
International Journal of Applied Science and Engineering
2019. 16, 3: 201-214

Int. J. Appl. Sci. Eng., 2019. 16, 3 201

Fault Tolerance Events Ordering with Coverage and
Connectivity Aware Clustering in Wireless Sensor and

Actuator Networks

Yi-Chao Wu

Interdisciplinary Program of Green and Information Technology, National Taitung
University, Taitung, Taiwan

Abstract: A network delay or a fail link is prone to be occurred in wireless sensor and
actuator networks (WSAN). Since the events captured by sensors are related to others, events
ordering is an vital issue in WSAN. However, it is hard to guarantee that no prior event is
transmitted while the latter events arrive at actuator in network. While a fail link is occurred,
it could be assumed as a special case that the delay is set to infinity. Event ordering by double
confirmation (OBDC) was a typical events ordering while a network delay was occurred.
Fault tolerance events ordering by aging learning (FTEOAL) was a typical events ordering
mechanism while a fail link existed. However, both of them assumed that sensors were all
covered by one actuator and none of them was the orphan sensor. Once a sensor was non-
covered by an actuator or an orphan sensor existed, the rate of correct events ordering will
decrease. Therefore, in this paper, we proposed a fault tolerance events ordering with
coverage and connectivity aware clustering, FTEOCCAC. The simulation results
demonstrated that events were treated in correct order even if the sensors are deployed
randomly or an orphan sensor existed while a network delay or a fail link existed in network.
The rate of correct events ordering could be closed to the expect value.

Keywords: Wireless sensor and actuator networks; network delay; fail link; orphan sensor;
coverage and connectivity aware clustering; rate of correct events ordering.

1. Introduction

WSAN called wireless sensor and actuator networks was consisted of a set of sensors and

some rich-resource actuators. Sensors send the sensed data for the physical environment.
Actuators perform actions based on the sensed data. Unlike WSN, where the sink takes
actions for events in a centralized manner, actuators in WSAN perform actions with a local
and distributed manner. Since the transmission radius, computation, and energy of WSAN are
different from those of WSN, the coordination and communication of sensor-actuator
becomes an important feature in WSAN. Therefore, WSAN has brought up new challenges
and dimensions to WSN in the past and the current solutions of WSN cannot be used for
WSAN, directly [1-3]. In WSAN, it also could monitor critical conditions in the physical
environments [4-5]. In the clusters of WSAN, each actuator requires the correct translating of
contexts in the context-aware environments, where the contexts were consisted of inter-
related events [6-13].

Most of researches in WSAN focused on simple context events to prolong the network
lifespan, do fault tolerance, and save power energy.

Corresponding author; e-mail: alanwu@nttu.edu.tw Received 8 March 2019
doi:10.6703/IJASE.201911_16(3).201 Revised 18 September 2019
○C 2019 Chaoyang University of Technology, ISSN 1727-2394 Accepted 15 October 2019

Y.-C. Wu

202 Int. J. Appl. Sci. Eng., 2019. 16, 3

By the progressing of sensor technique and the increasing of human requirement, the
accurate, critically monitored, reacted applications took attentions gradually. For these
applications, events were related to each other and the ordering of events to be discovered
became an important issue. Few of researches however addressed the events ordering issue
and no method ensures the correct events ordering [6-13].

Since the relation of events could be considered as temporal, the ordering of events
captured by the source sensors is vital to treat events timely and correctly. Hence, to track the
events ordering correctly was required in WSAN [7-13]. To show the practical usefulness of
our proposed model, an object moving path tracking application was illustrated. In this
application, events ordering is required since actuator cannot guarantee that no prior event is
transit over network while the actuator receives the current event. In Figure 1, an intruder is
detected by sensor 1 (s1), s2, s3, s4, s5, and s6. Once no delay existed, the ordering, such as s1-
s2-s3-s4-s5-s6, is the same as the moving path of the invader. However, the event captured by
s5 may be subjected to a delay. The ordering, such as s1-s2-s3-s4-s6-s5, is different from the
correct moving path. The error decision is made for arresting the invader. No action is
performed at once while receiving other events, since the later events captured at tj
(timestamp j) may arrive before the events captured at ti (i < j). It is caused that some
previous events still being in transit in network due to the propagation delay. Hence, an
events ordering algorithm is needed. Undoubtedly, events ordering is a indispensible
mechanism for some applications with the rate of correct events ordering up to 100%.
Therefore, an ordering by double confirmations, OBDC, to ensure the correct events ordering
was proposed [13].

s1

Invader

s2

s3

s4

s5

s10

s6

S8

s7

s11

s9

: Detect an invader : Communication link

: Correct moving path : Incorrect moving path

Monitor Center

Figure 1. Temporal events ordering [14].

In OBDC, it assumed that the routing paths were kept and never broken in the system

model [13]. Once a fail link in a cluster existed, OBDC will be fail because some
confirmation messages may not arrive at the actuator. However, in the real situation, the fail
link in wireless network may be prone to be happened. Hence, how to execute events
ordering with fault tolerance needs to be addressed. Hence, a fault tolerance events ordering
by aging learning, FTEOAL, was proposed to consider the network delay and fail link
problems for events ordering [15].

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 203

Although FTEOAL solved the network delay and fail link for events ordering, jointly, it
also assumed that the all sensors must be covered by one actuator and there is no orphan
sensor as the same as the existed events ordering algorithms [7-13]. Once a sensor is out of
coverage of actuator or no routing among sensors and actuator, FTEOAL cannot be processed.
In fact, some sensors may not be covered by at least one actuator and some sensors may be
the orphan sensors. Therefore, we combined the coverage and connectivity aware clustering
within k hops (CCAC-k) [16] with FTEOAL [15] to propose a fault tolerance events ordering
with coverage and connectivity aware clustering, FTEOCCAC, in this paper.

The remainder of this paper was arranged in the following chapters. Section 2 stated the
related work. Section 3 presented our algorithm, FTEOCCAC. The performance evaluation
was described in Section 4. Finally, we concluded the paper and described the future work.

2. Related Work

In WSAN, it was divided into automated and semi-automated network [3]. Since sensors

could send the data to actuators in automated network, the actuators could take decisions and
perform actions. The sensors thus could save energy because they could not forward data to
the sink via multi-hop. Moreover, the network lifespan could be increased and the latency of
performing actions could be decreased. Hence, we applied the automated architecture for
WSAN [3]. Certainly, the events ordering was needed in WSAN [7-13].

Moreover, the existing events ordering algorithms in WSAN addressed nothing for fault
tolerance. Actually, the fail link and network delay were all prone to be happened in wireless
communication medium. Hence, an efficient events ordering should consider the fail link and
network delay, jointly. Here, the actor was defined as the same as the actuator.

In most of researches, events were often defined as the independent ones. Few of
researches discussed the issues for ordering events before. Recently, the ordering of events
became critical since the events interpreted in different order may carry out the different
results. For this issue, some algorithms of events ordering were proposed in WSN [7-13].

Once events are co-related, the time differences among events can suggest to detecting the
incident in an emergency environment. If the co-related events are captured, a mechanism is
needed to interpret the co-related events. To ensure the correct ordering, an actuator must
guarantee that no prior event is still in transit while the latter events are treated in network.
However, most of algorithms addressed nothing for the event ordering issue, since no delay
was assumed in network. Therefore, the ordering of events arriving at the actuator must be in
the same ordering as the ordering of events captured by sensors.

Ordering by confirmation, OBC, was another typical events ordering mechanism in WSAN
[7-11]. In OBC, no sensor sent a duplicate message to actuator and no logical rings was
needed as temporal message ordering in sensor networks, TMOS [17]. Only the leaf sensors
received confirmation messages. The leaf sensors then routed the confirmation message to
the actuator through the routing path. OBC, however, cannot ensure that the ordering of all
events was in correct order. As the number of events increased, the probability of treating
events in correct order may be decreased. Therefore, an ordering by double confirmations,
OBDC was proposed [13]. In OBDC, only one buffer was required. Moreover, OBDC
ordered the events correctly with a little higher energy consumption and time than OBC.

OBDC was to set the first in first out (FIFO) channel between any two sensors. The object
of FIFO channel was to determine the order if more than one event arrived at the same sensor.
For example, while si received ei, si detected ej in this moment. Because the property of FIFO
channel, ej was routed back to actuator first. To make events treated correctly in OBDC, an

Y.-C. Wu

204 Int. J. Appl. Sci. Eng., 2019. 16, 3

actuator needed to send the confirmation messages to all leaf sensors when it received an
event forwarded by sensor. While an actuator received ei, it stored ei in buffer. After a
predefined time, the actuator broadcasted confirmation message mmax to all leaf sensors,
where max indicated the maximal order of events in buffer. For example, max was set to 2,
such as (e0→e2→e1)a. After all mmax sent back to actuator, the actuator treated each ei in
buffer and handed these event(s) orderly out to application, if

i max
s g
e mt t≤ , where

i
s
et and

max
g
mt

were defined as the timestamp of ei sent by source sensor and the timestamp of mmax sent by
actuator.

In OBDC, only leaf sensors needed to route these messages back to the actuator. Hence,
OBDC did not suffer a non-determinism delay. Moreover, OBDC only needed one buffer to
save the received events to be treated correctly. However, OBDC cannot execute the events
ordering while a fail link was occurred in network. To address the fail link and network delay
issue, jointly, FTEOAL was proposed [15].

However, OBC, OBDC, and FTEOAL all assumed that the link among sensors is not in
fail and no sensor is out of the coverage of the actuator. In the real condition, the assumptions
are impossible. While the deployment of sensors is random, the OBC, OBDC, and FTEOAL
all may not be processed. Hence, a fault tolerance events ordering with coverage and
connectivity aware clustering, FTEOCCAC, was proposed based on FTEOAL and CCAC-k
[15-16] in this paper.

3. Fault Tolerance Events Ordering with Coverage and Connectivity Aware Clustering

In the existing protocols and algorithms in WSAN, events are often defined as the

independent ones because they are not co-related to each other. By the progress of technique
in both micro-electronic and communication, WSAN may not only perform actions but also
perform them in correct order. Here, the correct order was defined as that the ordering of
events detected by sensors were the same as the ordering of events treated by actuators even
through the ordering of events detected by sensors was different from the ordering of events
reach the actuator. However, events ordering may be not correct if the former event arrived at
actuator before the latter event.

Before ordering events, the pre-configuration included clustering algorithm, clock
synchronization, and FIFO channel was required. For clustering, the existing events ordering
algorithms all assumed that no orphan sensor existed and each sensor must be covered by at
least actuator for clustering [7-13]. Actually, the above assumption is impossible since the
sensors are scattered. If a sensor was not covered by an actuator, the confirmation message
cannot be broadcasted to the sensor and events may be treated in incorrect order.

Moreover, most of events ordering mechanisms only considered the network delay without
addressing the fail link problem. In fact, both of them are prone to be happened in wireless
communication medium. Once a fail link existed, the existing events ordering mechanisms
cannot be executed. Hence, a fault tolerance events ordering with coverage and connectivity
aware clustering, FTEOCCAC, was proposed in WSAN. FTEOCCAC was involved CCAC-k
[16] and FTEOAL [15] in WSAN. Table 1 described the notation in FTEOCCAC based on
FTEOAL [15].

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 205

Table 1. Notation in FTEOCCAC [15].

Notation Definition Unit

i
s
et

Timestamp of ei sent by source
sensor ms

i
a
et Timestamp of ei arrived at actuator ms

i
t
et Timestamp of ei treated by actuator ms

i
g
mt

Timestamp of mi generated by
actuator ms

i
a
mt Timestamp of mi arrived at actuator ms

ieDT Delay time of ei ms

imDT Delay time of mi ms

ieDTG Delay time of generating ei ms

oneDT Propagation time in one hop ms

iePT Period time of ei treated by actuator ms

ieH
Hop count of ei from source sensor

to actuator

In FTEOCCAC, sensors have the limited computing, sensing, and wireless communication

capabilities without short battery life. Actuators were the resource rich nodes with higher
computing, longer transmission radius, and longer battery life. Actuator could also have the
sensing capability. The number of sensors was much more than that of actuators.

Sensors and actuators were stationary. Sensors were scattered randomly. The hop count
from the sensor to actuator was set to k. The sensing range and probability were regular. The
probability of network delay between any two sensors was from 0% to 30%. The probability
of a fail link between any two sensors was from 0% to 30%. The fail communication link was
temporal not fixed. The probability of a sensor to be a source sensor was random.

The ordering of events captured by sensors, the ordering of events arrived at actuator, and
the ordering of events treated by actuators were defined in the following. Without any delay,
(ei→ej→el)t must be true even if (ei→ej→el)s was false, where ei was denoted as event i
and i j l< < . It was caused that the time of transmitting data must be much less than that of
moved events.

(ei→ej)s: ei was sent by sensors before ej.
(ei→ej)a: ei arrived at actuator before ej.
(ei→ej)t: ei was treated by actuators before ej.
However, delay was prone to happened in wireless communication. Delays may originate

as listed as follows. Once an event meant a delay in its routing path, the later event may
arrive at actuator before the former one, such as (ei+1→ei)a. Unfortunately, it was difficult to
know whether any prior event was still transited in network while actuator received a
message of event. For some applications required all events treated in correct order, how to
ensure the events to be treated in correct order became an important research.

Y.-C. Wu

206 Int. J. Appl. Sci. Eng., 2019. 16, 3

The (ei→ej→el)t should be true even if (ei→ej→el)a is false. The formulation of events
ordering is illustrated in the following example. Figure 2 showed a time sequence for error
events ordering. Without any delay, (e0→e1→e2→e3→e4)t should be true. Once some of
events meet a delay, such as e0 and e3, the later e1 arrives at actuator prior to e0 and the later
e4 arrives at actuator prior to e3. When the actuator receives e1, it could not know e0 still in
transit over the network and removes e1 from buffer in incorrect order (e1→e0)t. In the same
way, actuator removes e4 from buffer in incorrect order (e4→e3)t. Without any events
ordering solution, the ordering of events treated must be indentical as ordering of events
arrived at actuators. Thus (e0→e1→e2→e3→e4)t was changed to incorrect ordering, such as
(e1→e0→e2→e4→e3)t. For example, in Figure 3, s8 and s25 sent e1 and e2 to actuator. In the
same time, the communication link between s15 and s16 was fail. Some of m0 thus cannot be
forwarded to the actuator [15].

Moreover, the events ordering algorithms will not be performed if the sensors are not
covered by a least one actuator or an orphan sensor existed. For example, s20, s21, s22, and s24
are the orphan sensors, as shown in Figure 4. The s20 and s24 are out of the coverage of the
actuator, as shown in Figure 4 [15]. Therefore, FTEOCCAC was proposed in this paper.

Ordering of events sent by

source sensors

Ordering of events arrived at
actuator

e0 e1 e2 e3 e4

e0e1 e2 e3e4

t0 t1

t2 t3

t4

t5

t6 t7

t8 t9

Incorrect ordering events

ti : Timestamp i ej : Event j
Figure 2. Time sequence of error events ordering [13].

11

19

10

12

14

13

1516
17

1820

21

22

23
24

25
26

27

28

29
30

31

2

3

4

5

7

9

32

6
8

1
m0

m0

m0

m0

m0

m0

e1

e2

: si

: Leaf sj

i
j

: Source event

ei : Event i
mi : Confirmation message i

Figure 3. Fail link existed in events ordering [14].

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 207

1
4

32
6

5

7

8
10

9

11

12

13
14

15

16

17

18

19

20 21

22

23

24

25

: Orphan sensor : Sensor out of coverage of actuator

Figure 4. Coverage and connectivity problems [16].

FTEOCCAC is based on FTEOAL with CCAC-k [15-16]. Differed from FTEOAL, the

clustering of FTEOCCAC is replaced the periodic, event-driven and query-based protocol,
PEQ [18] with CCAC-k [16]. FTEOCCAC defined an aging waiting time (AWT) and an
expected rate of correct events ordering (RCexp), 0 1expRC≤ ≤ . AWT was adjusted

dynamically. The flowchart of FTEOCCAC is shown in Figure 5. The
i

t
et was calculated

as
i

s
e rt AWT+ , where AWTr denoted the redundant of AWT, if AWT was not expired. High

aging learning time, ALThigh, was calculated as (1) [14]. ALThigh will be getting to DTmax
defined as the maximal delay time. Low aging learning time, ALTlow, was calculated as (2)
[15]. AWT was calculated as (3) [15]. AWT was set to

ex stAWT AWTt t− ,
where

stAWTt and
exAWTt denoted the start and expiration of AWT, respectively. Initially, ALThigh

and ALTlow were set to 0 and DTmax. Based on [15], Nl and Ncl were also defined as the
number of learning and the current Nl, respectively.

, if

, if
i i i i

i i

a s a s
e e e e high

high a s
high e e high

t t t t ALT
ALT

ALT t t ALT

 − − >=
− ≤

 (1)

, if

, if
i ex i

ex i

a a
ex e AWT e low

low a
low AWT e low

AWT t t t ALT
ALT

ALT t t ALT

 − − <=
− ≥

 (2)

, if
, if

high low exp

low exp

AWT ALT ALT RC RC
AWT

AWT ALT RC RC
+ − <= − ≥

 (3)

Y.-C. Wu

208 Int. J. Appl. Sci. Eng., 2019. 16, 3

Start

Yes

No
AWT was expired

Receive ei

i ex
t
e AWTt t=

()
i i

a s
e e hight - t ALT>

i i
a s

high e eALT t t= −

()
ex i

a
AWT e lowt t ALT− <

ex i
a

low AWT eALT t t= −

expRC RC<

high lowAWT AWT ALT ALT= + −

1cl clN N= +

cl lN N≥

End

Yes

Yes

Yes

No

No

No

No

ex i
a

AWT et t AWT= +

Yes

lowAWT AWT ALT= −

Actuators were deployed by CCAC-k

Figure 5. Flow chart of FTEOCCAC.

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 209

4. Simulation results

The simulation results were validated by C# custom simulator on the .NET platform. The
simulation environment was listed in Table 2. In the simulation, it was performed on a
WSAN subgroup as the cluster which the actuator acted as the cluster head in a distributed
manner. Hence, the proposed scheme is designed in the distributed manner. The technical
concepts and steps that are taken to demonstrate the model's validity will be explained in the
following.

Delay time (DT) was set from 500 to 2000 ms. Delay time for generating an event, DTG,
was set from 100 to 200 ms. Pd defined as the probability of an event with a delay in a link
was set from 0% to 30%.

In the events ordering, correct ordering must be required. Thus the rate of correct events
ordering (RC) was the main performance metric as (4) for events ordering [15]. While RC
increased, the risk of performing error actions may increase. To address the executing time,
the average time of ordering events (AT) was defined as (5) [15].

iePT was defined as the
period time of treating ei as (6) [15]. Lower AT showed the lower executing time to order
events correctly. Since FTEOCCAC could not send any confirmation message, FTEOCCAC
does not have any additional overhead for events ordering. Hence, the performance
evaluation of energy consumption was not considered in the simulation.

100%,
c

ce
e e

e

NRC N N
N

= × ≤ (4)

1
()

e

i

N

e
i

e

PT
AT

N
==
∑

 (5)

i j i
t a s

e m ePT t t= − (6)

For fault tolerance events ordering, we added a probability of an event meeting a fail link,
Pl, from 10% to 30% to fit the real condition for fail link in wireless network. In the events
ordering with fault tolerance, correct ordering was also required. Therefore, RC and AT were
the performance metrics for FTEOCCAC. The simulation results will describe and
demonstrate the models validity for FTEOCCAC.

Table 2. Simulation environment [15].
Name Value

Simulation area, A 1000 × 1000 (m2)
Number of sensors, Ns 250, 500, 1000, 1500, 2000
Number of events, Ne 100, 150, 200, 250, 300
Transmission radius of sensor, rs 20 (m)
Transmission radius of actuator, ra 140 (m)
Delay time, DT 500-2000 (ms)
Delay time for generating an event, DTG 100-200 (ms)
Propagation time in one hop, DTone 20 (ms)
Packet size, Sp 50 (Bytes)
Probability of an event with a delay in a link, Pd 0-10%, 0-20%, 0-30%
Probability of an event meeting a fail link, Pl 0-10%, 0-20%, 0-30%
Expected value of RC, RCexp 90%

Y.-C. Wu

210 Int. J. Appl. Sci. Eng., 2019. 16, 3

Pl, Ne, Nl, DT, and DTG were varied to evaluate RC and AT under FTEOCCAC and
FTEOAL. In Figure 6, RC was evaluated based on different Pl. DT and DTG were set to
2000 ms and 100 ms, respectively. It showed that RC in FTEOCCAC was close to RCexp,
such as 90%, but RC in FTEOAL was about 70% while Pl and Ne still increased. While the
fail link and network delay existed together, FTEOAL cannot be executed. Hence
FTEOCCAC was more better than FTEOAL for RC with different Pl. Because RC in
FTEOAL was only influenced by Pl varied from 0% to 30%, RC in FTEOAL was random.

Figure 6. RC in FTEOCCAC and FTEOAL for different Pl (DTG = 100 ms, DT = 2000 ms, Pd = 0-30%).

In Figure 7, we could find that RC in FTEOCCAC was higher than RC in FTEOAL. While

DT was increased, RC in FTEOCCAC was almost fixed. Figure 8 showed that RC in
FTEOCCAC was close to RCexp but RC in FTEOAL was lower than 75%. It proved that
FTEOCCAC had higher RC than FTEOAL with different DTG. As DTG increased over time,
RC in FTEOCCAC was almost the same. Hence, FTEOCCAC was better than FTEOAL for
RC while DTG or DT increased.

Figure 7. RC in FTEOCCAC and FTEOAL for different DT (Pl = 0-30%, DTG = 100 ms, Pl = 0-30%).

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 211

Figure 8. RC in FTEOCCAC and FTEOAL for different DTG (Pl = 0-30%, DT = 2000 ms, Pl = 0-30%).

Since some applications needed events treated timely, so average time of ordering events

(AT) was also important. However, for AT, while a fail link was occurred in network,
FTEOAL could not be executed. AT of FTEOAL was thus infinite. Hence, we only evaluated
AT under FTEOCCAC and FTEOAL while only network delay existed without any fail link,
such as Pl = 0%.

In Figure 9, we evaluated AT for different Pd under FTEOCCAC and FTEOAL. It showed
that AT in FTEOCCAC was almost the same while Pd increased. AT in FTEOAL was
increased while Pd was increased. In Figure 10, AT was evaluated in FTEOCCAC and
FTEOAL with different DT. While DT was increased, AT in both FTEOCCAC and FTEOAL
were increased. In Figure 11, it showed that AT in FTEOCCAC was higher than AT in
FTEOAL with different DTG. However, AT in FTEOCCAC did not increase while DTG was
increased.

Figure 9. AT in FTEOCCAC and OBDC for different Pd (DTG = 100 ms, DT = 2000 ms, Pl = 0%).

Y.-C. Wu

212 Int. J. Appl. Sci. Eng., 2019. 16, 3

Figure 10. AT in FTEOCCAC and OBDC for different DT (Pd = 0-30%, DTG = 100 ms, Pl = 0%).

Figure 11. AT in FTEOCCAC and OBDC for different DTG (Pd = 0-30%, DT = 2000 ms, Pl = 0%).

For different Pl, RC in FTEOCCAC was higher 13% than that in FTEOAL. RC in

FTEOCCAC was higher 17% than that in FTEOAL for different DT. For different DTG, RC
in FTEOCCAC was higher 15% than that in FTEOAL. Hence, it showed that RC in
FTEOCCAC was all higher than RC in FTEOAL, as Pl, DTG, and DT varied. In different Pd,
AT in FTEOCCAC was higher 156% than that in FTEOAL. AT in FTEOCCAC was higher
160% than AT in FTEOAL in different DT. For different DTG, AT in FTEOCCAC was
higher 150% than AT in FTEOAL.

In different DTG, DT, and Pl, DT, and DTG, RC of deviation of FTEOCCAC between the
maximum and minimal cases was within 2%. In different Pl, DT, and DTG in FTEOAL, RC
of deviation between the maximum and minimal cases was over 40%. It showed that
FTEOAL addressed nothing for fail link issue. In different DTG and Pd, the AT of deviation
of FTEOCCAC between the maximum and minimal cases was within 2%. AT of deviation
between the maximum and minimal cases was over 15% for different DT. Hence, AT in
FTEOCCAC was only affected by DT. For different DTG in FTEOAL, the RC of deviation in
the maximum and minimal cases was within 2%. However, AT of deviation between the
maximum and minimal cases was over 15% in different Pd and DT. It showed that AT in
FTEOAL was affected by Pd and DT.

Fault Tolerance Events Ordering with Coverage and Connectivity
Aware Clustering in Wireless Sensor and Actuator Networks

Int. J. Appl. Sci. Eng., 2019. 16, 3 213

5. Conclusions

By the requirement of real-time and reaction, events may be co-related to each other.

Without any delay, events must be treated by actuators in correct order. However, delay is
easy to be caused from network dynamics, MAC layer protocol, multiple hops, and medium
access. It is difficult to ensure there is no former event still transit over network while the
later event arrives at actuators.

OBDC was a typical events ordering algorithm in WSAN. A corresponding duplicated
confirmation message was broadcasted to leaf sensors in OBDC while an event arrived at
actuator. While all messages routed back to the actuator, the events prior to this message will
be removed from buffer and handed out to the applications. Hence, events could be treated in
correct ordering by OBDC. However, OBDC only addressed the network delay without
considering the fail link. Once a fail link in cluster existed, some confirmation messages
cannot route back to the actuator. Thus the events ordering cannot be executed.

To solve the fail link problem, FTEOAL was proposed. However, FTEOAL assumed that
the sensors are deployed manually. Hence, no sensor is non-covered by actuator and no
orphan sensor existed. In fact, this assumption is impossible in the real situation. Once the
sensors are scattered randomly, FTEOAL cannot be performed.

Therefore, we combined FTEOAL and CCAC-k to propose a fault tolerance events
ordering with coverage and connectivity aware clustering, FTEOCCAC, in this paper. In
FTEOCCAC, AWT and ALT were defined. RCexp needed to be set. AWT and ALT were
adjusted dynamically to let the new RC close to RCexp with a number of aging learning, Nal.
The redundant time in FTEOCCAC could be lower.

In the simulation results, RC in FTEOCCAC was converged to RCexp, even Ne, DTG, DT,
and Pl varied over time. While a sensor was not covered by an actuator or an orphan sensor
existed, FTEOAL may not be executed. AT in FTEOAL was thus infinite. Hence, AT was
evaluated while sensors are covered by an actuator or no orphan sensor existed. It showed
that FTEOCCAC required higher AT than FTEOAL, while DT, DTG, and Pd, varied.
Although FTEOCCAC required higher AT to make RC converged to RCexp, FTEOCCAC had
a maximum AT based on a threshold value of Nal. Thus the redundant time in FTEOCCAC
could be decreased by aging learning. It proved that FTEOCCAC could be used with more
time while the fail link and network delay are occurred jointly.

Although RC in FTEOCCAC could be converged to RCexp, it still needs more time to treat
events. For time-required applications, FTEOCCAC may not be suitable. Hence, we will
investigate the new learning algorithms to improve FTEOCCAC.

Finally, the event may move in much monitored area, where each area is responsible by an
actuator and a large number of sensors. Thus, events ordering may be addressed in multiple
actuators. In this case, the coordination among the actuators and events ordering are all
required. Therefore, we will investigate the mechanism of coordinating among actuators in
the future. We will also study more cases carried out shall enhance the validity of the
performance being produced by their methods.

References

[1] Salarian, H., Chin, K. W., and Naghdy, F. 2012. Coordination in Wireless Sensor-

Actuator Networks: A Survey.” Journal of Parallel and Distributed Computing, 72, 7:
856-867.

[2] Mo, L., Cao, X., Chen, J., and Sun, Y. 2014. Collaborative Estimation and Actuation
for Wireless Sensor and Actuator Networks. IFAC Proceedings, 47, 3: 544-5549.

Y.-C. Wu

214 Int. J. Appl. Sci. Eng., 2019. 16, 3

[3] Akyildiz, I. F. and Kasimoglu, I. H. 2004. Wireless Sensor and Actor Networks:
Research Challenges. Ad Hoc Networks, 2, 4: 351-367.

[4] Kamali, M., Laibinis, L., Petre, L., and Sere, K. 2014. Formal Development of Wireless
Sensor–Actor Networks. Science of Computer Programming, 80, A: 25-49.

[5] Cañete, E., Chen, J., Díaz, M., Llopis, L., and Rubio, B. 2011. A Service-Oriented
Approach to Facilitate WSAN Application Development. Ad Hoc Networks, 9, 3: 430-
452.

[6] Inoue, M., Ohnishi, M., Peng, C., Li, R., and Owada, Y. 2011. NerveNet: A Regional
Platform Network for Context-Aware Services with Sensors and Actuators. IEICE
Transactions on Communications, E94.B, 3: 618-629.

[7] Boukerche, A., Araujo, R. B., Silva, F. H. S., and Villas, L. 2007. Wireless Sensor and
Actor Networks Context Interpretation for the Emergency Preparedness Class of
Applications. Computer Communications, 30, 13: 2593-2602.

[8] Peng, L. and Wang, B. 2010. Complex Event Processing System for Wireless Sensor
and Actor Networks. In Proceedings of IEEE International Conference on Computing,
Control and Industrial Engineering, Wuhan, China, June 5-6: 337-340.

[9] Martirosyan, A. and Boukerche, A. F. 2012. Preserving Temporal Relationships of
Events for Wireless Sensor Actor Networks. IEEE Transactions on Computers, 61, 8:
1203-1216.

[10] Boukerche, A. F. and Martirosyan, A. 2007. An Efficient Algorithm for Preserving
Events’ Temporal Relationships in Wireless Sensor Actor Networks. In Proceedings of
IEEE International Conference on Local Computer Networks, Dublin, Ireland, October
15-18: 771-780.

[11] Boukerche, A. F., Araujo, R. B., and Silva, F. H. S. 2007. An Efficient Event Ordering
Algorithm that Extends the Lifetime of Wireless Actor and Sensor Networks.
Performance Evaluation, 64, 5: 480-494.

[12] Boukerche, A. F., Araujo, R. B., Silva, F. H. S., and Villas, L. 2007. Wireless Sensor
and Actor Networks Context Interpretation for the Emergency Preparedness Class of
Applications. Computer Communications, 30, 13: 2593-2602.

[13] Tuan, C. C. and Wu, Y. C. 2011. Event Ordering by Double Confirmation in Wireless
Sensor and Actor Networks. IEEE Sensors Journal, 11, 3: 829-836.

[14] Tuan, C. C., and Wu, Y. C. 2013. Temporal Event Ordering with Fault Tolerance for
Wireless Sensor and Actuator Networks. Wireless Personal Communications, 68, 3:
679-695.

[15] Wu, Y. C., and Tuan, C. C. 2017. Fault Tolerance Events Ordering by Aging Learning
in Wireless Sensor and Actuator Networks, IET Communications, 11, 12: 1895-1902.

[16] Tuan, C. C., and Wu, Y. C. 2015. K-Hop Coverage and Connectivity Aware Clustering
in Different Sensor Deployment Models for Wireless Sensor and Actuator Networks.
Wireless Personal Communications, 85, 4: 2565-2579.

[17] Romer, K. 2003. Temporal Message Ordering in Wireless Sensor Networks. In
Proceedings of IFIP International Workshop on Annual Mediterranean Ad Hoc
Networking, Mahdia, Tunisia, June 25-27: 131-142.

[18] Boukerche, A., Pazzi, R. N. and Araujo, R.B. 2004. A Fast and Reliable Protocol for
Wireless Sensor Networks in Critical Conditions Monitoring Applications. In
Proceedings of IEEE International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile System, Venice, Italy, October 4-6: 157-164.

