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Abstract: In this paper, we propose a robust multiple attributes decision-making (MADM) method 
based on prospect theory to reflect the decision behavior of a decision maker in face of risk. Instead 
of identifying the reference points, the decision makers only need to determine the feasible ranges 
for each attribute by their knowledge and experience in the beginning of the decision process. The 
psychological value distances are defined to measure the overall prospect values of each 
alternative reference to extreme feasible solutions using the value function and the additive 
weighting method. This study further extends the method to a group decision environment. The 
preferences of more than one decision maker are internally aggregated into the decision procedure. 
Performance of the proposed algorithms is comparatively analyzed and sensitivity analysis is 
conducted. The results show that it is an appropriate and robust MADM method.  
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1. Introduction 

MADM is an approach that consists of dealing with structuring and solving decision problems 
involving multiple attributes. A typical MADM requires comparing the aggregated performance 
ratings. These comparison processes, however, can be quite complex and produce results that may 
be unreliable. Over many years researchers have been developing many popular methods for 
structuring and solving multiple-attributes decision problems [1-4]. The evaluations of decision 
attributes for alternatives made by these methods are based on expected utility theory, with the 
assumption that the decision maker is rational, and perhaps risk averse, which implies that their 
utility functions are concave and show diminishing marginal utility. Thus, practically these 
methods start from the premise that the decision maker always looks for the solution corresponding 
to the maximum utility [5]. According to the principle of expected utility function, the utility of a 
risky prospect has linear outcome probability. However, it has been argued that utility theory is not 
able to capture or take into account the risk preferences of the decision makers [6-7]. Kahneman 
and Tversky [6] provided evidence that people have nonlinear preferences and tend to take risks 
to avoid losses. In this paper, we use value function to describe the risk-averse and risk-seeking 
behavior of decision makers, and as the basis for alternative ranking.  

Considering the risk attitude of decision maker in MADM study gets more and more attention 
[8-12]. Prospect Theory predicts that the value assigned to an option is determined by comparison 
to other options. The reference points of each concerning attribute use in this comparison is 
therefore of critical importance. But, what are the origins of the decision makers’reference point?  
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In a group decision process, how does the group attain consensus on the reference point? Most of 
the methods base on the assumption that the neutral points of reference can be identified first. 
However, few studies have explored how to obtain the reference points. 

The present study proposes a new MADM method called EBVD (election based on value 
distances), which is based on the prospect theory. Decision makers make decisions based on the 
potential value of losses and gains rather than to final assets. Instead of identifying the reference 
points, the decision makers only need to determine the feasible ranges for each attribute by their 
knowledge and experience. Two extreme feasible solutions, the extreme positive feasible solution 
(EPFS) and the extreme negative feasible solution (ENFS), are identified first. Then, we calculate 
the overall value distances (prospect values) of EPFS to each alternative and the distances of ENFS 
to each alternative using the value function and the additive weighting method. The value function 
from prospect theory is proposed to describe and explain user behavior in the decision-making 
under risk. Finally, According to the value distances, a multiple attributes ranking index is 
developed to evaluate the preference ranking. Through our numerical examples, the present study 
can demonstrate the EBVD method appears to be an appropriate and robust MADM method. 

In practical, many decision-making problems within organizations will be a collaborative effort. 
This study also extends EBVD to a group decision environment to fit real work. To simplify the 
decision-making activities, we develop an integrated group EBVD procedure using internal 
preference aggregation method for solving group decision problems. A complete and efficient 
group decision procedure is provided.  

The remaining of this paper is organized as follows: The related works of our study is given in 
section 2. Section 3 describes the EBVD methods. Some numerical examples, applying the EBVD 
method to evaluate the MADM problems, are presented. Section 4 introduces the group EBVD 
method. Conclusions are presented in Section 5. 

2. Related works 

MADM is a procedure that consists in finding the best alternative among a set of feasible 
alternatives. An MADM problem with m alternatives, A1,…, Am , and n decision attributes, C1, …, 
Cn, can be expressed in the following matrix format: 

 

where dij represents the rating of alternative Ai under attribute Cj, and wj is the relative weight of 
attribute Cj.  

One of the most popular MADM methodologies is the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) method, first introduced in Hwang and Yoon [1]. It is based 
on the intuitive concept that the elected alternative must have the shortest Euclidian distance to a 
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positive ideal solution (PIS) and be as far as possible from the negative-ideal solution (NIS). 
TOPSIS is a utility-based method that compares each alternative directly depending on data in the 
evaluation matrices and weights [13]. Zanakis et al. [14] made comparisons between eight MADM 
methods and found that TOPSIS has the fewest rank reversals. However, Wang and Luo [15] note 
the problem of rank reversal in TOPSIS when the alternatives are close. Opricovic and Tzeng [16] 
believe the problem is caused by the definition of closeness coefficient. García-Cascales and 
Lamata [17] pointed out that it is caused by two factors. The first is related to the norm utilized in 
the algorithm and the other to the definition of the PIS and the NIS. TOPSIS method has been 
extended to deal with different decision problems in the past few years. For example, Yue [18] 
established an extended TOPSIS model to handle the decision problem that the attribute values are 
not precisely known but value ranges can be obtained. Baky and Abo-Sinna [19] proposed a fuzzy 
TOPSIS algorithm to solve bi-level multi-objective decision-making (BL-MODM) problems. 
Kahraman et al., [20] summarize the fuzzy MADM methods.  

Kahnema and Tversky [6] discovered that human decision behavior under uncertainty is actually 
relative, in the sense that some individuals are risk-seeking, and some are risk-averse. And in most 
of the situation facing gains, risk is to be avoided. Prospect theory [6] is a descriptive model of 
individual decision making under the condition of risk. In 1992, Tversky and Kahneman [21] 
developed the cumulative prospect theory, which captures psychological aspects of decision-
making under risk. The value function in prospect theory is defined on deviations from a reference 
point. It assumed a S-shape value function. The concave part above the reference point reflects the 
aversion of risk in face of gains, and the convex part below the reference point reflects the seeking 
of risk in the case of losses. The value function defined in this paper is in form of a power law 
according to the following Equation [21]: 

, (6) 

where x is the potential outcome and is the reference point. Parameter λ represents the attenuation 
factor of the losses, which can be tuned according to the problem at hand. α is the diminishing 
sensitivity parameters. The diminishing sensitivity parameter α < 1 yields an S-shape value 
function; α > 1 produces an inverse S-shape value function. There are three characteristics of the 
value function [21]: reference dependence, diminishing sensitivity, and loss aversion. Reference 
dependence refers to the fact that human cognitive ability is based on relative value changes, the 
so-called endowment effect or status quo bias, and with the consideration for costs, current status 
tends to be kept unchanged. The diminishing sensitivity is defined by the decreasing utility as the 
gain increases. Finally, for loss aversion, individuals tend to feel a greater sense of pain on losses 
than the degree of happiness they sense on gains. 

Prospect theory has been widely used as behavioral model of decision-making under risk, 
mainly in economics and finance [22-24]. One of the first MADM methods based on prospect 
theory was TODIM (an acronym in Portuguese for iterative multi-attributes decision making) 
proposed by Gomes and Lima [8]. Basically, TODIM is described in the following steps [5, 8]: 

Step 1. Normalize the decision matrix. 
Like the TOPSIS, the first step of TODIM is to obtain the normalized decision matrix R=[rij]m×n. 

Step 2. Calculate the measurement of dominance of each alternative Ai over each alternative Aj. 

v(x) 
(x  )      if x   

 (  x)   otherwise 
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For such calculations the decision makers need to define a reference attribute, which usually is 
the attribute with the most weight. In addition, let wpc be equal to wc divided by wp, where p is the 
reference attribute. Then the dominance of each alternative Ai over each alternative Aj can be 
calculated as 

 (7) 

where 

   

The term represents the contribution of the attribute c to the function when comparing the 
alternative Ai with alternative Aj. θ is the attenuation factor of the losses; and different choices of 
θ lead to different shapes of the prospect theoretical value function in the negative quadrant. 
TODIM makes use of a Prospect Theory type of value function that is algebraically quite similar 
to Cumulative Prospect Theory’s value function. The trade-off weighting factors of TODIM are 
interpreted as probabilities.  
Step 3. Calculate the overall value of alternative Ai through normalization of the corresponding 
dominance measurements by the following expression: 

 (8) 

Step 4. Ordering the overall values ςi provides the rank of each alternative. The preferred 
alternatives are those that have higher overall value. 

According to prospect theory, decision makers decide which outcomes they consider equivalent 
set a reference point and then consider lesser outcomes as losses and greater ones as gains. TODIM, 
however, uses a different way, by using of pair comparisons between decision attributes and the 
reference points are not determined initially. When comparing alternative Ai with alternative Aj 
under a certain attribute, it represents a gain if the outcome of alternative Ai is larger than 
alternative Aj; and it represents a loss if the outcome of alternative Ai is smaller than alternative Aj. 
Although TODIM does not deal with risk directly, it deals with the risk attitude of decision maker 
[25]. Liu et al., [9] and Fan et al., [10] also develop MADM methods based on prospect theory. 
Different from TODIM, the gains and losses of alternatives are calculated by measuring perceived 
differences of attribute values from reference points. The overall prospect value of alternative is 
calculated by simple additive weighting method. Wei et al., [11] and Wang et al., [12] extend 
TODIM method using hesitant fuzzy linguistic numbers to describe the preferences of decision 
makers. They find the TODIM method is more practical than the TOPSIS method when solving 
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practical decision-making problems. Lourenzutti and Krohling [26] bring the Hellinger distance 
to the MADM context to assist TOPSIS and TODIM to deal with the situation that the ratings of 
alternatives are not real numbers. Khamseh and Mahmoodi [27] use fuzzy TOPSIS to evaluate 
initial weight of each attribute, and then use TODIM to evaluate the final weight of each attribute 
against alternatives and the relationship between attributes. 

3. The EBVD model  

The EBVD is a multi-attribute decision making method incorporating prospect theory, which is 
used to reflect the decision behavior of a decision maker in face of risk. The use of the new model 
relies on a value function to replace the traditional expected utility function for multi-attributes. 
This function is built in parts, with their mathematical descriptions reproducing the gain/loss 
function of prospect theory. To prevent the valuations of the alternatives for each of the attributes 
can depend on the rest of the alternatives, the EPFS and ENFS are fixed, so any valuation with 
reference to them cannot change.  

EBVD is based on the intuitive concept that not only EPFS should have the least relative 
prospect value for the elected alternative, but also the elected alternative should have the greatest 
relative prospect value for ENFS. The detailed steps are described as follows: 
Step 1. Determine the EPFS and ENFS. 

To determine the EPFS and ENFS, the feasible range of values of each attribute has to be agreed 
upon by decision maker. The range is based upon decision maker’s experience with or knowledge 
of the particular attribute. We determine the EPFS (I+) and ENFS (I-) as follows: 

ାܫ ൌ ሼܦଵ
ା, … , ,ାሽܦ ିܫ ൌ ሼܦଵ

ି, … ,  ିሽ (9)ܦ

where ܦ
ା and ܦ

ି are the “best feasible” and “worst feasible” values assigned to attribute j.  
Skin friction is given in Table 1. The value of x  increases with the increase in thermal Grashof 

number, mass Grashof Number, Hall current parameter, radiation parameter and time; and it 
decreases with the angle of inclination of plate, the magnetic field, Prandtl number and Schmidt 
number. Similar effects are observed with y  except magnetic field and Hall parameter, in which 

case y  increases with magnetic field parameter, and decreases with Hall parameter. Nusselt 

number is given in Table 2. The value of Nu decreases with increase in Prandtl number, radiation 
parameter and time. 
Step 2. Construct the normalized decision matrix R. 

To compare the alternatives on each attribute, an interval scale transformation is used to 
transform the various attributes scale into a comparable scale. The norm that the TOPSIS approach 
establishes may cause the problem of rank reversal. This is because that after normalization, the 
new scale depends not only on the initial value but also on the valuation obtained by the other 
alternatives [17]. It can change the scale when an alternative is added to or removed from the 
decision problem. In the circumstance, the normalized value rij of the decision matrix is obtained 
by the following equation: 

 
ݎ ൌ

ௗೕି
ష


శି

ష , ݆ ∈ benefit	type	attributes	ሺthe	larger	the	betterሻ,

ݎ ൌ

షିௗೕ


షି

శ , ݆ ∈ cost	type	attributes	ሺthe	smaller	the	betterሻ.
 (10) 

The normalized decision matrix R=[rij]m×n. Note that we presume the available data to be 
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completed in the given decision matrix, including quantitative and qualitative information. The 
normalization of qualitative data or linguistic data could be first transformed to a linear scale, e.g., 
1–10; and then the above method will be applicable. Taking into account that the EPFS ܫା ൌ
ሼܦଵ

ା,⋯ , ିܫ ାሽ and the ENFSܦ ൌ ሼܦଵ
ି,⋯ ,  ିሽ, the vectors of the normalized values are {1,1,…,1}ܦ

and {0,0,…,0}, respectively. 
Step 3. Calculate the overall prospect values. 

According to the prospect theory, people make decisions based on the potential value of losses 
and gains rather than the final outcome. The value distances represent the dominance of one 
alternative under an attribute over another alternative. It can be a concave function and then it 
implies that decision maker tends to risk averse in a domain of gain and a convex function reflects 
the seeking of risk in the case of losses. Kahneman and Tversky [6] provided evidence that people 
have nonlinear preferences but not linear preferences. The vale distances present a nonlinear 
preference of the decision maker. Instead of using Euclidean distances, we apply value distances 
to represent the separation measures of alternative Ai from the EPFS and ENFS. To calculate the 
value distance from EPFS to alternative Ai, we use the following expression. 

, i = 1,…,m. (11) 

It’s a weighted value function. Compared with Ai, I+ can provide more prospect value to the 
decision maker. The value distance represents the dominance of I+ over alternative Ai. The concave 
function implies that decision maker tend to risk averse in a domain of gain. It estimates the overall 
prospect value of the EPFS can provide to the decision maker when alternative Ai is selected. 

A different function [Equation (12)] is used to measure the value distance from alternative Ai to 
ENFS. 

, i = 1,…,m.  (12) 

The function is a convex function that implies that decision maker tends to risk seeking in a domain 
of loss. It is used to estimate the loss when the worst feasible solution I- is selected to replace Ai. 
It is noted that the output value of is negative. 

Step 4. Calculate the ranking index. 
The ranking index of each alternative is calculated as 

,  i = 1,…,m. (13) 

where ϕi is a number between 0 and 1; the larger this values is, the less prospect value the EPFS 
can provide to the decision maker when the alternative is selected, but the selected alternative can 
provide higher prospect value to the ENFS, and so this alternative should be ranked higher.  

The following examples are given to illustrate the proposed model and evaluate the performance 
of EBVD. 

Example 1. 
One problem with TOPSIS is that it may derive a false preference ranking when two alternatives 

are very close. In this experiment, a decision maker must choose an alternative from a set of five 
alternatives, i.e. {A1, A2, A3, A4, A5}. Two benefit attributes with equal weights are used to evaluate 
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the five alternatives.  The original data is from [28] and the evaluation results are presented in 
Table 1.  

Table 1. The decision matrix and results obtained by TOPSIS and EBVD of example 1 

Alternatives 
Criteria TOPSIS EBVD 

C1 C2    Rank    Rank 

A1 85 50 0.08 0.14 0.6 3 0.36 -1.586 0.8 3 
A2 40 64 0.15 0.04 0.2 5 0.52 -1.260 0.7 5 
A3 50 70 0.11 0.07 0.3 4 0.44 -1.433 0.7 4 
A4 80 70 0.02 0.14 0.8 1 0.29 -1.746 0.8 2 
A5 75 76 0.03 0.14 0.8 2 0.29 -1.757 0.8 1 

Weights 0.5 0.5         

The TOPSIS and EBVD provide different ranking results. Using the TOPSIS method, A4 should 
be the best alternative since it has the highest closeness coefficient value with respect to the other 
alternatives. However, if we remove alternative A1, A2 and A3 from the alternative set and conduct 
TOPSIS method in this experiment again. The final closeness coefficient values of A4 and A5 are 
0.44 and 0.56, respectively. The results show A5 is a better solution than A4, which violate the 
invariance principle of utility theory. To prevent the problem, absolute positive ideal solution and 
absolute negative ideal solution are introduced to the new method EBVD. It makes any valuation 
with reference to them cannot change. The concave and convex functions deal with the risk attitude 
of decision maker. It can be observed when we only consider A4 and A5 in the choice set and use 
the EBVD method (assume EPFS={100,100} and ENFS={0,0}), then A5 still has higher closeness 
coefficient value than A4 (A4:0.856 and A5:0.858). 

An alternative model of decision making, in this case the TODIM method, is applied to this 
experiment too. The first thing to be noted is that the ranking results are consistent with TOPSIS 
(see Table 2) in case 1: . However, if we only consider A4 and A5 in the 

choice set (case 2) then the ranking order is reversed, too. 

Table 2. The final values and rank obtained by TODIM 

Alternatives 
Criteria Case 1 Case2 

C1 C2  i  Rank  i  Rank 

A1 85 50 0.485 3 - - 
A2 40 64 0.000 5 - - 
A3 50 70 0.409 4 - - 
A4 80 70 1.000 1 0.000 2 
A5 75 76 0.990 2 1.000 1 

Example 2. 
We use the numerical example provided by García-Cascales and Lamata [17] to additional 

verify our model. This example considers the evaluation of three candidates to occupy a certain 
position. The candidates complete two questionnaires that will both be evaluated. The 
questionnaires have the same weight. Table 3 presents the basic data of the decision problem. The 
total ratings for all three candidates are equal based on weighted sum method. 
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 Si

 i Si
 Si
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Table 3. Decision matrix of example 2 [17] 
 C1 C2 

A1 1 5 
A2 4 2 
A3 3 3 

Weights 0.5 0.5 

TOPSIS and EBVD are applied to solve the MADM problem. The evaluation results are shown 
in Table 4. 

Table 4. Results obtained by TOPSIS and EBVD of example 2 

Alternatives 
TOPSIS EBVD 

   Rank    Rank 

A1 0.294 0.243 0.453 3 0.211 - 0.601 3 
A2 0.243 0.294 0.547 1 0.173 - 0.648 2 
A3 0.190 0.212 0.528 2 0.202 - 0.682 1 

Now, suppose that one new alternative is added for evaluation with a valuation of (5, 1) for (C1, 
C2), respectively. Table 5 represents the new evaluation results. 

Table 5. Results obtained by TOPSIS and EBVD of example 2 with the incorporation of a new alternative 

Alternatives 
Criteria TOPSIS EBVD 
C
1 

C2    Rank    Rank 

A1 1 5 0.2 0.32 0.5 1 0.17 -0.462 0.6 3 
A2 4 2 0.2 0.22 0.4 3 0.21 -0.446 0.6 2 
A3 3 3 0.2 0.21 0.5 2 0.20 -0.468 0.6 1 
A4 5 1 0.3 0.28 0.4 4 0.20 -0.399 0.6 4 

It can be observed that candidate A1, who was previously the worst, has now become the best 
when we apply TOPSIS in this case. Thus the introduction of a new alternative makes the order 
totally reversed. The other 24 simulated new alternatives with valuations from (1,2) to (5,5) have 
been conducted to verify the EBVD model. It is noteworthy that the EBVD has no problem 
evaluating the performance of all the alternatives, and there is no rank reversal problem in all the 
cases. However, there are 5 cases (20%) with rank reversal problem when TOPSIS is applied in 
this experiment. 

Example 3. 
The parameter λ represents the attenuation factor of the losses, which can be tuned according to 

the problem at hand. Kahneman and Tversky [6] suggest that the value of λ should be between 2.0 
and 2.5. It is of interest to test the effects of parameter  on the final ranking order. On the basis 
of the same decision information as for experiment 1, we further investigate the effects of λ on the 
proposed model. This experiment varies , from 2.0 to 2.5. α is set to be 0.88. The results (see 
Table 6) demonstrate that EBVD is a robust methodology. The relative coefficient will increase as 

 increases. However,  in the suggested range, 2.0 to 2.5, does not affect the final ranking 
order at all.  

Si
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Table 6. Results obtained by EBVD with attenuation factor of the losses varied 

 
λ=2.0 λ=2.1 λ=2.25 λ=2.3 λ=2.4 λ=2.5 

Ra Ra Ra Ra Ran Ra
A1 0.79 3 0.80 3 0.81 3 0.81 3 0.82 3 0.82 3 
A2 0.68 5 0.69 5 0.70 5 0.71 5 0.72 5 0.72 5 
A3 0.74 4 0.75 4 0.76 4 0.76 4 0.77 4 0.78 4 
A4 0.84 2 0.84 2 0.85 2 0.85 2 0.86 2 0.86 2 
A5 0.84 1 0.85 1 0.85 1 0.86 1 0.86 1 0.87 1 

According to the above experiments, EBVD provides outstanding performance. It prevents the 
problem of rank reversals and provides effective analysis when the alternatives are very close.  

4. The Group EBVD 

The EBVD can be further extended to include the multiple preferences of more than one 
decision maker. The preferences of more than one decision maker are internally aggregated into 
the EBVD process. The detailed procedure is illustrated in the following. 
Step 1. Construct decision matrix Ak, k=1,…,K, for each decision maker. 

The structure of the matrix can be expressed as follows: 

	

	 	 ଵݓ
 ⋯ ݓ

	 	 ଵܥ ⋯ ܥ
	

ܣ ൌ
	

ଵܣ
⋮
ܣ


݀ଵଵ
 ⋯ ݀ଵ



⋮ ⋱ ⋮
݀ଵ
 ⋯ ݀



 

where ݀
  indicates the performance rating of alternative Ai with respect to attribute Cj by 

decision maker k, k=1,…,K. ݓ
 is the relative weight of attribute Cj assigned by decision maker 

k. It should be noted that there are K decision matrices in the decision problem. 
Step 2. Determine the EPFS and ENFS for each decision maker. 

For decision maker k, his or her EPFS (ܫା) and ENFS (ܫି) are 

ାܫ ൌ ሼܦଵ
ା, … , ,ାሽܦ ିܫ ൌ ሼܦଵ

ି, … ,  .ିሽܦ

where ܦ
ା and ܦ

ି are the “best feasible” and “worst feasible” values assigned to attribute j 
by decision maker k. However, in this stage, the decision makers may agree on the same setting of 
EPFS and ENFS based on a negotiation process.  
Step 3. Construct the normalized decision matrix Rk, k=1…,K, for each decision maker. 

We consider the normalized value ݎ
  of decision matrix Rk is obtained by the following 

interval scale transformation 

ݎ
 ൌ

ௗೕ
ೖ ିೕ

ೖష

ೕ
ೖశିೕ

ೖష	, ݆ ∈ benefit attributes,  (14) 

ݎ
 ൌ

ೕ
ೖషିௗೕ

ೖ

ೕ
ೖషିೕ

ೖశ, ݆ ∈ cost attributes,  (15) 

where i = 1,…, m; j=1,…, n; and k=1,…,K. 
  

i i i i i i
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Step 4. Calculate the overall prospect values individually. 
For decision maker k, his/her separation measures from EPFS and ENFS are computed by a S-

Shape value function. The individual separation measures of each alternative from the EPFS and 
ENFS are 

ܵ
ା ൌ ∑ ݓ


ୀଵ ሺ1 െ ݎ

ሻఈ , for alternative i, i = 1,…,m (16) 

and 

ܵ
ି ൌ ∑ ݓ


ୀଵ ሺെߣ ∙ ൫ݎ

൯
ఈ
ሻ , for alternative i, i = 1,…,m. (17) 

Step 5. Aggregate individual separation measures. 
The integrated process will obtain multiple sources of knowledge and experience from different 

decision makers. There are several different methods to aggregate the separation measures of EPFS 
and ENFS for the group, for example, using geometric mean, arithmetic mean, or other 
modification. They are ease of use in a MADM process. We take the geometric mean of all 
individual measures. The group separation measures from EPFS and ENFS are  

పܵ
ାധധധധ ൌ ሺ∏ ܵ

ା
ୀଵ ሻ

భ
಼ , for alternative i, i= 1,…,m (18) 

And 

పܵ
ିധധധധ ൌ ሺ∏ | ܵ

ି|
ୀଵ ሻ

భ
಼ , for alternative i, i= 1,…,m. (19) 

It should be mentioned again this is not necessary using geometric mean in EBVD. 
Step 6. Calculate the aggregated ranking index for the group. 

The ranking index of each alternative for the group is calculated as  

߶పന ൌ
ௌഢ
షധധധധ

ௌഢ
శധധധധାௌഢ

షധധധധ
 , for alternative i, i= 1,…,m,  (20) 

where 0  ߶పന  1. It is clear that the larger the index, the better the performance of the alternative. 
Now the alternatives can be preference ranked according to the descending order of ߶పന . 

Next, we illustrate the approach by means of a case study. The decision problem is provided by 
Shih et al. [29]. A chemical company is going to choose an on-line manager from 17 qualified 
candidates. Four managers are responsible to evaluate the 17 alternatives. Due to space limitations, 
just one of the initial decision matrices is illustrated in Table 7. The weights of attributes, elicited 
by the decision maker, are also shown in the same Table. 

In this example, criteria C1 to C5 are objective attributes. There is no difference in these 
attributes among the group. The other two attributes, C6 and C7, are subjected attributes. And we 
can find all the 7 attributes are benefit type attributes. 

Following the proposed procedure, assume that all the decision makers agree on the EPFS and 
ENFS for all attributes are 100 and 30, respectively. The normalized decision matrices can be 
constructed and the separation measures from EPFS and ENFS can be calculated. In this example, 
parameters α and λ in our value function are set to be 0.88 and 2.0, respectively. The separation 
measures for each individual are calculated as illustrated in Table 8. In the next step, two different 
aggregation methods are taken to group individual measures to verify the effect of aggregation 
method. One of the methods is geometric mean and the other is arithmetic mean. Table 9 illustrates 
the final results. We can figure out the rankings of the 17 alternatives are consistent when two 
different aggregation methods are applied. Both of the results show that candidate A16 is ranked 
first, and candidate A11 is ranked last. The best-selected candidate is consistent with the original 



 A Robust Group Multiple Attributes Decision-Making Method
 Method Based on Risk Preferences of the Decision Makers  

Int. J. Appl. Sci. Eng., 2018. 15, 1    43 

paper. It should be mentioned that the original paper has demonstrated various aggregation 
methods may affect the overall ranking result. Compare with the group TOPSIS method proposed 
by original paper, the group EBVD is more efficient and robust. 

5. Conclusions 

EBVD is a straightforward method. Instead of identifying the reference points, the decision 
makers only need to determine the feasible ranges for each attribute by their knowledge and 
experience in the beginning of the decision process. An extension of EBVD to a group decision 
environment is also investigated in this study. The group preferences are aggregated within the 
procedure. The difference between tradition MADM methods and EBVD is that EBVD uses the 
value function from the Cumulated Prospect Theory to transform the original rating to a relative 
prospect value. It uses the separation measures to measure the preference of alternatives and 
capture the risk preferences of the decision makers. The weighted value distance is determined to 
calculate the separation measures. The idea of EBVD is the best alternative should have the 
shortest value distance from the EPFS and the farthest value distance from the ENFS. The 
separation measures are created by the following concept. Once an alternative has been selected.  
What is the additional prospect value that EPFS can provide to the decision maker? In addition, if 
the decision maker reselects ENFS as a new solution, how much the prospect value will be reduced.   
They are the definition of our separation measures. 

Table 7. Decision matrix defined by decision maker 1 [29]  
Alt. Criteria 

Language 
Test  
(C1) 

Professional 
Test  
(C2) 

Safety 
Rule  
Test  
(C3) 

Professional 
Skills  
(C4) 

Computer 
Skills 
(C5) 

Panel 
Interview 

(C6) 

1-on-1 
Interviews 

(C7) 

A1 80 70 87 77 76 80 75 
A2 85 65 76 80 75 65 75 
A3 78 90 72 80 85 90 85 
A4 75 84 69 85 65 65 70 
A5 84 67 60 75 85 75 80 
A6 85 78 82 81 79 80 80 
A7 77 83 74 70 71 65 70 
A8 78 82 72 80 78 70 60 
A9 85 90 80 88 90 80 85 
A10 89 75 79 67 77 70 75 
A11 65 55 68 62 70 50 60 
A12 70 64 65 65 60 60 65 
A13 95 80 70 75 70 75 75 
A14 70 80 79 80 85 80 70 
A15 60 78 87 70 66 70 65 
A16 92 85 88 90 85 90 95 
A17 86 87 80 70 72 80 85 

Weights 0.066 0.196 0.066 0.130 0.130 0.216 0.196 
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Table 8. Separation measures 

Alternatives 
DM#1 DM#2 DM#3 DM#4 

 Si


  Si


  Si


  Si


 
A1 0.380  -1.312  0.338  -1.359  0.417 -1.220 0.314 -1.428 
A2 0.441  -1.174  0.462  -1.096  0.407 -1.209 0.434 -1.182 
A3 0.315  -1.405  0.358  -1.292  0.334 -1.343 0.352 -1.339 
A4 0.413  -1.189  0.449  -1.068 0.416 -1.144 0.447 -1.122 
A5 0.375  -1.334  0.365  -1.329  0.369 -1.325 0.412 -1.265 
A6 0.330  -1.375  0.325  -1.343  0.329 -1.345 0.373 -1.296 
A7 0.440  -1.248  0.425  -1.266  0.448 -1.224 0.425 -1.277 
A8 0.425  -1.204  0.412  -1.192  0.406 -1.212 0.305 -1.425 
A9 0.276  -1.416  0.259  -1.387  0.272 -1.378 0.183 -1.571 
A10 0.404  -1.338  0.389  -1.363  0.412 -1.319 0.458 -1.237 
A11 0.657  -0.872  0.641  -0.914  0.611 -0.976 0.611 -0.970 
A12 0.556  -1.061  0.506  -1.158  0.586 -0.998 0.656 -0.847 
A13 0.366  -1.351  0.394  -1.274  0.415 -1.238 0.409 -1.270 
A14 0.361  -1.326  0.375  -1.262  0.413 -1.192 0.376 -1.297 
A15 0.453  -1.224  0.436  -1.245  0.466 -1.189 0.520 -1.093 
A16 0.189  -1.549  0.182  -1.498  0.223 -1.443 0.199 -1.531 
A17 0.339  -1.436  0.404  -1.304  0.364 -1.380 0.406 -1.312 

 
Table 9. The aggregated relative closeness and rank by group EBVD 

Alternatives 
Arithmetical mean Geometric mean 
Relative 
closeness 

Rank Relative 
closeness 

Rank 

A1 0.786 5  0.787 5  
A2 0.728 13  0.728 13  
A3 0.798 3  0.798 3  
A4 0.724 14  0.724 14  
A5 0.775 7  0.776 7  
A6 0.798 4  0.798 4  
A7 0.743 12  0.743 12  
A8 0.765 9  0.766 9  
A9 0.853 2  0.855 2  
A10 0.760 11  0.760 11  
A11 0.597 17  0.597 17  
A12 0.638 16  0.638 16  
A13 0.764 10  0.764 10  
A14 0.769 8  0.769 8  
A15 0.717 15  0.717 15  
A16 0.884 1  0.884 1  
A17 0.782 6  0.782 6  

 
  

Si
 Si

 Si
 Si
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By using the EPFS and ENFS, the proposed method prevents the rank reversal problem. This is 
because in the decision matrix normalization process, the new scale depends only on the EPFS and 
ENFS but not on the valuation obtained by the other alternatives. However, it should be notified 
that EBVD does not deal with risk directly since decision attribute values are assumed 
deterministic. It only deals with the risk attitude of decision maker when he/she evaluates the 
outcomes of decision attributes. Our examples have demonstrated the proposed approach is an 
appropriate and effective MADM method compared. The current EBVD method considers the 
attribute values as crisp numbers. We believe it can be extended to take the form of the uncertain 
linguistic variable for the attribute value by fuzzy number in the future study. 
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