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Abstract: A network delay or a fail link is prone to be occurred in wireless sensor and 
actuator networks (WSAN). Since the events captured by sensors are related to others, events 
ordering is an vital issue in WSAN. However, it is hard to guarantee that no prior event is 
transmitted while the latter events arrive at actuator in network. While a fail link is occurred, 
it could be assumed as a special case that the delay is set to infinity. Event ordering by double 
confirmation (OBDC) was a typical events ordering while a network delay was occurred. 
Fault tolerance events ordering by aging learning (FTEOAL) was a typical events ordering 
mechanism while a fail link existed. However, both of them assumed that sensors were all 
covered by one actuator and none of them was the orphan sensor. Once a sensor was non-
covered by an actuator or an orphan sensor existed, the rate of correct events ordering will 
decrease. Therefore, in this paper, we proposed a fault tolerance events ordering with 
coverage and connectivity aware clustering, FTEOCCAC. The simulation results 
demonstrated that events were treated in correct order even if the sensors are deployed 
randomly or an orphan sensor existed while a network delay or a fail link existed in network. 
The rate of correct events ordering could be closed to the expect value. 
 
Keywords: Wireless sensor and actuator networks; network delay; fail link; orphan sensor; 
coverage and connectivity aware clustering; rate of correct events ordering. 
 
1. Introduction 

 
WSAN called wireless sensor and actuator networks was consisted of a set of sensors and 

some rich-resource actuators. Sensors send the sensed data for the physical environment. 
Actuators perform actions based on the sensed data. Unlike WSN, where the sink takes 
actions for events in a centralized manner, actuators in WSAN perform actions with a local 
and distributed manner. Since the transmission radius, computation, and energy of WSAN are 
different from those of WSN, the coordination and communication of sensor-actuator 
becomes an important feature in WSAN. Therefore, WSAN has brought up new challenges 
and dimensions to WSN in the past and the current solutions of WSN cannot be used for 
WSAN, directly [1-3]. In WSAN, it also could monitor critical conditions in the physical 
environments [4-5]. In the clusters of WSAN, each actuator requires the correct translating of 
contexts in the context-aware environments, where the contexts were consisted of inter-
related events [6-13]. 

Most of researches in WSAN focused on simple context events to prolong the network 
lifespan, do fault tolerance, and save power energy.   
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By the progressing of sensor technique and the increasing of human requirement, the 
accurate, critically monitored, reacted applications took attentions gradually. For these 
applications, events were related to each other and the ordering of events to be discovered 
became an important issue. Few of researches however addressed the events ordering issue 
and no method ensures the correct events ordering [6-13]. 

Since the relation of events could be considered as temporal, the ordering of events 
captured by the source sensors is vital to treat events timely and correctly. Hence, to track the 
events ordering correctly was required in WSAN [7-13]. To show the practical usefulness of 
our proposed model, an object moving path tracking application was illustrated. In this 
application, events ordering is required since actuator cannot guarantee that no prior event is 
transit over network while the actuator receives the current event. In Figure 1, an intruder is 
detected by sensor 1 (s1), s2, s3, s4, s5, and s6. Once no delay existed, the ordering, such as s1-
s2-s3-s4-s5-s6, is the same as the moving path of the invader. However, the event captured by 
s5 may be subjected to a delay. The ordering, such as s1-s2-s3-s4-s6-s5, is different from the 
correct moving path. The error decision is made for arresting the invader. No action is 
performed at once while receiving other events, since the later events captured at tj 
(timestamp j) may arrive before the events captured at ti (i < j). It is caused that some 
previous events still being in transit in network due to the propagation delay. Hence, an 
events ordering algorithm is needed. Undoubtedly, events ordering is a indispensible 
mechanism for some applications with the rate of correct events ordering up to 100%. 
Therefore, an ordering by double confirmations, OBDC, to ensure the correct events ordering 
was proposed [13]. 
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Figure 1. Temporal events ordering [14]. 

 
In OBDC, it assumed that the routing paths were kept and never broken in the system 

model [13]. Once a fail link in a cluster existed, OBDC will be fail because some 
confirmation messages may not arrive at the actuator. However, in the real situation, the fail 
link in wireless network may be prone to be happened. Hence, how to execute events 
ordering with fault tolerance needs to be addressed. Hence, a fault tolerance events ordering 
by aging learning, FTEOAL, was proposed to consider the network delay and fail link 
problems for events ordering [15]. 
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Although FTEOAL solved the network delay and fail link for events ordering, jointly, it 
also assumed that the all sensors must be covered by one actuator and there is no orphan 
sensor as the same as the existed events ordering algorithms [7-13]. Once a sensor is out of 
coverage of actuator or no routing among sensors and actuator, FTEOAL cannot be processed. 
In fact, some sensors may not be covered by at least one actuator and some sensors may be 
the orphan sensors. Therefore, we combined the coverage and connectivity aware clustering 
within k hops (CCAC-k) [16] with FTEOAL [15] to propose a fault tolerance events ordering 
with coverage and connectivity aware clustering, FTEOCCAC, in this paper. 

The remainder of this paper was arranged in the following chapters. Section 2 stated the 
related work. Section 3 presented our algorithm, FTEOCCAC. The performance evaluation 
was described in Section 4. Finally, we concluded the paper and described the future work. 

 
2. Related Work 

 
In WSAN, it was divided into automated and semi-automated network [3]. Since sensors 

could send the data to actuators in automated network, the actuators could take decisions and 
perform actions. The sensors thus could save energy because they could not forward data to 
the sink via multi-hop. Moreover, the network lifespan could be increased and the latency of 
performing actions could be decreased. Hence, we applied the automated architecture for 
WSAN [3]. Certainly, the events ordering was needed in WSAN [7-13]. 

Moreover, the existing events ordering algorithms in WSAN addressed nothing for fault 
tolerance. Actually, the fail link and network delay were all prone to be happened in wireless 
communication medium. Hence, an efficient events ordering should consider the fail link and 
network delay, jointly. Here, the actor was defined as the same as the actuator. 

In most of researches, events were often defined as the independent ones. Few of 
researches discussed the issues for ordering events before. Recently, the ordering of events 
became critical since the events interpreted in different order may carry out the different 
results. For this issue, some algorithms of events ordering were proposed in WSN [7-13]. 

Once events are co-related, the time differences among events can suggest to detecting the 
incident in an emergency environment. If the co-related events are captured, a mechanism is 
needed to interpret the co-related events. To ensure the correct ordering, an actuator must 
guarantee that no prior event is still in transit while the latter events are treated in network. 
However, most of algorithms addressed nothing for the event ordering issue, since no delay 
was assumed in network. Therefore, the ordering of events arriving at the actuator must be in 
the same ordering as the ordering of events captured by sensors. 

Ordering by confirmation, OBC, was another typical events ordering mechanism in WSAN 
[7-11]. In OBC, no sensor sent a duplicate message to actuator and no logical rings was 
needed as temporal message ordering in sensor networks, TMOS [17]. Only the leaf sensors 
received confirmation messages. The leaf sensors then routed the confirmation message to 
the actuator through the routing path. OBC, however, cannot ensure that the ordering of all 
events was in correct order. As the number of events increased, the probability of treating 
events in correct order may be decreased. Therefore, an ordering by double confirmations, 
OBDC was proposed [13]. In OBDC, only one buffer was required. Moreover, OBDC 
ordered the events correctly with a little higher energy consumption and time than OBC. 

OBDC was to set the first in first out (FIFO) channel between any two sensors. The object 
of FIFO channel was to determine the order if more than one event arrived at the same sensor. 
For example, while si received ei, si detected ej in this moment. Because the property of FIFO 
channel, ej was routed back to actuator first. To make events treated correctly in OBDC, an 
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actuator needed to send the confirmation messages to all leaf sensors when it received an 
event forwarded by sensor. While an actuator received ei, it stored ei in buffer. After a 
predefined time, the actuator broadcasted confirmation message mmax to all leaf sensors, 
where max indicated the maximal order of events in buffer. For example, max was set to 2, 
such as (e0→e2→e1)a. After all mmax sent back to actuator, the actuator treated each ei in 
buffer and handed these event(s) orderly out to application, if

i max
s g
e mt t≤ , where

i
s
et and

max
g
mt  

were defined as the timestamp of ei sent by source sensor and the timestamp of mmax sent by 
actuator.  

In OBDC, only leaf sensors needed to route these messages back to the actuator. Hence, 
OBDC did not suffer a non-determinism delay. Moreover, OBDC only needed one buffer to 
save the received events to be treated correctly. However, OBDC cannot execute the events 
ordering while a fail link was occurred in network. To address the fail link and network delay 
issue, jointly, FTEOAL was proposed [15]. 

However, OBC, OBDC, and FTEOAL all assumed that the link among sensors is not in 
fail and no sensor is out of the coverage of the actuator. In the real condition, the assumptions 
are impossible. While the deployment of sensors is random, the OBC, OBDC, and FTEOAL 
all may not be processed. Hence, a fault tolerance events ordering with coverage and 
connectivity aware clustering, FTEOCCAC, was proposed based on FTEOAL and CCAC-k 
[15-16] in this paper. 

 
3. Fault Tolerance Events Ordering with Coverage and Connectivity Aware Clustering 

 
In the existing protocols and algorithms in WSAN, events are often defined as the 

independent ones because they are not co-related to each other. By the progress of technique 
in both micro-electronic and communication, WSAN may not only perform actions but also 
perform them in correct order. Here, the correct order was defined as that the ordering of 
events detected by sensors were the same as the ordering of events treated by actuators even 
through the ordering of events detected by sensors was different from the ordering of events 
reach the actuator. However, events ordering may be not correct if the former event arrived at 
actuator before the latter event. 

Before ordering events, the pre-configuration included clustering algorithm, clock 
synchronization, and FIFO channel was required. For clustering, the existing events ordering 
algorithms all assumed that no orphan sensor existed and each sensor must be covered by at 
least actuator for clustering [7-13]. Actually, the above assumption is impossible since the 
sensors are scattered. If a sensor was not covered by an actuator, the confirmation message 
cannot be broadcasted to the sensor and events may be treated in incorrect order. 

Moreover, most of events ordering mechanisms only considered the network delay without 
addressing the fail link problem. In fact, both of them are prone to be happened in wireless 
communication medium. Once a fail link existed, the existing events ordering mechanisms 
cannot be executed. Hence, a fault tolerance events ordering with coverage and connectivity 
aware clustering, FTEOCCAC, was proposed in WSAN. FTEOCCAC was involved CCAC-k 
[16] and FTEOAL [15] in WSAN. Table 1 described the notation in FTEOCCAC based on 
FTEOAL [15]. 
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Table 1. Notation in FTEOCCAC [15]. 

Notation Definition Unit 

i
s
et  

Timestamp of ei sent by source 
sensor ms 

i
a
et  Timestamp of ei arrived at actuator ms 

i
t
et  Timestamp of ei treated by actuator ms 

i
g
mt  

Timestamp of mi generated by 
actuator ms 

i
a
mt  Timestamp of mi arrived at actuator ms 

ieDT  Delay time of ei ms 

imDT  Delay time of mi ms 

ieDTG  Delay time of generating ei ms 

oneDT  Propagation time in one hop ms 

iePT  Period time of ei treated by actuator ms 

ieH  
Hop count of ei from source sensor 

to actuator  

 
In FTEOCCAC, sensors have the limited computing, sensing, and wireless communication 

capabilities without short battery life. Actuators were the resource rich nodes with higher 
computing, longer transmission radius, and longer battery life. Actuator could also have the 
sensing capability. The number of sensors was much more than that of actuators. 

Sensors and actuators were stationary. Sensors were scattered randomly. The hop count 
from the sensor to actuator was set to k. The sensing range and probability were regular. The 
probability of network delay between any two sensors was from 0% to 30%. The probability 
of a fail link between any two sensors was from 0% to 30%. The fail communication link was 
temporal not fixed. The probability of a sensor to be a source sensor was random. 

The ordering of events captured by sensors, the ordering of events arrived at actuator, and 
the ordering of events treated by actuators were defined in the following. Without any delay, 
(ei→ej→el)t must be true even if (ei→ej→el)s was false, where ei was denoted as event i 
and i j l< < . It was caused that the time of transmitting data must be much less than that of 
moved events. 

(ei→ej)s: ei was sent by sensors before ej. 
(ei→ej)a: ei arrived at actuator before ej. 
(ei→ej)t: ei was treated by actuators before ej. 
However, delay was prone to happened in wireless communication. Delays may originate 

as listed as follows. Once an event meant a delay in its routing path, the later event may 
arrive at actuator before the former one, such as (ei+1→ei)a. Unfortunately, it was difficult to 
know whether any prior event was still transited in network while actuator received a 
message of event. For some applications required all events treated in correct order, how to 
ensure the events to be treated in correct order became an important research. 
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The (ei→ej→el)t should be true even if (ei→ej→el)a is false. The formulation of events 
ordering is illustrated in the following example. Figure 2 showed a time sequence for error 
events ordering. Without any delay, (e0→e1→e2→e3→e4)t should be true. Once some of 
events meet a delay, such as e0 and e3, the later e1 arrives at actuator prior to e0 and the later 
e4 arrives at actuator prior to e3. When the actuator receives e1, it could not know e0 still in 
transit over the network and removes e1 from buffer in incorrect order (e1→e0)t. In the same 
way, actuator removes e4 from buffer in incorrect order (e4→e3)t. Without any events 
ordering solution, the ordering of events treated must be indentical as ordering of events 
arrived at actuators. Thus (e0→e1→e2→e3→e4)t was changed to incorrect ordering, such as 
(e1→e0→e2→e4→e3)t. For example, in Figure 3, s8 and s25 sent e1 and e2 to actuator. In the 
same time, the communication link between s15 and s16 was fail. Some of m0 thus cannot be 
forwarded to the actuator [15]. 

Moreover, the events ordering algorithms will not be performed if the sensors are not 
covered by a least one actuator or an orphan sensor existed. For example, s20, s21, s22, and s24 
are the orphan sensors, as shown in Figure 4. The s20 and s24 are out of the coverage of the 
actuator, as shown in Figure 4 [15]. Therefore, FTEOCCAC was proposed in this paper. 

 
Ordering of events sent by 

source sensors

Ordering of events arrived at 
actuator

e0 e1 e2 e3 e4

e0e1 e2 e3e4

t0 t1

t2 t3

t4

t5

t6 t7

t8 t9

Incorrect ordering events

ti : Timestamp i ej : Event j  
Figure 2. Time sequence of error events ordering [13]. 
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Figure 3. Fail link existed in events ordering [14]. 
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Figure 4. Coverage and connectivity problems [16]. 
 
FTEOCCAC is based on FTEOAL with CCAC-k [15-16]. Differed from FTEOAL, the 

clustering of FTEOCCAC is replaced the periodic, event-driven and query-based protocol, 
PEQ [18] with CCAC-k [16]. FTEOCCAC defined an aging waiting time (AWT) and an 
expected rate of correct events ordering (RCexp), 0 1expRC≤ ≤ . AWT was adjusted 

dynamically. The flowchart of FTEOCCAC is shown in Figure 5. The
i

t
et was calculated 

as
i

s
e rt AWT+ , where AWTr denoted the redundant of AWT, if AWT was not expired. High 

aging learning time, ALThigh, was calculated as (1) [14]. ALThigh will be getting to DTmax 
defined as the maximal delay time. Low aging learning time, ALTlow, was calculated as (2) 
[15]. AWT was calculated as (3) [15]. AWT was set to

ex stAWT AWTt t− , 
where

stAWTt and
exAWTt denoted the start and expiration of AWT, respectively. Initially, ALThigh 

and ALTlow were set to 0 and DTmax. Based on [15], Nl and Ncl were also defined as the 
number of learning and the current Nl, respectively. 

, if 

, if 
i i i i

i i

a s a s
e e e e high

high a s
high e e high

t t t t ALT
ALT

ALT t t ALT

 − − >= 
− ≤

                        (1) 

, if 

, if 
i ex i

ex i

a a
ex e AWT e low

low a
low AWT e low

AWT t t t ALT
ALT

ALT t t ALT

 − − <= 
− ≥

                      (2) 

, if 
, if 

high low exp

low exp

AWT ALT ALT RC RC
AWT

AWT ALT RC RC
+ − <=  − ≥

                   (3) 
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Figure 5. Flow chart of FTEOCCAC. 
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4. Simulation results 
 

The simulation results were validated by C# custom simulator on the .NET platform. The 
simulation environment was listed in Table 2. In the simulation, it was performed on a 
WSAN subgroup as the cluster which the actuator acted as the cluster head in a distributed 
manner. Hence, the proposed scheme is designed in the distributed manner. The technical 
concepts and steps that are taken to demonstrate the model's validity will be explained in the 
following. 

Delay time (DT) was set from 500 to 2000 ms. Delay time for generating an event, DTG, 
was set from 100 to 200 ms. Pd defined as the probability of an event with a delay in a link 
was set from 0% to 30%. 

In the events ordering, correct ordering must be required. Thus the rate of correct events 
ordering (RC) was the main performance metric as (4) for events ordering [15]. While RC 
increased, the risk of performing error actions may increase. To address the executing time, 
the average time of ordering events (AT) was defined as (5) [15]. 

iePT was defined as the 
period time of treating ei as (6) [15]. Lower AT showed the lower executing time to order 
events correctly. Since FTEOCCAC could not send any confirmation message, FTEOCCAC 
does not have any additional overhead for events ordering. Hence, the performance 
evaluation of energy consumption was not considered in the simulation. 

100%, 
c

ce
e e

e

NRC N N
N

= × ≤                         (4) 

1
( )

e

i

N

e
i

e

PT
AT

N
==
∑

                            (5) 

i j i
t a s

e m ePT t t= −                              (6) 

For fault tolerance events ordering, we added a probability of an event meeting a fail link, 
Pl, from 10% to 30% to fit the real condition for fail link in wireless network. In the events 
ordering with fault tolerance, correct ordering was also required. Therefore, RC and AT were 
the performance metrics for FTEOCCAC. The simulation results will describe and 
demonstrate the models validity for FTEOCCAC. 

Table 2. Simulation environment [15]. 
Name Value 

Simulation area, A 1000 × 1000 (m2) 
Number of sensors, Ns 250, 500, 1000, 1500, 2000 
Number of events, Ne 100, 150, 200, 250, 300 
Transmission radius of sensor, rs 20 (m) 
Transmission radius of actuator, ra 140 (m) 
Delay time, DT 500-2000 (ms) 
Delay time for generating an event, DTG 100-200 (ms) 
Propagation time in one hop, DTone 20 (ms) 
Packet size, Sp 50 (Bytes) 
Probability of an event with a delay in a link, Pd 0-10%, 0-20%, 0-30% 
Probability of an event meeting a fail link, Pl 0-10%, 0-20%, 0-30% 
Expected value of RC, RCexp 90% 
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Pl, Ne, Nl, DT, and DTG were varied to evaluate RC and AT under FTEOCCAC and 
FTEOAL.  In Figure 6, RC was evaluated based on different Pl. DT and DTG were set to 
2000 ms and 100 ms, respectively. It showed that RC in FTEOCCAC was close to RCexp, 
such as 90%, but RC in FTEOAL was about 70% while Pl and Ne still increased. While the 
fail link and network delay existed together, FTEOAL cannot be executed. Hence 
FTEOCCAC was more better than FTEOAL for RC with different Pl. Because RC in 
FTEOAL was only influenced by Pl varied from 0% to 30%, RC in FTEOAL was random. 

 

 
Figure 6. RC in FTEOCCAC and FTEOAL for different Pl (DTG = 100 ms, DT = 2000 ms, Pd = 0-30%). 

 
In Figure 7, we could find that RC in FTEOCCAC was higher than RC in FTEOAL. While 

DT was increased, RC in FTEOCCAC was almost fixed. Figure 8 showed that RC in 
FTEOCCAC was close to RCexp but RC in FTEOAL was lower than 75%. It proved that 
FTEOCCAC had higher RC than FTEOAL with different DTG. As DTG increased over time, 
RC in FTEOCCAC was almost the same. Hence, FTEOCCAC was better than FTEOAL for 
RC while DTG or DT increased.  

Figure 7. RC in FTEOCCAC and FTEOAL for different DT (Pl = 0-30%, DTG = 100 ms, Pl = 0-30%). 
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Figure 8. RC in FTEOCCAC and FTEOAL for different DTG (Pl = 0-30%, DT = 2000 ms, Pl = 0-30%). 

 
Since some applications needed events treated timely, so average time of ordering events 

(AT) was also important. However, for AT, while a fail link was occurred in network, 
FTEOAL could not be executed. AT of FTEOAL was thus infinite. Hence, we only evaluated 
AT under FTEOCCAC and FTEOAL while only network delay existed without any fail link, 
such as Pl = 0%. 

In Figure 9, we evaluated AT for different Pd under FTEOCCAC and FTEOAL. It showed 
that AT in FTEOCCAC was almost the same while Pd increased. AT in FTEOAL was 
increased while Pd was increased. In Figure 10, AT was evaluated in FTEOCCAC and 
FTEOAL with different DT. While DT was increased, AT in both FTEOCCAC and FTEOAL 
were increased. In Figure 11, it showed that AT in FTEOCCAC was higher than AT in 
FTEOAL with different DTG. However, AT in FTEOCCAC did not increase while DTG was 
increased. 

 

 
Figure 9. AT in FTEOCCAC and OBDC for different Pd (DTG = 100 ms, DT = 2000 ms, Pl = 0%). 
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Figure 10. AT in FTEOCCAC and OBDC for different DT (Pd = 0-30%, DTG = 100 ms, Pl = 0%). 

 

 
Figure 11. AT in FTEOCCAC and OBDC for different DTG (Pd = 0-30%, DT = 2000 ms, Pl = 0%). 
 
For different Pl, RC in FTEOCCAC was higher 13% than that in FTEOAL. RC in 

FTEOCCAC was higher 17% than that in FTEOAL for different DT. For different DTG, RC 
in FTEOCCAC was higher 15% than that in FTEOAL. Hence, it showed that RC in 
FTEOCCAC was all higher than RC in FTEOAL, as Pl, DTG, and DT varied. In different Pd, 
AT in FTEOCCAC was higher 156% than that in FTEOAL. AT in FTEOCCAC was higher 
160% than AT in FTEOAL in different DT. For different DTG, AT in FTEOCCAC was 
higher 150% than AT in FTEOAL. 

In different DTG, DT, and Pl, DT, and DTG, RC of deviation of FTEOCCAC between the 
maximum and minimal cases was within 2%. In different Pl, DT, and DTG in FTEOAL, RC 
of deviation between the maximum and minimal cases was over 40%. It showed that 
FTEOAL addressed nothing for fail link issue. In different DTG and Pd, the AT of deviation 
of FTEOCCAC between the maximum and minimal cases was within 2%. AT of deviation 
between the maximum and minimal cases was over 15% for different DT. Hence, AT in 
FTEOCCAC was only affected by DT. For different DTG in FTEOAL, the RC of deviation in 
the maximum and minimal cases was within 2%. However, AT of deviation between the 
maximum and minimal cases was over 15% in different Pd and DT. It showed that AT in 
FTEOAL was affected by Pd and DT. 
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5. Conclusions 
 
By the requirement of real-time and reaction, events may be co-related to each other. 

Without any delay, events must be treated by actuators in correct order. However, delay is 
easy to be caused from network dynamics, MAC layer protocol, multiple hops, and medium 
access. It is difficult to ensure there is no former event still transit over network while the 
later event arrives at actuators. 

OBDC was a typical events ordering algorithm in WSAN. A corresponding duplicated 
confirmation message was broadcasted to leaf sensors in OBDC while an event arrived at 
actuator. While all messages routed back to the actuator, the events prior to this message will 
be removed from buffer and handed out to the applications. Hence, events could be treated in 
correct ordering by OBDC. However, OBDC only addressed the network delay without 
considering the fail link. Once a fail link in cluster existed, some confirmation messages 
cannot route back to the actuator. Thus the events ordering cannot be executed. 

To solve the fail link problem, FTEOAL was proposed. However, FTEOAL assumed that 
the sensors are deployed manually. Hence, no sensor is non-covered by actuator and no 
orphan sensor existed. In fact, this assumption is impossible in the real situation. Once the 
sensors are scattered randomly, FTEOAL cannot be performed. 

Therefore, we combined FTEOAL and CCAC-k to propose a fault tolerance events 
ordering with coverage and connectivity aware clustering, FTEOCCAC, in this paper. In 
FTEOCCAC, AWT and ALT were defined. RCexp needed to be set. AWT and ALT were 
adjusted dynamically to let the new RC close to RCexp with a number of aging learning, Nal. 
The redundant time in FTEOCCAC could be lower. 

In the simulation results, RC in FTEOCCAC was converged to RCexp, even Ne, DTG, DT, 
and Pl varied over time. While a sensor was not covered by an actuator or an orphan sensor 
existed, FTEOAL may not be executed. AT in FTEOAL was thus infinite. Hence, AT was 
evaluated while sensors are covered by an actuator or no orphan sensor existed. It showed 
that FTEOCCAC required higher AT than FTEOAL, while DT, DTG, and Pd, varied. 
Although FTEOCCAC required higher AT to make RC converged to RCexp, FTEOCCAC had 
a maximum AT based on a threshold value of Nal. Thus the redundant time in FTEOCCAC 
could be decreased by aging learning. It proved that FTEOCCAC could be used with more 
time while the fail link and network delay are occurred jointly. 

Although RC in FTEOCCAC could be converged to RCexp, it still needs more time to treat 
events. For time-required applications, FTEOCCAC may not be suitable. Hence, we will 
investigate the new learning algorithms to improve FTEOCCAC. 

Finally, the event may move in much monitored area, where each area is responsible by an 
actuator and a large number of sensors. Thus, events ordering may be addressed in multiple 
actuators. In this case, the coordination among the actuators and events ordering are all 
required. Therefore, we will investigate the mechanism of coordinating among actuators in 
the future. We will also study more cases carried out shall enhance the validity of the 
performance being produced by their methods. 
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