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Abstract: We consider parametric inference for right-censored data where the survival times and 
the corresponding censoring status cannot be determined from the data. We develop point and 
interval prediction for a future number of surviving units. The performance of the proposed 
methods are assessed by means of a simulation study, and an application of the proposed methods 
is illustrated using a real data set. 
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1. Introduction 

Survival data are typically not fully observed. A common form of incompleteness is right 
censoring, where the time to an event is only known to exceed some value. For example, in 
reliability studies, a right-censored survival time arises if a unit placed on test is still in operation 
at the end of the study. When the survival times and the corresponding censoring status are fully 
determined from the data, the survival function is traditionally estimated using the Kaplan-Meier 
nonparametric estimator [1]. 

In this paper, we consider the analysis of right-censored data with severe incompleteness, a real 
data scenario from a consulting project, described as follows. A batch of medical devices was 
manufactured, distributed and put into service on different dates. Subsequently, the dates of failure 
were reported to the manufacturer from various clients. Due to confidentiality issues, the reports 
did not include the serial numbers of the devices, so that none of the dates of failure could be 
matched to the complete list of dates that the devices began service (a matching installation and 
failure date could be traced back to a patient). In other words, neither the survival times nor the 
censoring status could be determined from the given data; all that could be determined were the 
number of units that began service and were in service on each day of the study. Of interest is the 
prediction of the number of future failures, so as to decide whether a recall is warranted for the 
remaining units in service. 

To our knowledge, the existing literature does not provide guidance on the analysis of such data. 
The focus of this paper is to develop a method for estimating a parametric survival distribution 
assumed for the data described in the preceding paragraph, and to construct a prediction interval 
for the number of units in service on a specified day beyond the end of the study. While parametric 
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modeling has long been criticized for imposing distributional assumptions on the data, it is a point 
of departure for analyzing nontraditional data and a reference for future research. The rest of this 
paper is organized as follows. Section 2 develops the proposed method, the performance of which 
is assessed in section 3 by means of a simulation study. Section 4 illustrates the application of the 
proposed method with a real data set. Finally, some concluding remarks based on the obtained 
results of simulations are given in section 5. 

2. Methods 

Let NB(l) and NI(l) denote the number of units that begin service and are in service, respectively, 
on day l. Here l = 1, 2, ..., lB, ..., lE,..., where l = 1 corresponds to the earliest date that one or more 
units begin service, l = lB corresponds to the date that the last unit begins service, and lE corresponds 
to the end date of the study. Furthermore, let NI(k,l) denote the number of units that are in service 

on day l among those which begin service on day k, where k ≤ l; we have I I , . 
The quantity NI(k,l) is unobserved for all k and l and is introduced for the purpose of studying the 
properties of NI(l). The observations consist of realizations of NB(l) and NI(l) for l = 1, ..., lE, which 
we denote by nB(l) and nI(l), respectively. Figure 1 illustrates our notation. Of interest is the 
prediction of NI(l) for l > lE at the end of the study, which we develop as follows. 

Figure 1. An illustration of notation. 

2.1. Estimation of survival function 

We assume that the survival times of all the units are independent and identically distributed 
with survival function Sθ, where θ is a possibly multidimensional unknown parameter. For each of 
the NB(k) units which begins service on day k, the probability of the unit being in service on day l, 
where k ≤ l, is given by Sθ(l − k). It follows that, given NB(k) = nB(k), NI(k,l) has a binomial 
distribution with a total number of trials equal to nB(k) and a success probability of Sθ(l − k). Thus, 
for l = 1, ..., lE, 

	E NI l |nB 1 ,… , nB lE E NI k, l |n 1 ,… , n lE   
 E I , | B   

 		 	 B .		 (1) 
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To estimate θ, we minimize 

			 I

E

B

 
 (2) 

with respect to θ, where g is a specified loss function. For example, g(x) = x2 corresponds to a 
squared error loss, and g(x) = |x| corresponds to an absolute error loss. The summands in (2) are 
not independent of one another since, for instance, nI(l)depends on nI(l − 1). 

2.2. Prediction of number of units in service 

2.2.1. Point prediction 

			E I | B 1 ,… , B E

 
  

Let  denote the estimate of θ obtained by minimizing the loss function (2), and let l0 > lE. A 
naive method for predicting the value of NI(l0) is obtained by replacing  with  in (1): 

		 I B B
B ,

 
  

where the second equality follows from the fact that nB(k) = 0 for k > lB. This naive method 
suffers from the defect that ñI(l0) is not necessarily less than or equal to nI(lE), which led to the 
consideration of an alternative method. Let NF(k,lE,l0) denote the number of units that fail between 
day lE and day l0 among those that begin service on day k, where k ≤ lE. By definition, 

		 I I E F , E,
B  (3) 

The quantity NF(k,lE,l0) is unobserved for all k but given NI(k,lE) = nI(k,lE), it has a binomial 
distribution with a total number of trials nI(k,lE) and a success probability of 

		 , E

E
  

It follows that 

	E F , E, | I , E I , E , . (4) 

The proposed predicted value of NI(l0), denoted n̂I(l0), is obtained by replacing the unobserved 
NF(k,lE,l0) in (3) with an estimate of E F , E, | I , E  given in (4). The unknown 
quantities NI(k,lE) and p(k,l0) in (4) are estimated by 

, 	 	   

and 

	 ̂ , E

E
  

respectively. That is, 

I I E I , E ̂ ,
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2.2.2. Interval prediction  

We use the normal approximation to compute a 100(1 − α)% conditional prediction interval 
for NI(l0), conditional on the observed data{(nB(l),nI(l)) : l = 1,...,lE}: 

I ⁄ var |data   

where zα/2 denotes the upper α/2 quantile of the standard normal distribution and 0 denotes the 
prediction error. To approximate var( |data), we begin by considering the case where the 
parameter θ is known: 

I I   

I E B E

B

E F , E,

E

 

F , E,

E

B E

B

. 

In this case, 

var |data var F , E, |data

E

 

var F , E, | I , E

E

 

I , E , 1 ,

E

. 

In practice, the parameter θ is unknown and must be estimated from the observed data; in this 
case, the prediction error variance is intractable to compute. We adopt a common approach in time 
series analysis [2–4], which is to approximate the prediction error variance by disregarding the 
variability introduced by the estimation of θ. That is, we approximate var( 	|	data) with 

|data I , E ̂ , 1 ̂ ,

E

 

B E
E

 

																										 B E
E

B

,	  (5) 

where once again the final equality follows from the fact that nB(k) = 0 for k > lB. According to 
[5], in the context of time series forecasting, the effect of parameter uncertainty on the coverage 
of prediction intervals could be non-trivial for sample sizes smaller than about 50; however, such 
effect diminishes as the sample size gets larger. Although it is possible that resampling methods 
can improve the estimation of prediction variance, the application of these methods to the data 
considered here is non-trivial and is a topic for future research 
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3. Simulation study 

To assess the performance of the methods described in section 2, we conducted a simulation 
study using the R statistical software version 3.2.2. 

3.1. Design 

The starting point for simulating data was to generate the underlying survival times. We 
considered two sample sizes, 50 and 100 units, and three commonly used distributions for survival 
data: Weibull, lognormal, and gamma. The Weibull and gamma distributions are characterized by 
a shape parameter and a scale parameter, while the lognormal distribution is characterized by a 
location parameter and a scale parameter; we denote the parameters by θ1 (shape or location) and 
θ2 (scale). The parameter values for each of the three distributions, shown in the first column of 
Table 1 and Table 2, were chosen such that the mean and standard deviation of the survival times 
are approximately 160 days and 60 days, respectively. Figure 2 shows a plot of the density 
functions of the survival distributions considered in our simulation study. 

 

 
Survival time (days) 

Figure 2. Density functions of the survival distributions considered in the simulation study. 

To simulate the staggered entry of the units for each sample, we generated the days on which a 
unit begins service according to a Poisson distribution with mean 400. The days were subsequently 
shifted so that the first unit begins service on day one. If we denote the survival time of a unit by t 
and the day on which the unit begins service by dB, the day on which the unit fails is calculated 
as⎾dB +t⏋, where ⎾·⏋ denotes the ceiling function. We considered three fixed censoring times: 
lE = 180, 240, and 300 days. The observable data, nB(l) and nI(l) for l = 1,...,lE, were then calculated 
accordingly. 

With three survival distributions, three censoring times, and two sample sizes, there is a total of 
18 scenarios. For each scenario, 5000 data sets were generated, and the method described in section 
2.1 was applied to each data set to estimate θ = (θ1, θ2) under no model misspecification. We 
considered both the squared and absolute error loss functions, which were minimized using the R 
function nlminb with default options, except that the relative tolerance was set to 0.0001. If 
convergence was not achieved in the minimization, the estimates were not included in the 
calculation of the summary statistics. For each scenario, we calculated the average percentage of 
censoring, the average of the parameter estimates, and the Monte Carlo standard errors of the 

0 50 100 150 200 250 300 350 400 

Weibull(3, 180) 
lognormal(5, 0.13) 
gamma(7.11, 22.5) 
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parameter estimates across the 5000 data sets. 
Additionally, we constructed 0.95 prediction intervals according to the method described in 

section 2.2, using the squared-error loss function and for each of the three survival distributions. 
The censoring time is 240 days and l0 ranges from 241 to 300 days. We calculated the average 
observed and predicted number of units in service for each l0, denoted I(l0) and I(l0) 
respectively, where the average is taken over the 5000 simulations. We also computed the empirical 
coverage probabilities of the prediction intervals for each l0. 

3.2. Results 

Table 1 and Table 2 present the results of parameter estimation under squared error loss with a 
sample size of 50 and 100 units, respectively. For each survival distribution, the bias and standard 
errors of the parameter estimates decrease as the sample size increases, and when the level of 
censoring decreases. Also, the proposed method produced the best results when the underlying 
survival times are distributed as lognormal, even when the sample size is small (50 units) and the 
level of censoring is heavy (approximately 50%). 

Table 1. Simulation results for parameter estimation under no model misspecification and squared error 
loss based on a sample size of 50. 

Survival 
distribution 

Censoring 
time 

Ave. % 
censored* 

% 
converged 

   
Avg. S.e.  Avg. S.e. 

Weibull 180 days 48 100 3.29 1.72  186.78 55.91 
θ1 = 3 240 days 31 100 3.11 0.59  181.07 11.54 
θ2 = 180 300 days 14 100 3.10 0.47  180.50  9.38 

Longnormal 180 days 53 100 5.02 0.12  0.14 0.10 
θ1 = 5 240 days 37 100 5.01 0.06  0.13 0.05 
θ2 = 0.13 300 days 22 100 5.00 0.05  0.13 0.04 

Gamma 180 days 52 100 9.15 7.54  25.34 19.79 
θ1 = 7.11 240 days 36 100 7.88 2.75  22.86  8.18 
θ2 = 22.5 300 days 19 100 7.73 2.23  22.44  6.37 

 * Rounded off to the nearest integer. 
 

Table 2. Simulation results for parameter estimation under no model misspecification and squared error 
loss based on a sample size of 100. 

Survival 
distribution 

Censoring 
time 

Ave. % 
censored* 

% 
converged 

   
Avg. S.e.  Avg. S.e. 

Weibull 180 days 51 100 3.15 0.75  183.06 23.39 
θ1 = 3 240 days 35 100 3.06 0.41  180.96 8.46 
θ2 = 180 300 days 18 100 3.05 0.33  180.52 6.68 

Longnormal 180 days 57 100 5.01 0.08   0.14 0.06 
θ1 = 5 240 days 43 100 5.00 0.04   0.13 0.03 
θ2 = 0.13 300 days 28 100 5.00 0.04   0.13 0.03 

Gamma 180 days 55 100 8.00 3.86  24.13 11.38 
θ1 = 7.11 240 days 41 100 7.48 1.76  22.73 5.68 
θ2 = 22.5 300 days 26 100 7.41 1.46  22.51 4.51 

 * Rounded off to the nearest integer. 
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Table 3 and Table 4 present the results of parameter estimation under absolute error loss with a 
sample size of 50 and 100 units, respectively. In contrast to estimation under squared error loss, 
where convergence of the minimization algorithm was achieved in virtually all the simulations, 
the percentage of convergence under absolute error loss ranges from 64% to 98%. Nevertheless, 
the results are similar to those observed in Table 1 and Table 2, even when the estimates for which 
convergence was not achieved were included in the calculation of the summary statistics. 

Table 3. Simulation results for parameter estimation under no model misspecification and absolute error 
loss based on a sample size of 50. 

Survival 
distribution 

Censoring 
time 

Ave. % 
censored* 

% 
converged 

   
Avg. S.e.  Avg. S.e. 

Weibull 180 days 48 84 3.37 2.62  187.59 126.33 
θ1 = 3 240 days 31 96 3.13 0.60  181.02 11.77 

Longnormal 180 days 53 70 5.03 0.16  0.14 0.11 
θ1 = 5 240 days 37 69 5.00 0.06  0.13 0.05 
θ2 = 0.13 300 days 22 70 5.00 0.05  0.13 0.04 

Gamma 180 days 52 78 8.79 4.98  24.82 18.41 
θ1 = 7.11 240 days 36 94 7.92 2.75  22.72 8.21 
θ2 = 22.5 300 days 20 97 7.76 2.24  22.37 6.39 

 * Rounded off to the nearest integer. 

Table 4. Simulation results for parameter estimation under no model misspecification and absolute error 
loss based on a sample size of 100. 

Survival 
distribution 

Censoring 
time 

Ave. % 
censored* 

% 
converged 

   
Avg. S.e.  Avg. S.e. 

Weibull 180 days 51 81 3.16 0.75  182.61 24.75 
θ1 = 3 240 days 35 95 3.06 0.42  180.95 8.69 
θ2 = 180 300 days 18 98 3.06 0.33  180.53 6.72 

Longnormal 180 days 57 66 5.01 0.09   0.14 0.07 
θ1 = 5 240 days 43 64 5.01 0.04   0.13 0.03 
θ2 = 0.13 300 days 28 64 5.00 0.04   0.13 0.03 

Gamma 180 days 55 77 7.99 3.36  23.94 11.68 
θ1 = 7.11 240 days 41 92 7.51 1.76  22.66 5.75 
θ2 = 22.5 300 days 26 97 7.42 1.46  22.49 4.54 

 * Rounded off to the nearest integer. 

Figure 3 compares the average observed and predicted number of units in service across 5000 
simulations when the underlying and fitted survival distributions are both Weibull. There is little 
bias associated with point predictions even at 60 days beyond the end of 240 days of study. Figure 
4 shows a plot of the empirical coverage probabilities of the corresponding 0.95 prediction 
intervals against the prediction horizons for sample sizes 50 and 100. The empirical coverage 
probabilities are close to the nominal level when the horizon is within 10 days, and they decline 
steadily as the horizon lengthens. The results for the lognormal and gamma distributions are very 
similar and we summarize the comparisons for all three distributions in Table 5. 
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Figure 3. Average observed and predicted number of devices in service across 5000 simulations. The 

underlying and fitted survival distributions are Weibull. 

 
Number of days beyond 240 days of study 

Figure 4. Empirical coverage probability of 0.95 prediction intervals based on 5000 simulations. The underlying and 
fitted survival distributions are Weibull. 

4. Case Study 

The impetus for the development of the method described in this paper was a data set provided 
to us by a medical device manufacturing firm. A collection of devices were manufactured together 
and distributed to providers. When a device was installed the provider would report the date back 
to the manufacturer. When a device failed the date of failure was likewise reported to the 
manufacturer. However, neither report would include any further identifying information so the 
survival time of any particular device was unknown. The only information available was the 
number of units installed at a given time and the number of units which had failed at a given time 
(and thus the number of units in service at any given time can be calculated). Rather than daily 
increments as described previously, the data here were provided as monthly aggregates. 
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Table 5. Simulation results for prediction of the number of units in service under squared error loss and 
censoring at 240 days. 
  Sample Size 
  50 units  100 units 
Survival distribution l0 I(l0) I(l0) Coverage  I(l0) I(l0) Coverage 
Weibull 270 8.1 8.2 0.86  17.8 18.1 0.85 
θ1 = 3, θ2 =180 300 3.7 4.0 0.77  8.3 8.7 0.78 
Lognormal 270 7.0 7.0 0.90  15.2 15.3 0.90 
θ1 = 5, θ2 = 0.13 300 3.9 4.0 0.83  8.3 8.5 0.84 
Gamma 270 7.8 7.8 0.89  17.0 17.0 0.90 
θ1 = 7.11, θ2 = 22.5 300 4.1 4.3 0.82  9.0 9.2 0.85 

A single lot of 504 devices were manufactured. According to the convention described above 
the first month in which a device was installed is labeled month one. The last of the 504 devices 
was installed in month 23. Meanwhile, the first failure occurred in month nine and the data were 
reported to us for analysis at the end of month 36, by which time 206 devices had failed. 

An attempt was made to fit each of a Weibull, lognormal and gamma distribution to the data 
using the methods described in section 2. The lognormal and gamma distributions provided similar 
results, and the value of the squared error loss function of (2) are 2786 and 8566 respectively. In 
the neighborhood of the parameter θ = (shape, scale) at which we might expect to minimize the 
loss function for the Weibull distribution (based on an assumption that we might expect similar 
results in terms of mean, variance, mode, skewness or other characteristics of this distribution as 
compared to the fitted lognormal or gamma distributions), the loss function is flat leaving no clear 
indication as to appropriate values of the parameters. Alternatively, allowing an initial shape 
parameter value of one, the default in R, or any combination of initial values in the border region 
of the feasible space, the minimization of the loss function leads to a degenerate distribution. We 
summarize the results based on the fitted lognormal distribution. 

The fitted lognormal distribution is highly skewed right, with a median survival time of 32 
months. This is consistent with the fact that 206 of 504, or 41% of, devices had failed by the end 
of study date in month 36 (recall that many did not begin service until well after month one) and 
the declining number of failures in later months. As a check for the credibility of the point 
estimates and prediction intervals, the procedure of section 2 was used with the lognormal 
distribution on the first 26 months of observed values (i.e., the data were artificially censored at 
month 26) in order to obtain point estimates and prediction intervals for months 27–36 for which 
we have observed values for comparison. Figure 5 and Table 6 show that the point estimates and 
prediction intervals are quite reasonable: one of ten observed values falls slightly outside the 
prediction interval, while most observed values are well centered within the prediction interval. 

5. Concluding Remarks 

The results from our simulation study suggest that the proposed method of estimation performs 
well when the underlying survival times can be modeled by a lognormal distribution, compared to 
a Weibull or gamma distribution. There does not seem to be a simple explanation in terms of the 
tails of the distribution: from Figure 2, all three distributions have comparable tails on the right; 
on the left, the lognormal has the lightest tail while the Weibull has the heaviest, yet the results 
corresponding to data generated from the Weibull distribution were better than those for data 
generated from the gamma distribution. More extensive simulations using a wide variety of 
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Month 

Figure 5. Observed and predicted number of devices in service, along with prediction intervals, by month. 

 
Table 6. Observed and predicted number of units in service in month l0 under squared error loss and artificial 

censoring at 26 months, based on a sample size of 504, for the data set of the case study described 
in section 4. 

l0 nI(l0) I(l0) 95% prediction interval 
27 356 361.7 (356.2, 367.3) 
28 348 353.6 (345.9, 361.4) 
29 341 345.7 (336.3, 355.0) 
30 340 337.8 (327.2, 348.5) 
31 330 330.2 (318.5, 341.9) 
32 314 322.7 (310.1, 335.3) 
33 311 315.4 (302.0, 328.7) 
34 304 308.2 (294.2, 322.3) 
35 301 301.2 (286.6, 315.9) 
36 298 294.4 (279.2, 309.6) 

 
distributions should aid in a better understanding of what aspects of the underlying survival 
distribution affect the performance of the proposed method. With regard to the proposed method 
of prediction, the results from our simulation study indicate that the use of ‘true-model’ prediction 
error variance resulted in a consistent under-coverage; nevertheless, the results from the case study 
are encouraging. Finally, as with any parametric method, the proposed method relies on a very 
specific assumption about the underlying distribution from which the data originate. The impact 
of a misspecified distribution will be a topic for future research. 
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