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Abstract: Sinha and Sinha (J. Phys. Earth, 22, 237-244, 1974) studied a problem on the reflection 

of thermoelastic waves at a stress free thermally insulated solid half-space in context of the Lord 

and Shulman theory of generalized thermoelastcity. He showed the existence of three plane waves 

(two longitudinal waves and a shear wave) in a homogeneous, linear and isotropic thermoelastic 

medium. He also obtained the reflection coefficients of reflected waves theoretically and 

numerically for the incident plane waves. Due to the engineering applications, a problem on the 

reflection of thermoelastic waves at a non-free boundary surface is considered in this paper. The 

reflection coefficients of various reflected waves are obtained by considering the new boundary 

conditions at non-free surface. For a particular material representing the half-space, the reflection 

coefficients are also computed numerically and are shown graphically against the angle of 

incidence for different values of boundary parameters. 

Keywords: Generalized thermoelasticity; Non-free surface; Reflection coefficients; Thermal 

relaxation. 

1. Introduction 

Lord and Shulman [1] and Green and Lindsay [2] extended the classical dynamical coupled 

thermoelasticity of Biot [3] to generalized thermoelastic theories. In these generalized 

thermoelastic theories, the field equations are hyperbolic to describe the heat in the form of a wave. 

Finite speed of heat propagation is predicted due to these generalized thermoelastic theories, 

whereas Biot's coupled thermoelasticity admits an infinite speed of heat propagation. Green and 

Naghdi [4] also gave a generalized theory of thermoelasticity without energy dissipation with 

isothermal displacement gradients among its independent constitutive variables. 

Chandrasekharaiah [5] developed a dual-phase-lag theory of thermoelasticity. Hetnarski and 

Ignaczak [6] revisited the representative generalized theories of thermoelasticity. Recently 

Ignaczak and Ostoja-Starzewski [7] presented some problems based on these theories in their book. 

  The phenomenon of wave propagation has many applications in the fields of mineral and oil 

exploration, geophysical exploration and seismology. Using Lord and Shulman theory, a problem 

on reflection of thermoelastic waves at a stress free thermally insulated solid half-space was 

studied by Sinha and Sinha [8]. The phenomena of the reflection and refraction of generalized 

thermoelastic waves at an interface were studied by Sinha and Elsibai [9, 10], Singh [11, 12] and 

Sharma et al. [13]. Taking into account various other parameters present in the earth, the reflection 

phenomena at free surface and interfaces of thermoelastic solid half-spaces were studied by many 
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authors in [14-25]. 

  In case of real engineering problems, the boundary surface may be considered as non-free with 

distributed elastic constraint or support, where each mass point is subjected to the normal and 

tangential translation constraint. In this paper, a problem on reflection of thermoelastic waves at a 

non-free surface is considered. The reflection coefficients of all reflected waves are derived for the 

new boundary conditions at a non-free surface. The numerical computations of the reflection 

coefficients are performed for a particular material. These reflection coefficients are depicted 

graphically against the angle of incidence to show the impact of non-free surface parameters. 

2. Governing equations of linear thermoelasticity 

We consider a system of rectangular Cartesian axes 3) 2, 1,=(iOxi . We consider a linear, 

isotropic and homogeneous thermally conducting elastic medium in undeformed state at uniform 

temperature 0T . Following Lord and Shulman [1], the governing equations of linear, isotropic and 

homogeneous generalized thermoelastic medium in absence of body forces and heat sources, are 

(a) Constitutive equations 
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(b) Equations of motion 

 ,=)(
2

22

2

2

t

u

x

T

xx

u

x

u i

iji

j

j

i


















                                          (3) 

(c) Heat Equations 
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where 3 2, 1,=, ji ; ix  are cartesian coordinates, t  is time; ),( txu ii  are cartesian components 

of the displacement vector; ( , )iT x t  is increment in reference temperature 0T , ije  are 

components of the strain tensor; 11 22 33kke e e e    is an invariant, ij  are components of the 

stress tensor; ij  is Kronecker delta;   is density of the medium; ,  are Lame’s elastic 

constants; K  is thermal conductivity; 0  is relaxation time; Ec  is the specific heat at constant 

strain; 0)2(3=    is thermal parameter and 0  is coefficient of thermal expansion. In the 

following sections, the cartesian axes 21   , xx  and 3x  are renamed as x , y  and z  axes, 

respectively. 

3. Equations governing two-dimensional motions 

  We consider a half-space which occupies the region 0>z , where the origin is taken at plane 

surface and z  axis is taken normal into the half-space. We also assume that the plane surface 
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0=z  is non-free and thermally insulated. We consider motions in the ( , )x z  plane with 

displacement components 1u  and 3u , where 1u  and 3u  depend only on x , z  and t . We 

choose the x -axis as the direction of propagation of waves. Using the following Helmholtz's 

representations 
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the equations (3) and (4) are specialized in the ),( zx  plane as 
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where ),,( tzx  and ),,( tzx  are field potentials. We seek the plane wave solutions of 

equations (6) to (8) in the following form 

 ,},,{=},,{ )cossin( VtzxikeCBAT                                                (9) 

where k  is wave number, V  is the complex wave speed,   is the angle of propagation, and 

BA,  and C  are amplitude factors. With the use of (9) into equations (6) to (8), it is shown that 

there exists three plane waves in x-z plane namely longitudinal wave (P wave), thermal wave (T 

wave) and shear wave (SV wave) with speeds 1V , 2V  and 3V  given by 
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and   is frequency of the wave. If we write, 2) 1,=(,= 111
jqivV jjj


  , then clearly jv  and 

jq  are speeds of propagation and attenuations of the P  and T  waves. 

4. Reflection at a non-free surface 

  An incident P  or SV  wave travels in half-space 0>z  making an angle 0  with normal 

to the half-space and impinges the non-free surface 0=z . The energy of incident wave is 

partitioned into three reflected waves, namely, P , T  and SV  waves as shown in Figure 1. The 

potentials representing the incident and reflected waves are expressed as 
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Figure 1. Geometry of the problem showing incident and reflected waves. 

 

 
(sin cos ) (sin cos ) (sin cos )

0 0 0 0 1 1 1 1 2 2 2 2
0 1 2= ,

k x z v t k x z v t k x z v t
A e Ae A e

        


     
   (10) 

 
(sin cos )

0 0 0 0
1 0=

k x z v t
T A e

  


  (sin cos ) (sin cos )
1 1 1 1 2 2 2 2

1 1 2 2 ,
k x z v t k x z v t

Ae A e
     

 
   

   (11) 

 
(sin cos ) (sin cos )

0 0 0 0 3 3 3 3
0 1= ,

k x z v t k x z V t
B e B e

     


   
                                     (12) 

  where  =  √−1  , 0210 ,,, BAAA  and 1B  are amplitudes of incident P , reflected P , 

reflected T , incident SV  and reflected SV  waves, respectively. 210 ,,   and 3  are angles 

of incident ( P  or SV ), reflected P , reflected T  and reflected SV  waves with z -axis, 

respectively. 210 ,, kkk  and 3k  are wavenumbers of incident ( P  or SV ), reflected P , 

reflected T  and reflected SV  waves, respectively. 210 ,, vvv  and 3V  are phase speeds of 

incident ( P  or SV ), reflected P , reflected T  and reflected SV  waves, respectively. The 

thermo-mechanical coupling coefficients 2) 1,=(,
)(

=
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. Here, for the case of 

incident P  wave, 0=0B , 10 = kk , 10 = vv , 10 =  and for the case of incident SV  wave, 

0=0A , 30 = kk , 30 = Vv , 30 = . 

  The normal force stress component zzt  and tangential force component zxt  are zero for the 

free surface. These components may have finite value and are proportional to displacement 

components for the non-free surface, namely, 
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where  
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and 1S  and 2S  are the proportional coefficients of normal and tangential stiffness, respectively. 

The free surface and fixed surface are two extreme cases of non-free surface. The free surface is 

recovered when 1S  and 2S  tend to zero, whereas, the fixed surface is recovered when 1S  and 

2S  tend to infinity. A negative imaginary number i  is multiplied on right hand side of above 

equations to remove the phase shift between the stress field and displacement field. For thermally 

insulated surface, we also need vanishing of normal component of heat flux across surface at 

0=z  , i.e., 

 0,=
z

T




 (16) 

At any boundary point and at any time, we also assume that the circular frequency of each reflected 

wave is equal to that of an incident wave, i.e., 

 ,=== 33221100 Vkvkvkvk  (17) 

 

and the apparent wave number of every wave is equal, i.e., 

 .sin=sin=sin=sin 33221100  kkkk  (18) 

Keeping in view of equations (14), (15), (17) and (18), the potentials given by equations (10) to 

(12) satisfy the boundary conditions (13) and (16) and we obtain the following non homogeneous 

system of three equations in reflection coefficients (amplitude ratios) 1Z , 2Z  and 3Z  
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For 0=1S and 0=2S , the above theoretical analysis reduces to those for the case of traction 

free surface. 

5. Numerical results and discussion

Following values of the relevant parameters at KT 300=0  are taken

 = 3102.7 Kg.m 3 , 10105.775=  N.m 2 , 
10102.646=  N.m 2 , 

K = mW.  100.492 2
1 .deg 1 , Ec = 2102.361 J.Kg 1 .deg 1 , 0 = .100.05 10 s

  Using Fortran program of Gauss elimination method with above physical constants, the non-

homogeneous system (19) of three equations in reflection coefficients of reflected TP,  and SV

waves is solved numerically for incidence of P and SV waves. 

  For incident P wave, the reflection coefficients of reflected P, T and SV waves are shown 
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graphically against the angle of incidence ( oo 90<0 0  ) in Figures 2 to 4. The variations shown 

by solid line, solid line with stars, solid lines with circles and solid lines with triangles as center 

symbols in Figures 2 to 4 correspond to 0= 0,= 21 SS ; 0= 0.5,= 21 SS ; 0.5=0,= 21 SS  and 

0.5= 0.5,= 21 SS , respectively. In Figure 2, for 0.5= 0.5,= 21 SS , the reflection coefficients of 

reflected P wave is 0.9137 at o1=0 . It decreases to its minimum value 0.5352 at o60=0 and

then increases sharply to its maximum value one at o90=0 . For 0.5= 0.5,= 21 SS , the

variations for reflection coefficients of reflected T waves are shown by solid line with triangle in 

Figure 3. The reflection coefficients of reflected T wave is 0.4891e-04 at o1=0 . It increases to 

its maximum value 0.1669e-03 at o47=0 and then decreases sharply to its minimum value zero

at o90=0 . For 0.5=0.5,= 21 SS , the variations of reflection coefficients of reflected SV wave 

are shown graphically by solid line with triangles in Figure 4. The reflection coefficient of reflected 

SV wave is 0.1296e-01 at o1=0 . It increases to its maximum value 0.3663 at o46=0 and then

decreases to its minimum value zero o90=0 . Comparing the different variations of reflection

coefficients for reflected waves in Figures 2 to 4, the effects of normal stiffness 1S and tangential 

stiffness 2S are observed. 

Figure 2. Variations of the reflection coefficients of reflected P wave against the angle of incidence of 
incident P wave. 
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Figure 3. Variations of the reflection coefficients of reflected T wave against the angle of incidence of 
incident P wave. 

Figure 4. Variations of the reflection coefficients of reflected SV wave against the angle of incidence of 
incident P wave. 
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  For incident SV wave, the reflection coefficients of reflected P, T and SV waves are shown 

graphically against the angle of incidence ( oo 29<0 0  ) in Figures 5 to 7. The variations shown 

by solid line, solid line with stars, solid lines with circles and solid lines with triangles as center 

symbols in Figures 5 to 7 corresponds to 0= 0,= 21 SS ; 0= 0.5,= 21 SS ; 0.5=0,= 21 SS  and 

0.5= 0.5,= 21 SS , respectively. In Figure 5, for 0.5= 0.5,= 21 SS , the reflection coefficient of 

reflected P wave is 0.5458e-01 at o1=0 . It increases to its maximum value 1.703 at o29=0 .

In Figure 6, for 0.5= 0.5,= 21 SS , the reflection coefficient of reflected T wave is 0.3085e-04 at 
o1=0 . It increases to its maximum value 0.4207e-03 at o20=0 and then decreases sharply to

0.1137e-03 at o29=0 . In Figure 7, for 0.5= 0.5,= 21 SS , the reflection coefficient of reflected 

SV wave is 0.6472 at o1=0 . It decreases to its minimum value 0.56e-01 at o28=0 and then

increases to the value 0.1136 at o29=0 . Comparing the different variations of reflection

coefficients for reflected waves in Figures 5 to 7, the effects of normal stiffness 1S and tangential 

stiffness 2S are observed.

Figure 5. Variations of the reflection coefficients of reflected P wave against the angle of incidence of 
incident SV wave. 
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Figure 6. Variations of the reflection coefficients of reflected T wave against the angle of incidence of 
incident SV wave. 

Figure 7. Variations of the reflection coefficients of reflected SV wave against the angle of incidence of 
incident SV wave. 
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6. Conclusions

  A thermoelastic solid half-space with non-free surface is considered for reflection of P and SV 

waves. Using appropriate field potentials in required boundary conditions at non-free surface, a 

non-homogeneous system of three equations in the reflection coefficients of reflected P, T and SV 

waves is obtained for incidence of both P and SV waves. Using a Fortran program, this system of 

equations is solved numerically for relevant physical constants of the model. The reflection 

coefficients are also plotted against the angle of incidence for different sets of the coefficients of 

normal and tangential stiffness. The reflection coefficients of various reflected waves depend on 

the coefficients of stiffness at each angle of incidence. Following specific remarks may be 

concluded from the general discussion on numerical results: 

(i) For incident P  wave, the reflection coefficients of reflected P  have maximum values one

at o90=0 (grazing incidence) and different minimum values near angle of incidence o60=0

for different stiffness combinations. Maximum effects of normal and tangential stiffness on 

reflection coefficients of P  wave are observed at angles near the angle of incidence o60=0

and minimum effects of stiffness coefficients are observed at angles near grazing and normal 

incidences. 

(ii) For incident P  wave, the reflection coefficients of reflected T  and SV  wave have

minimum values zero at grazing incidence and different maximum values at angles near angle of 

incidence o47=0 for different stiffness combinations. Maximum effects of normal and

tangential stiffness on reflection coefficients of T  and SV  wave are observed at angles near the 

angle of incidence o47=0 and minimum effects of stiffness coefficients are observed at angles

near grazing and normal incidences. 

(iii) For incident SV  wave, the maximum values of reflection coefficients of reflected P  and

T waves are observed at angles near angles of incidence o29=0 and o20=0 . The reflection

coefficients of these reflected waves are minimum near angle of normal incidence. The effect of 

stiffness coefficients on the reflection coefficients of P  and T  waves is minimum at normal 

and critical incidence. However, it is observed maximum in a range of angle of incidences near 

critical incidence. 

(iv) For incident SV  wave, the maximum values of reflection coefficients of reflected SV

wave are observed at angle of incidence o1=0 . The reflection coefficient of SV  wave is

minimum at o28=0 . The effect of stiffness coefficients on the reflection coefficient of SV

wave is minimum at normal and critical incidence. However, it is observed maximum in a range 

of angle of incidences close to the critical incidence. 

  The present numerical results may provide useful information for experimental scientists 

working in the field of wave propagation in solids, mining tremors and drilling into the crust of 

the earth. 
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