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Abstract: With high-dimensional data appearing, the number of fuzzy rules increases which 
degrade the interpretability and increases the computation complexity of the fuzzy rule-based 
system. In this paper, we proposed a rule-reduced algorithm. Through the sparse encoding of 
the fuzzy basis functions (FBFs), rules are reduced. Least angle regression algorithm is 
proposed here to select the important rules. Compared with other sparse encoding algorithm, 
Least angle regression algorithm has the advantage of lower computation complexity and better 
performance. The experimental results show that our proposed algorithm has excellent 
performance, especially for high-dimension data. 
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1. Introduction 

 
In the past two-decade Fuzzy inference systems (FISs) have been successfully applied to 

different areas as medicine, engineer, management, behavioral science and so on. There are 
two main methods in FISs design: the expert-driven approach, where expert experience is used 
to construct fuzzy rules, and the data-driven approach, where knowledge is discovered and 
extracted from numerical data. Note that these two methods mentioned above are not mutually 
exclusive, in [1-3], hybrid approaches are explored. Indeed in many situations, the expert 
experience is lacking and difficult to acquire, and the data-driven approach can get knowledge 
directly from data which can save a lot of money and time. In addition, the data-driven FISs 
have strong learning ability [4]; The data-driven FISs have the ability to approximate any 
continuous function in arbitrary accuracy that means it is a universal approximator [5-7];  
The data-driven FISs are necessary for the situation where the process is so complex that a 
deterministic deduction needs high development time [8]. All reasons mentioned above make 
the data-driven FISs prevalent system models. Many classical data-driven FISs have been 
proposed, which include SVD-QR-based approach [9], dynamic optimal training method [10], 
support vector learning method [1], hybrid learning algorithms based on different mechanisms 
[11]. Though the methods mentioned above were proved useful, they face the common problem: 
The rule-explosion problem.   

With high-dimensional data appearing, the number of the rules increases exponentially with 
the dimensionality of the data [12]. The number of rules is of )( knO , where n is the maximum 
or an average number of fuzzy terms in each dimensionality, and k is the dimensionality of data. 
Explosion rules degrade the interpretability and increase the computation complexity of the FISs. 
Many algorithms have been suggested to overcome this problem.  
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In [12] hierarchical structures of TSK fuzzy classifier were recommended. The main design 
idea of hierarchical structures is to modify the rule base structure, which is not easy to interpret 
the output as the input of the next layer. These methods mainly include eigenvalue 
decomposition (ED) method [13], total least squares (TLS) method based on unbiased parameter 
estimation of local model [14], the orthogonal least squares (OLS) method [15], the singular 
value decomposition (SVD) of the fire strength matrix of the fuzzy reasoning system, tensor-
form high-order singular value decomposition (HOSVD) method [16], and rule reduction 
method of fuzzy rule interpolation technology [17, 18] and so on. The common characteristics 
of these methods are to ignore the structural information of the FISs and to suppose the 
parameters of each fuzzy rule estimated as independent parameters.  

Heuristic algorithms, especially genetic techniques are often applied in the FISs to rank the 
contribution of each rule and select the important one. The first hereditary rule selection method 
was introduced by Ishibuchi et al. in [19] for a fuzzy classification task. A genetic multi-
selection process within the MOGUL GFS design framework was introduced in [20]. Niching 
procedure [21] was combined with a genetic selection algorithm in [22] to obtain a best fuzzy 
rule subset. The sparse representation of the fire strength matrix of rules can also reduce the 
rules effectively.  

Initially, the algorithms were only focused on the accuracy of the system. The accuracy, 
computational complexity and the interpretability of the FISs have also become the focus of the 
algorithm. Selecting the best rule base (RB) of a fuzzy system can be seen as a multi-objective 
problem. Several evolutionary techniques have been proposed to concurrently optimize the 
accuracy and the complexity of a fuzzy rule base system (FRBS), including the nondominated 
sorting genetic algorithms [23], the Pareto archived evolution strategy [24], and the continuous 
ant colony optimization algorithm [25].  

Given enough time, heuristic methods can get better system accuracy than noniterative ones. 
They need a large number of evaluations to converge the optimal RB. So in [26], the approach 
with the smallest possible number of the assessments based on a greedy search algorithm and 
followed by a rule removal procedure is suggested. It can only balance the accuracy and 
convergence speed to a certain extent and can’t solve the problem. 

Edwin Lughofer [27] proposed the SparseFIS model, which first applied the sparse coding 
in FIS to reduce the fuzzy rules. Minnan Luo improved SparseFIS model and suggested H-
sparseFIS algorithm in [28] for rules reduction. Orthogonal matching pursuit (OMP) algorithm 
is applied to seek the sparsest solution in [28]. Rather than minimizing an objective function, 
OMP constructs a dispersed solution to a given problem by iteratively building up an 
approximation. OMP is a heuristic method, in some cases [29, 30] it works marvellously. 
However, in a specific situation, 1l norm minimization does better than OMP [31, 32]. And there 
exists a wide range of cases where 1l  norm minimization can find the sparsest solution while 
OMP fails [29, 31, 32]. General-purpose optimizers are much too slow for 1l  norm minimization 
in a much large-scale application. So quasi- 1l  minimization running as fast as OMP was 
suggested to seek the sparse solution [33]. Efron proposed the least angle regression (LARS) 
algorithm [34] in 2004. Experimental results showed the solution obtained by the basic LARS 
procedure is often identical to the 1l  norm minimization solution. So, LARS was suggested to 
solve 1l  norm minimization problem. 

In this paper, we cast the fuzzy system identification to the sparse coding problem. Through 
1l  norm constrain the fuzzy rules are reduced. LARS is applied to seek the most dispersed 

solution. The main contribution of the LARS-based sparse coding algorithm is as follows. (1) 
Through 1l  norm regularization, the proposed algorithm can select the essential rules and 
remove the redundant rules. (2) Rule reduction improves the interpretability of the system while 
taking into account the accuracy of the system. (3) LARS algorithm is suggested for the solution 
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method for lasso which can complete the solving process in several steps equal to the complexity 
of the Least squares. The proposed algorithm is especially suited for the high-dimensionality 
data. 

This paper is organized as the following: Section 2 is the introduction of the related work. 
The suggested fuzzy model is introduced in section 3. Section 4 is the experiment results. The 
last section is the conclusion. 

 
2. Related Work 
 
2.1 The sparse coding 
 

Sparse coding was proposed by Olshausen and Field, which is across the field of neurobiology, 
cognitive science, psychology, and computational science. Sparse coding is widely used in 
image denoising, super-resolution reconstruction, image classification, foreground-background 
segmentation, and feature selection. 

According to the theory of sparse representation, an n-dimensionality signal  1 2( , ... )NY y y y=  
can be approximately represented by a set of fixed bases 1{ }N K

i id R =∈  as: 

1

K

i i
i

Y x d
=

≈ ∑                          (1) 

Where     is a coefficient vector. Fixed bases are also called dictionary atoms. They 
are also called over-complete bases, where   . For feature coding, dictionaries are pre-
determined. For image and audio signals, their dictionaries can be fast Fourier transform basis, 
discrete wavelet transform basis, discrete cosine transform basis, curvature basis, and Haar 
dictionary, or directly select all or part of the input signal set to form a dictionary. If it is sparse, 
then some dictionary atoms can be used to represent signals. Therefore the process of solving 
their sparse coefficient vectors is usually called sparse coding. 
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Figure 1. Sparse coding. 
 

In Figure 1, S is the number of the non-zero coefficient  . And,            which means the 
coefficients are sparse. The sparse representation is to obtain the optimal sparse representation 
coefficient of the signal in a given dictionary base. The mathematical model of sparse coding 
can be defined as Eq. (2). 

( )min
X

DX Y xλ− +                           (2) 

 1 2( , ... )NX x x x=

 m n

 mβ  S K<<
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The first term in Eq. (2) is the sparse reconstruction term; the second term is the sparse 
constraint term. Eq. (2) is an under-determined linear equation. The solution of coefficient 
vector is not unique. Only under regularization constraint, an optimal sparse solution can be 
found. It can be a norm, where the definition of the norm is as Eq. (3). 

1

( )p p
ip

i
X x= ∑                          (3) 

When p=1, Eq. (3) is changed as formular (4). 

1min
X

DX Y Xλ− +                          (4) 

Eq. (4) is known as Lasso，the classical optimization theory [34] can prove that , ,tλ ε satisfy 
some conditions. The Eq. (4) is equivalent to formular 5 and 6. 

min
X

DX Y− , 
1

. .  s t X t≤                           (5) 

1min
X

X , . .  s t DX Y ε− ≤                          (6) 

 
2.2 Least Angle Regression 

 
LARS [34] was proposed by Efron in 2004 to solve lasso problem, LARS makes a 

compromise to the forward stagewise algorithm and forwards selection algorithm, preserving a 
certain degree of accuracy of the forward stagewise algorithm and reducing the computational 
burden of the forward stagewise algorithm. 

Figure 2 shows the LARS algorithm in the case of 2 covariates 1 2( , )X x x= . We find the 
covariate 1x  most correlated with the response y. We take the most significant step 1̂γ  in the 
possible direction of the covariate 1x  until covariate 2x has as much correlation with the current 
residual. Instead of continuing along the direction of 1x , LARS proceeds in the direction 
equiangular between the two covariates 1x , 2x . 

 

 
Figure 2. The geometric principle of LARS. 

 
Extend the case of 2-dimensional data to the case m-dimensional data. LARS builds up the 

estimate          , where X is m-dimensional data and     is the coefficient parameter of the 
regression model, in successive steps, each step adding one covariate to the model.      

Algorithm 1 is the steps of the LARS algorithm. The active set A is a subset of indices 
{1,2,...m}.The initial A is empty. At each step, one of the indexes is added to A.      is the 
estimate of y at the kth steps. After m steps, the selection process is finished. 

 ˆµ̂ β= X  β̂

 ˆkµ
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Algorithm 1. The steps of the LARS algorithm. 
(1) k=0: begin with the active set A   empty which  is a subset of indices{1,2,...m} 
(2) k=k+1: the correlation coefficient is 1ˆ ( )µ −

′= −j j kc x y to choose the most significant 

correlate coefficient ˆ ˆmax{ }= jC c , and add j to j
ˆˆ{ : |c C|}Α = =j  

(3) Computing (..., ,...) ∈=A j j j AX s x ,
1

1 2(1 1 )
−−′=A A A AA G  and 11−=A A A A Au X A G , where

ˆ{ }=j js sign c  and AG ′= A AX X . 1A  is a vector of  1’s  of  length equal to |A| , and ′≡ Aa X u . 

(4) Updating 1 ˆˆ ˆµ µ γ−= +k k k Au , 
ˆ ˆˆ ˆ

ˆ min ,
c

j j
k

j A
A j A j

C c C c
A a A a

γ +

∈

 − + =  
− +  

, min+ indicates that 

the minimum is taken over only positive components. 
(5) Repeating from 2 to 4，until the end. 

 
LARS can be viewed as moderately greedy forward stepwise procedure. LARS moves along 

the most compromise direction, the equiangular vector. Efron [34] proposed a modified LARS 
algorithm to produce Lasso solution. Under the Lasso modification, the LARS yields all Lasso 
solutions [34]. The advantage of LARS [34] answer for Lasso is: 
(1) LARS is particularly suitable for cases where the characteristic dimensionality n is much 

higher than the sample number m. 
(2) The algorithm's worst computational complexity is similar to that of the least square method, 

but its computational speed is almost the same as that of the forward selection algorithm. 
(3) The complete path that can produce piecewise linear results is beneficial in cross-validation 

of the model. 
 

3. Material and method 
 

3.1 The Architecture of Our Suggested Model 
 
The architecture of our suggested model is shown in Figure 3: FCM clustering algorithm is 

used to partition the input space and extract the antecedent of the fuzzy rules, through weighted 
defuzzifier, we get the representation function of the output variant with consequent parameters. 
By solving the optimization problem of minimizing model errors, the following parameters of 
fuzzy rules are estimated. Usually, the least square algorithm is used to reduce the model error. 
In our model, the least square algorithm with 1l  constraint, also called Lasso, is adopted to 
solve the optimization problem. LARS, which is one of the solution methods for lasso problem, 
are low computational complexity and highly efficient solution for the following parameters. 
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Figure 3. The architecture of the proposed model. 

 
3.2 The Antecedent Extraction Of Fuzzy Rule 

 
For a T-S Fuzzy system, the ith fuzzy rules is presented as: 

1 1 2 2 1 1 if x  is A ,  x  is A ...  is A  then y= ...
                                                                      0,1, 2...

i
i i in in i in nR x x x

i r
β β+ +
=

   (7) 

Where 1 2( , ... )= ∈T n
nX x x x R . For a zero-order T-S system, Eq. (7) is changed as Eq. (8). 

1 1 2 2 if x  is A ,  x  is A ...  is A  then y=i
i i in in iR x β    (8) 

Assume fuzzy set ljA  has the Gauss membership function. 

2( ) exp[ ( ) ]µ
σ
−

= −
ij

j ij
A j

ij

x c
x    (9) 

ijc and σ ij  respectively denote the mean and the standard deviation of the Gauss member 
function. 

Clustering approaches are extensively proposed to partition the input space and determine 
the membership functions (MFs) of the input variable. Such examples include the subtractive 
clustering algorithm, fuzzy c-means (FCM) algorithm, mountain clustering algorithm, 
Gustafson–Kessel (GK) algorithm, and Gath–Geva (GG) algorithm. In this paper, the FCM 
clustering algorithm is used to partition the input space and extract the antecedent parameters 
of the fuzzy rules. 

Through FCM of input variants, we obtain the membership function matrix ( ) ×= ∈ r N
ikU u R , 

which contains the grade of membership of each data point in each cluster. The membership 
function matrix should satisfy the following condition: 

1
1

=

=∑
r

ik
i

u    

{0,1}∈iku    (10) 
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The fuzzy fire strength of the ith fuzzy rule is: 
2

11

1( ) ( ) exp( ( ) )
2 σ==

−
= = − ×∑∏

n n
j ij

i ij j
jj ij

x v
A x A x    (11) 

The mean ijc  and the standard deviation σ ij  is computed by Eq. (12, 13) 

1

1

µ

µ
=

=

= ∑
∑

N
ik kjk

ij N
ikk

x
c    (12) 

2

1

1

( )µ
σ

µ

=

=

−
=
∑

∑

N

ik kj ij
k

ij N

ik
k

x c

   (13) 

 
3.3 The Spare Code of Fuzzy Consequent Parameters 

 
With the weighted average defuzzifier, the ith fuzzy basis functions (FBFs) is denoted by ip
→nR R r is the number of the fuzzy rule: 

1

( )
( )

=

=
∑

i
i r

ii

A x
p

A x    (14) 

The output of singleton zero-order T-S fuzzy inference system ˆ( )y x is the linear combination 
of FBFs: 

1

ˆ( ) ( )
r

i i
i

y x p x β
=

= ∑    (15) 

Assume there is a sample dataset with N pairs of input variants and output variants : 

1 2{( , )| ( , ... ) , , 1, 2... }Ζ = = ∈ ∈ =T n
k k k k k kn kx y x x x x R y R k N    (16) 

kx  and ky  respectively denote the kth n-dimension input variant and the kth output variant. N 
output variants of singleton FISs are indicated as  Eq. (17). 

1 2ˆ ˆ ˆ ˆ( , ... )= ∈T N
Ny y y y R    (17) 

ŷ  can be computed by Eq. (18). 

ŷ Pβ=    (18) 

Here P is ×N r dimensionality, representing the FBFs of the N input variants, and 
1 2( , ... )rβ β β β= is the vector of the consequent parameters. 

Traditionally the least square (LS) is often used to estimate the consequent parameters W by 
optimizing system： 

1 2( , ... ) arg minT
r y Pβ β β β β= = −    (19) 
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As we mentioned above, LS with 1l  norm regularization, often called lasso, can select the 
essential features and avoid the overfitting. The selection function of lasso is utilized in this 
paper to choose the important rules and remove the redundant rule.  

Modification LARS algorithm is proposed in this paper to solve the lasso problem, which 
can complete the rules selection in m steps, m equal to the number of fuzzy rules. Contrast to 
the methods proposed before, the algorithm has less complexity and higher computational 
efficiency. 

 
4. Experimental results 

 
4.1 Nonlinear function modeling 

 
Let us consider the nonlinear function defined as the equation: 

)
4

exp()
4

exp(),(
22 yxyxF −+−=    

[ ] ]2,0[),(;5,5, ∈−∈∀ yxFyx    (20) 

We use the suggested algorithm to model this function. We get 400 data points by uniformly 
sampling the 2-dimension input space. We use 200 data points for training and 200 data points 
for testing. 

Performance indices root mean square error (RMSE) and mean square error (MAE) as shown 
Eq. (21) are utilized compare to the genfis2 model, genfis3 model, ANFIS and the proposed 
model. 

2

1

1 ˆ( ) ,       RMSE=
N

i i
i

MSE y y MSE
N =

= −∑  

1

1 ˆ| |
N

i i
i

MAE y y
N =

= −∑    (21) 

 

 
Figure 4. The comparison of model output and actual output. 
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Figure 5. The MAE of model output and actual output. 

 
Figure 4 is the comparison of model output, and actual production and Figure 5 is the MAE 

of model output and actual output. 
There are only two input variables and one output variables in this example. We compare 

the genfis2 algorithm, genfis3 algorithm, ANFIS algorithm, and our proposed algorithm, we 
can see from Table 1, for low dimensionality data. Our proposed model has no distinct 
advantage. ANFIS has better performance at the cost of more rules. But with the dimensionality 
increasing as shown in the next example about MPG. We will find when the input variants are 
increased to 6, the Matlab will give the warning: genfis1 has created a large rulebase in the FIS. 
MATLAB may run out of memory if this FIS is tuned using ANFIS. 

 
Table 1. The comparison of the different system. 

model No. Of fuzzy rules trainMSE  testMSE  
Genfis2 5 0.0266 0.0371 
Genfis3 7 0.2434 0.2740 
ANFIS 25 2.3805e-04 6.2860e-04 

Our model 8 0.0280 0.0313 
 

4.2 MPG 
 
In this section, a numerical experiment is carried out to illustrate the effectiveness of the 

suggested method. The data set of automobile fuel consumption in miles per gallon (Auto-Mpg) 
is obtained from the University of California, Irvine(UCI) Machine learning Repository 
(http://archive.ics,uci.rdu/ml/datasets.html). The five input variables 1x , 2x , 3x , 4x  and 5x  stand 
for cylinders, displacement, horsepower, weight, and acceleration respectively as the input 
variable 1 2 3 4 5( , , , , )X x x x x x=  of the system. The fuel consumption in miles per gallon, y, is the 
output of the system. 
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FCM is applied to extract the antecedents. We set 10 fuzzy rules, and initial FBFs is then 
gained through equation (10). We use LARS to solve equation (14). The number 1, 2...10 
marked in Figure 6 represent rule 1, rule 2 ...rule 10 respectively. The horizontal coordinate s 
is defined as the    size of beta at each step in the range [0, 1]. The vertical coordinate beta is 
the regression coefficient parameters.  

Figure 7 shows the selection process. There are only ten steps which completed the 
regression process. Only one rule was added to the active set A at each step. At the first step, 
rule 10 was added to the active set A, then rule 7, rule 8, rule 1, rule 6, rule 4, rule 9, rule 3, 
rule 2, rule 5 was added to the active A in turn. Through Akaike's Information Criterion(AIC) 
and Bayesian Information Criterion (BIC) evaluation, the  rule 5, rule 2, rule 3 are the redundant 
rules and are removed. Only seven rules are retained. Figure 8 shows the comparison of model 
output and actual output. 

 

 
Figure 6. The selection process of fuzzy rules through LARS. 

 
 

 
Figure 7. The ten steps of rules added. 

 1l
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Figure 8. The comparison of model output and actual output. 

 
Algorithm Genfis2 and Genfis3 are chosen as the comparison of our proposed method. These 

two algorithms also use clustering algorithm for the extract of fuzzy antecedent parameters and 
the linear regression for the estimate of the consequent parameter. Table 2 is the comparison 
of different system for errors. 

 
Table 2. The comparison of different system. 

model No. Of fuzzy rules RMSE MAE 

Genfis2 5 4.5987 3.7573 
Genfis3 20 4.5823 3.7253 

Our model 7 3.0279 2.5674 
 

5. Conclusion 
 
In this paper, we proposed a LARS-based rule reduced algorithm to solve rule explosion 

problem. Through the sparse encoding of the fuzzy basis functions (FBFs), important rules are 
picked and the redundant rules are reduced. LARS algorithm is proposed here to select the 
rules. LARS algorithm is a convex relaxation approach, also referred to the 1l  norm 
minimization problem. Compared with other sparse encoding algorithm, LARS algorithm has 
the advantage of lower computation complexity, equal to the complexity of least square 
algorithm, and better performance. We applied our algorithm to model nolinear function and 
the example of Auto-MPG. From the experimental result, we can see for low dimensionality 
data, the proposed algorithm has no distinct advantage. ANFIS has better performance at the 
cost of more rules. But with the dimensionality increasing as shown in MPG. When the 
dimensionality of input variant are increased to 6，the Matlab will give the warning：ANFIS 
has created a large rule base in the FIS. MATLAB may run out of memory if this FIS is tuned 
using ANFIS. The suggested algorithm is especially suit for high dimensional data. Sparse 
encoding has also attracted attention of the scholars in the field of signal processing and image 
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processing. In the future, we will investigate further this issue and extend our algorithm to real 
signal processing and image processing applications. 
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