffusion
equations with twin layers and oscillatory behaviour has been presented. To demonstrate the
efficiency of the method, four model examples without exact solutions have been considered for
different values of the perturbation parameter & and delay parameter ¢ . The numerical
solutions are tabulated (Tables 1 to 6) in terms of maximum absolute errors and observed that the
present method improves the findings of Swamy et al. [10]. Also, it is significant that all of the
maximum absolute errors decrease rapidly as N increases. The stability and ¢ -uniform
convergence of the method are investigated and established well. The results presented in Tables
7 and 8 confirmed that computational rate of convergence as well as theoretical estimates indicate
that method is a fourth order convergent.

Further, to investigate the effect of delay on the solution of the problem, numerical solutions
have been presented using graphs. Accordingly, when the order of the coefficient of the delay
term is of o(1), the delay affects the boundary layer solution but maintains the layer behaviour

(Figure 1). When the delay parameter is of O(¢), the solution maintains layer behaviour
although the coefficient of the delay term in the equation is of O(1) and as the delay increases,

the thickness of the left boundary layer decreases while that of the right boundary layer increases
(Figure 2). For the oscillatory behaviour case, one can conclude that the solution oscillates
throughout the domain for different values of delay parameter ¢ (Figures 3 and 4). In a concise
manner, the present method gives more accurate solution and is uniformly convergent for solving
singularly perturbed delay reaction-diffusion equations with twin layers and oscillatory
behaviour.
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