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Abstract: Sensor hardware technology and network bandwidth have developed rapidly. 
Through the combination of the Internet and different types of sensors, the Internet of Things 
(IoT) can facilitate the development of applications, and it has become a hot issue in many 
countries. The IoT can facilitate the development of applications such as smart cities, smart 
healthcare and smart homes. In the IoT, people can exchange information to anything, such as 
people and objects, objects and machines, and even between machines. However, in order to 
develop related application services of the IoT, hundreds of millions of objects will exchange 
data on the Internet, and the amount of data in the IoT is very large. In order to provide the 
different real-time service requirements, the Service-oriented Architecture underlying IoT 
(SoAIoT) and the data storage operating mechanism of SoAIoT are constructed in the study. 
The operating mechanism of SoAIoT will reduce the load of network, improve the quality of 
data processing scheduling, and provide users with different services to meet service needs. 
Finally, in order to evaluate whether the proposed operating mechanism of SoAIoT can achieve 
the goal of our research, experimental examples are given through the application of the earth 
and rock flow monitoring. 
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1. Introduction 

 
Due to the increasing processing power of sensor, various applications combined with sensors 

have become more and more deeply in people’s lives, such as smart monitoring, smart health 
care and smart home [1]. In order to improve the quality of life, the Internet of Things (IoT) is 
being explored and developed rapidly [2]. The IoT creates smart objects by embedding sensors 
into objects of daily life, and develops into an application platform in conjunction with the 
Internet. Therefore, IoT combines the objects in the real world into the virtual world, so that the 
world reaches the ubiquitous state. 

Because the IoT combines a large amount of sensing data, a huge amount of data circulation 
and service requirements from a large number of users will increase the processing load on the 
Internet [3]. Therefore, without a specific mechanism to assist in the processing of data, it may 
cause serious delays in data circulation and affect efficiency. This makes users get poor service 
efficiency when enjoying the services provided by the IoT. 

Service-oriented Architecture (SoA) is an example for organizing and leveraging distributed 
functions that may be under the control of different ownership domains [4-6]. Often entities 
(people and organizations) create capabilities to solve or support solutions to problems they 
encounter in their business processes. It is natural to think that the capabilities provided by others 
can meet one’s needs; or in the world of distributed computing, a computer agent belonging to 
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another owner can meet the requirements of a computer agent [7]. There is not necessarily a 
one-to-one relationship between requirements and capabilities. The perceived value of SoA is 
that it provides a powerful framework to match requirements and functions, and to meet these 
requirements by combining functions. This allows service providers and consumers to interact 
and provide decision points for any policies and contracts that may be in effect [8]. 

In the SoA, there are three roles, including: service provider, service agent, and service 
demander [5]. Service providers can publish related software services to service agents through 
the Internet, provide service interfaces to service agents, and through service agents, enable 
service providers to interact with service demanders and provide services. The service agent 
acts as an intermediary between the service provider and the service demander, and publishes 
the services registered by the service provider, and provides the relevant catalogue of the service 
to the service demander, so that the service demander can find the relevant service needed by 
the service agent. In addition, the service agent can collect relevant requirements from service 
demanders, find out the services required by service demanders, and respond. Service 
demanders can call software services from service providers according to their own needs, so 
they can send service requirements to service agents, or search for service needs they need 
through service agents. 

Therefore, a Service-oriented Architecture underlying IoT (SoAIoT) to serve diverse 
applications is used in this research. This research uses a cloud computing environment and uses 
parallel computing features to perform a large amount of data processing, and then a Service 
Data Processing Mechanism (SDPM) is proposed in this study. SDPM allows sensing data to 
be efficiently processed by cloud nodes when storing data in a cloud environment, and provides 
differentiated data processing services. 

The remainder of this paper is arranged as follows: section 2 illustrates the related work. 
Section 3 illustrates the proposed SoAIoT. The operations of SDPM in SoAIoT are given in 
section 4. The simulation experiments on SDPM under the SoAIoT architecture are explained 
in section 5. Finally, conclusions are presented in section 6. 
 

2. Related Work 
 
In this section, the CPU scheduling algorithm will be explained. The CPU scheduling 

algorithm is a process that uses a single processor for scheduling. When a single processor may 
need to execute multiple programs at the same time, these programs cannot be executed at the 
same time, so the remaining unexecuted programs will be sent Wait in the I/O temporary queue, 
until the processor is idle or the program is aborted, the next program will be selected from the 
temporary queue for execution [9]. 

The FIFO (First In First Out) scheduling algorithm is based on the program’s arrival time as 
a sorting order and has a non-preemptive feature. The program that arrives earlier will be 
prioritized for scheduling. Therefore, a program with a shorter execution time may be affected 
by a program with a longer execution time, resulting in a longer waiting time for the program. 

The RR (Round-Robin) scheduling algorithm is a fair scheduling algorithm that enables each 
program to obtain a fair fixed time service quota (Time Quantum) and execute each program in 
a round-robin manner until all programs are completed. However, under the mechanism of fair 
allocation of service quotas, the RR scheduling algorithm cannot provide differentiated service 
quotas, which affects the execution efficiency of the program. When the service quota is set too 
high, it may approach the FIFO scheduling algorithm; if it is set too low, it will cause the 
program exchange frequency to be too frequent and affect the scheduling operation. 
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The Priority scheduling algorithm is an unfair scheduling algorithm. Tasks are sorted 
according to priority, and programs with high priority are executed first. Programs with the same 
priority are based on FIFO scheduling algorithm. The advantage of the priority scheduling 
algorithm is that it can meet the needs of the program and flexibly change the scheduling of the 
program. However, when the high-priority program is executed preferentially, the low-priority 
program will be delayed, which may cause indefinite blocking or starvation of the low-priority 
program. 

The SJF (Shortest Job First or Shortest Task First) scheduling algorithm is an unfair 
scheduling algorithm. When the program is executed by the CPU, the shortest completion time 
is used as the sorting order. The smaller the execution completion time of the program, the 
higher the priority is to be executed. Programs with the same completion time will be sorted 
according to the FIFO algorithm. The advantage of the SJF scheduling algorithm is that the 
waiting time between programs will not be too long, and a smaller average waiting time can be 
obtained. However, the SJF scheduling algorithm is based on the short-program priority 
execution, which is as unfair as the priority scheduling algorithm, which is likely to cause hunger 
in the program. In addition, when larger programs need to be executed preferentially, short-
program priority scheduling algorithms cannot flexibly schedule programs. 

In order to solve the problem that the long program execution time caused by the SJF 
scheduling algorithm is delayed too long, the E-SJF (Enhanced SJF) scheduling algorithm is an 
improvement of the SJF scheduling algorithm and was proposed by Wang et al. [10]. E-SJF 
regards the execution time complexity of the longest program as the threshold as the basis for 
preemptive scheduling. When the total time of the programs that have been executed exceeds 
the threshold, the preemption mechanism is used to execute the program with the longest 
execution time to reduce the problem of long waiting times. However, the E-SJF scheduling 
algorithm cannot flexibly adjust the execution order of the program according to the needs of 
the program. Therefore, although E-SJF can reduce the delay time of long programs, it cannot 
give priority to programs that need to be executed immediately. 

 
3. SoAIoT 

 
In this study, a four-layer framework of IoT (SoAIoT) is proposed, including the perception 

layer, the middleware layer, the cloud computing layer and the application layer. The structure 
of SoAIoT is shown in Figure 1. 

The lowest layer of the SoAIoT architecture is the perception layer. The perception layer is 
composed of a variety of different types of sensors. These sensors can be embedded in a variety 
of different objects and can be distributed in different areas according to their applications. 
Because the capabilities of each sensor are usually limited; hence, the complex task 
calculations, large amounts of data storage, and high-speed transmission cannot be 
accomplished by sensors. 

The second layer in the SoAIoT architecture is the middleware layer, which is composed of 
sinks located in different regions. The sink has a certain degree of computing power, storage 
space and transmission capacity, and can continuously receive the sensing data from the 
perception layer, and collect and process these sensing data. These sinks are located in different 
areas. Depending on the changes in the environment and the type of sensor, the types of data 
transmitted and processing operations may be different. In this study, sensors are grouped 
according to their area and the type of sensing data processed by the clustering mechanism, 
and subsequent data processing is performed by a specific sink to reduce the complexity of 
data processing. In addition, the data is transferred to the cloud computing environment through 
the sink for the subsequent related application services. 
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The third layer in the SoAIoT architecture is the cloud computing layer, which consists of a 
cloud computing environment. The cloud computing layer receives the sensing data from the 
middleware layer, and the huge data from different regions are collected and stored in the cloud 
computing layer. At the same time, the cloud computing layer will send various sensing data 
from the perception layer to the corresponding application server according to the service 
requirements of different applications, so that specific application services can be performed 
normally. 

The fourth layer in the SoAIoT architecture is the application layer, which consists of 
diversified applications. In order to meet the requirements of application services, according to 
different requests made by each service demander, the application layer requests data from the 
cloud computing layer, and finally provides it through these application services. The service 
corresponding to the service demander. Therefore, service demanders do not need to know how 
to obtain data and the conversion process of data circulation in each domain. They only need 
to connect to the Internet to enjoy the services brought by the IoT. 
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Figure 1. The structure of SoAIoT. 

 
SoAIoT is mainly building the infrastructure of the IoT, and focuses on the circulation of 

IoT data and service provision. Therefore, the main operation mechanism under the SoAIoT is 
to enable the data of the IoT to be processed efficiently and to provide IoT services to users. In 
SoAIoT, the “Service Data Processing Mechanism (SDPM)” is implemented in the cloud 
computing layer. In the SDPM, the main operation is to process a large amount of sensing data 
and store the data to a cloud data storage center. The sensing data stored in the cloud data 
storage center can provide application services to meet the needs of IoT users. And, the SDPM 
is considered in this study. 
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4. The Operations of SDPM 
 
The rise of the IoT has brought about an automated environment and intelligent life. In order 

to provide diversified applications for the IoT, the massive data obtained through the sensors in 
the IoT, leading to an increase in load. As the behavior pattern of tens of thousands of users in 
the IoT has been transformed from the original real object operation to the virtual operation in 
the Internet. The development of various applications has resulted in a large number of IoT data 
demand services, which may cause the system to be unable to effectively handle huge demands 
[5]. 

When a large number of service requirements are issued from the application side of the IoT 
at the same time, if there is not an effective control mechanism, service processing may be 
severely delayed during the process. Therefore, the scalability and parallel computing 
characteristics of cloud computing resources are used in this study to enable massive data to be 
used in a large amount in the cloud computing environment to provide diversified application 
services. 

In order to provide diversified and high-quality services for the IoT, under the SoAIoT 
proposed in this study, the data collected by sensors is processed in the cloud computing layer 
with “Service Data Processing Mechanism (SDPM)”. Through SDPM, a large amount of 
sensing data can be efficiently stored in a cloud data storage center. In order to achieve this goal, 
a scheduling algorithm is used in SDPM to perform task processing. It is considered that all 
tasks can be serviced by the node and different applications in the shortest time. Therefore, the 
minimum makespan is considered, and different task priorities are set to allow the data to 
provide differentiated services. In other words, the method proposed by this research can serve 
the massive data and a large number of service requirements in the IoT efficiently, can reduce 
the congestion of data processing, and can provide differentiated data processing services. 

In SDPM, the processed data transmitted by the sinks in different regions of the middleware 
layer is received continuously. A large number of heterogeneous data received from the 
perception layer are processed by the middleware layer and transmitted to the cloud computing 
layer continuously. According to different properties, the data will be divided into “urgent data” 
and “general data”. In order to provide differentiated services from application users, tasks will 
be divided into “urgent tasks” and “general tasks” in the research. The urgent data usually needs 
to be processed in time, while the general data can be processed sequentially. Therefore, when 
the data is transmitted from the sink to the cloud computing layer, the priority of task execution 
will be determined by agent. 

In order to process a large number of heterogeneous data, when the data enters into the cloud 
computing layer, tasks will be assigned to the “urgent data queue” or the “general data queue”. 
First, the data determined as urgent is assigned to the urgent data queue. And, the general data 
will be assigned to the corresponding application general data queue for scheduling. There are 
two parts in SDPM, one is the task selection from the data queue, and the other is the agent 
selection from the cloud nodes, which are explained separately below. 
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4.1 The Task Selection from the Data Queue 
 
The data in the general data queue has less influence on the application service. In the context 

of the IoT, there is a large amount of general data from each sink to the cloud computing layer. 
Therefore, enabling a large amount of data to be efficiently processed by the nodes in cloud 
computing layer is a goal that general data queues must achieve. 

To achieve this goal, a large number of tasks can be performed and tasks can be stored in 
the cloud data center at a faster rate will be considered, so tasks in the general data queue will 
be scheduled. Therefore, considering the minimum overall waiting time of the task, the task 
can be executed with the minimum delay time, so that users on the application side can quickly 
obtain related services. 

Because the FIFO scheduling algorithm does not consider the execution time of multiple 
tasks; hence, tasks with short execution times are susceptible to delays caused by tasks with 
long execution times, so that short waiting times cannot be obtained. Using the RR scheduling 
algorithm, each task can be performed at a fair schedule, but it cannot meet a large number of 
output requirements and obtain a lower waiting time. Using the SJF scheduling algorithm, tasks 
with longer execution times can be executed preferentially, shorter waiting times can be 
obtained, and tasks can be executed in large numbers. However, the SJF scheduling algorithm 
is based on the shortest execution time of the task. In an unfair scheduling, when the task with 
the longer execution time enters and waits, it will be affected by the task with the shorter 
execution time. As a result, starvation can occur in tasks with long execution times. E-SJF uses 
the longest task execution time as a threshold as the basis for preemptive execution of tasks. 
Therefore, tasks with a long execution time can be preferentially processed when the threshold 
is exceeded using a preemption mechanism, so the problem of long waiting time for tasks with 
a long execution time can be reduced. However, E-SJF does not consider the different 
requirements of data processing, so it cannot be applied in the IoT environment. 

Therefore, in order to enable the IoT to process a large amount of data, this study uses 
multiple application data processing queues in the general data queue to enable a large number 
of tasks to be processed in parallel and scheduled. This research proposes WE-SJF (Weight 
Enhanced SJF) and improved E-SJF scheduling algorithm. In addition to solving the problem 
of hunger caused by short tasks affected by short tasks, it can also provide different Weight 
values for different application services, so that general tasks can provide differentiated 
services. 

In order to respond to the calculation of the WE-SJF scheduling algorithm, the Weight value 
corresponding to each task will be assigned, and the change in weight will be set according to 
whether an urgent task has occurred. If an urgent task has occurred within the specified 
conditions, the Weight value will increase. If the task has no urgent task within the limited 
conditions, the initial Weight value is set to 1. The WE-SJF scheduling algorithm is divided 
into 7 steps: 

[Step 1]: The tasks in the queue are sorted according to their respective Weight values, so 
that the scheduling of tasks can be shifted according to the Weight value from high 
to low. 

[Step 2]: The waiting task execution time in each level Weight value is sorted from small to 
large according to the different rotations of the Weight value. 

[Step 3]: Pick the longest task execution requirement in the queue and set it as the maximum 
tolerance execution threshold. 

[Step 4]: According to the order of [Step 2], select the task execution schedule with the 
smallest task execution requirement. 

[Step 5]: Accumulate the output tasks to the output threshold according to the output task 
execution requirements. 
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[Step 6]: (1) When the accumulated output threshold value exceeds the maximum tolerance 

execution threshold value, the task with the longest execution demand in the queue 
area is preemptively outputted.  
(2) Reselect the longest task execution requirement to set the maximum tolerance 

execution threshold. 
[Step 7]: Repeat [Step 1] to [Step 7] until the assignment of tasks in queue is completed. 
The urgent data queue stores urgent data, which may have a huge impact on practical 

applications. Disaster hazards such as earth and rock flow monitoring systems and fire 
monitoring systems may pose a threat to people’s lives. In addition, the incidence of urgent 
tasks is low and does not occur frequently. Therefore, in this study, in the processing of urgent 
tasks, the FIFO scheduling algorithm was used.  

In other words, because the execution order of urgent tasks cannot be determined for 
different application tasks, such as the priority execution order of fire and flood, this study uses 
the FIFO scheduling algorithm for the processing of urgent tasks. When an urgent task arrives, 
the execution priority of the task is determined based on the arrival time of the task. 

 
4.2 The Agent Selection from the Cloud Nodes 

 
In this study, through the characteristics of parallel computing in the cloud, when a large 

amount of heterogeneous sensing data is collected by the middleware layer, it is transmitted to 
the cloud computing layer. In the study, agents are selected through cloud nodes to assign task 
to the appropriate cloud nodes for data processing, so that the cloud nodes can serve a large 
number of data processing tasks. However, when a cloud node is performing task processing, 
when a large amount of tasks needs to be performed, if there is not an effective mechanism, it 
may cause a delay in the task processing and then affect the service quality. And urgent task 
needs to be performed at a faster speed. Therefore, this study provides the agent of cloud nodes 
selection, and uses the characteristics of parallel computing in the cloud to enable tasks to be 
dispatched to the nodes for data processing in an orderly manner. In addition, when the task is 
assigned to the appropriate cluster nodes, each agent of cloud nodes changes at any time based 
on the information provided by the cloud resources. Therefore, in this study, an Urgent First 
Min-Min scheduling algorithm is proposed as a node selection. 

Because the traditional Min-Min scheduling algorithm does not consider the priority of task 
execution. Therefore, the Min-Min scheduling algorithm is improved in this study. The 
proposed Urgent First Min-Min scheduling algorithm will perform the task assignment 
according to different demand nature to provide users with different services.  

The Urgent First Min-Min scheduling algorithm establishes a minimum task completion 
time for each currently unscheduled task, and assigns the task to a cloud node with a minimum 
task completion time for processing, resulting in a smaller waiting time. When the Urgent First 
Min-Min scheduling algorithm is executed, the tasks are divided into general task and urgent 
task according to its urgency, and urgent task will be executed first. 
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There are three steps of Urgent First Min-Min scheduling algorithm: 
 [Step 1]: The time required to complete the task waiting to be executed at each cloud node is 

calculated by each agent. 
[Step 2]: (1) If there is more than one task waiting to be executed, the urgent task will be 

executed first. 
(2) If the general work is being executed by the cloud node, execute (3), if not, 

execute (4). 
(3) Because urgent task must be performed preemptively, tasks in the urgent queue 

are assigned to cloud nodes for preemptive services. At this time, the cloud node 
that can complete the urgent task in the shortest time will be selected, the task 
will be allocated to the node in order, and the ongoing general task will be 
temporarily interrupted. 

(4) The node with the shortest task completion time required for general task 
execution will be selected, the task will be dispatched to this node for service, 
and wait for the ongoing task to finish. 

[Step 3]: Repeat [Step 1] to [Step 3] until all tasks in the queue have been performed. 
When a large amount of data has been scheduled in the urgent data queue or the general data 

queue, it will be allocated to the appropriate cloud nodes according to the different data weights 
and stored in the cloud database. Because urgent task must be performed in a faster order, and 
in order to reduce the waiting time of the task, this study uses the Urgent First Min-Min 
scheduling algorithm to enable the task to be efficiently allocated to the processing nodes based 
on different characteristics and services. In other words, when all cloud nodes are performing 
task, two situations will be considered. 

(1) If all cloud nodes are performing general task, a cloud node that can complete urgent 
task in the shortest time will be selected, the task currently being performed will be 
interrupted, and the urgent task is set as the first serviced task. 

(2) If all cloud nodes are performing urgent task, the cloud node that can complete the 
current task in the shortest time will be selected by the agent. After the current urgent 
task is completed, this cloud node is selected to execute the new urgent task. 

 
5. Experimental Simulation and Results 

 
In this section, simulation experiments on SDPM under the SoAIoT will be performed. In 

the experiment, a Network Simulation 2 (NS2) [11] designed by the American Wireless 
Communications Association (The VINT Project) was used to carry out the network topology 
and environment construction of this study. 

 
5.1 Experimental Assumptions 

 
The method proposed in this study will be simulated in the following experimental and 

environmental assumptions. The assumptions of this experiment are as follows: 
(1) Take the application of earth and rock flow monitoring as an example. 
(2) The transmission of sensing data will not be delayed by environmental factors. 
(3) No damage or loss will occur during the transmission of sensing data. 
(4) The execution time of each task can be predicted. 
(5) Each task will have different execution time in different cluster nodes. 
(6) Nodes can support different requirements based on different applications. 
(7) All tasks can be processed by the node, that is, all tasks are within the capacity of the 

node, so when the task enters, it can be executed and completed. 
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Table 1 shows the experimental environment parameters used in this experiment. The 
network topology architecture is used to simulate the network topology of the IoT, and is the 
SoAIoT architecture proposed by this research. The experimental simulation executes the 
SDPM mechanism under SoAIoT, and the running application is the earth and rock flow 
monitoring system. Table 2 shows the total number of tasks sent by users and the environmental 
parameters of the nodes. When users from different regions send 1,000 service requests to the 
earth and rock flow monitoring system, there will be 50 service processing nodes to perform 
task processing to meet the needs issued by users. In order to verify that the method proposed 
by this research can achieve the research purpose, the evaluation factor is compared in the 
experiment to verify the feasibility and correctness of the method proposed by this research. 

 
Table 1. The experimental environment parameters. 

Item Parameter 
Network topology SoAIoT 
Application Earth and rock flow monitoring 
Number of rainfall sensors by region 10 
Total number of regions 100 
Areas with high frequency of earth and rock flow 10 
Number of users 500 

 

Table 2. The total number of tasks sent by users and the environmental parameters of the nodes. 
Task Parameter 

Service type Rainfall query 
Total number of service processing tasks 1,000 
Total number of service processing nodes 50 

 
In the experiments to evaluate the factor, two different scenarios will be designed to simulate 

SDPM. In the experiments, the weight of each task, the number of tasks in low-frequency earth 
and rock flow areas or in high-frequency earth and rock flow areas, the requirement for task 
execution in low-frequency earth and rock flow areas or in high-frequency earth and rock flow 
areas are given in two scenarios. Table 3 shows the task data parameter range for [Scenario 1], 
and Table 4 shows the task data parameter range for [Scenario 2]. 

 
Table 3. Task and task profile parameter ranges used in evaluating factors (Scenario 1). 

Item Parameter 
Weight=1 (Number of general tasks) 5 
Weight=0 (Number of general tasks) 55 
Number of tasks in low-frequency earth and rock flow areas 50 
Number of tasks in high-frequency earth and rock flow areas 10 
Requirement for task execution in low-frequency earth and rock flow areas 31.8~43.9(KB) 
Requirement for task execution in high-frequency earth and rock flow areas 71.4~82.9(KB) 
Range of weight 0~1 
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Table 4. Task and task profile parameter ranges used in evaluating factors (Scenario 2). 
Item Parameter 

Weight=1 (Number of general tasks) 10 
Weight=0 (Number of general tasks) 90 
Number of tasks in low-frequency earth and rock flow areas 90 
Number of tasks in high-frequency earth and rock flow areas 10 
Requirement for task execution in low-frequency earth and rock flow areas 31.8~43.9(KB) 
Requirement for task execution in high-frequency earth and rock flow areas 71.4~82.9(KB) 
Range of weight 0~1 

 
The requirement for task execution in the evaluation factor will vary according to the size of 

the file. This experiment is divided into two types based on the probability of earth and rock 
flow occurrence. The minimum value of the file in the high frequency earth and rock flow area 
is 71,493 Bytes to the maximum 82,893 Bytes; the minimum value of files in areas with low 
frequency of earth and rock flow is 31,893 Bytes to the maximum value of 43,893 Bytes. 
Therefore, the task execution requirement value will be designed with Kilobyte (KB) as 
different task execution requirement values, and will generate 90 task requirement values of 
31.8 KB to 43.9 KB with random numbers, and 10 task requirement values of 71.4 KB to  
82.9 KB. In the setting of the Weight value, it can be set according to different application 
requirements. This experiment is based on the lifting of the earth rock flow alert issued by the 
Soil and Water Conservation Bureau in Taiwan, and distinguishes between the different Weight 
values. Since it takes a certain amount of time for soil moisture to dissipate, in order to avoid 
the occurrence of major disasters in the area caused by the occurrence of earth and rock flows, 
if there is subsequent scattered rainfall at this time, it may also cause earth and rock flows, so 
the earth and rock flow alert may not be lifted in synchronization with the typhoon alert [12]. 
In this experiment, the setting values of the Weight values are “0” and “1”, respectively. “0” 
indicates that no earth rock flows have occurred in the area, and “1” indicates that earth rock 
flows alerts have been sent in the area within 12 hours. 

Finally, in the evaluation factor, when the task has been calculated by the shift, the schedule 
time of the node will be calculated, and the task will be assigned to the node for processing. 
Therefore, the total number of tasks will be equal to the total number of tasks. The range of 
task setting parameters for [Scenario 1] in this experiment is shown in Table 5, and the range 
of task setting parameters for [Scenario 2] is shown in Table 6. The nature of task can be 
divided into urgent task and general task. Due to the small amount of data for urgent task, 
considering real-life situations, only when a continuous rainfall phenomenon or typhoon 
disaster occurs in a particular season can the warning threshold be exceeded. 

 
Table 5. Parameter range of task data for evaluation factors (Scenario 1). 

Item Value 
Number of urgent tasks 10 
Number of general tasks 60 

The simulation time of urgent tasks 3~10 
(microseconds) 

The simulation time of general tasks (low-frequency earth and rock flow 
area) 

10,000~30,000 
(microseconds) 

The simulation time of general tasks (high-frequency earth and rock 
flow area) 

55,000~90,000 
(microseconds) 
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Table 6. Parameter range of task data for evaluation factors (Scenario 2). 
Item Value 

Number of urgent tasks 10 
Number of general tasks 100 
The simulation time of urgent tasks 3~10 (microseconds) 
The simulation time of general tasks (low-frequency earth 
and rock flow area) 

10,000~30,000 
(microseconds) 

The simulation time of general tasks (high-frequency earth 
and rock flow area) 

55,000~90,000 
(microseconds) 

 
Moreover, urgent task only sends warning data that exceeds the threshold value, so the task 

execution time of the urgent task at the node is shorter than the general task. The general task 
will continue to collect rainfall data on the occurrence of rainfall, so the number of tasks is 
more than the urgent task. In the evaluation factor, the simulation execution time of the node 
is changed. The execution time of the general task simulation in the low-frequency earth and 
rock flow area is 10,000 microseconds and the maximum time is 30,000 microseconds. The 
simulation execution time of urgent tasking on the node has a minimum value of 3 
microseconds and a maximum value of 10 microseconds. 

 
5.2  Analysis and Comparison of Simulation Results 

 
In this experiment, the execution changes of SDPM will be simulated when different tasks 

are received in different time periods. Experiments include: the impact of SDPM on the order 
of task execution in the earth and rock flow monitoring and the impact of SDPM on task 
execution time in the earth and rock flow monitoring. There are two different scenarios 
designed to simulate SDPM receiving changes in the execution of different tasks in different 
time periods. Because this experiment uses the time zone method for task processing, the 
number of tasks received may be different in different time zones. Therefore, this experiment 
assumes that there are two different situations for the tasks received: 

 
[Scenario 1]: The total number of tasks executed is 60, in which the number of general tasks 

with Weight equal to 1 is 5 and the number of general tasks with Weight equal to 
0 is 55. 

[Scenario 2]: The total number of tasks executed is 100, in which the number of general tasks 
with a Weight value equal to 1 is 10, and the number of general tasks with a 
Weight value equal to 0 is 90. 
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5.2.1 The Impact of SDPM on the Order of Task Execution in the Earth and Rock Flow 
Monitoring 
 

At this stage, two different methods will be used to compare each other. The WE-SJF 
scheduling method proposed in this study will be compared with the E-SJF scheduling method. 
When [Scenario 1] was received during the time phase: There are 60 tasks, of which tasks with 
weight equal to 1 include tasks 1, 5, 6, 17, and 34. 

In the SDPM mechanism, when tasks are scheduled via the WE-SJF and E-SJF scheduling 
algorithms, the results can be obtained as shown in Figure 2. The simulation result of the WE-
SJF scheduling algorithm is the maximum execution order task in the fifth task, and the 
execution order is the fifth order. The simulation result of the E-SJF scheduling algorithm is 
the maximum execution order task at the 34th task, and the execution order is the 27th place. 
Because the WE-SJF scheduling algorithm preferentially screens tasks with a Weight value of 
1 for scheduling calculations, tasks with a Weight value of 1 will execute faster than the results 
by the E-SJF scheduling algorithm. Based on the environmental results of the experimental 
simulation time [Scenario 1], the WE-SJF scheduling algorithm proposed by this research 
enables the data processing tasks with a Weight value of 1 issued by the earth and rock disaster 
area to obtain higher execution priority. Therefore, the tasks in the disaster area can be sent to 
the cloud node to assign agents for task scheduling. 

 

 
Figure 2. Scheduling results of WE-SJF and E-SJF (Scenario 1). 

 
When the time period received [Scenario 2]: There are 100 tasks, of which tasks with weight 

equal to 1 include tasks 1, 5, 6, 17, 24, 27, 31, 32, 34, and 49. After the tasks are scheduled by 
the WE-SJF and E-SJF scheduling algorithm, the results can be obtained as shown in Figure 3. 
The simulation result of the WE-SJF scheduling algorithm is the maximum execution order 
task in the fifth task, and the execution order is the tenth order. The simulation result of the E-
SJF scheduling algorithm is the maximum execution order task at the 34th task, and the 
execution order is the 90th order. Because the WE-SJF scheduling algorithm preferentially 
screens tasks with a Weight value of 1 for scheduling, tasks with a Weight value of 1 will 
execute faster than the results by the E-SJF scheduling algorithm. According to the results of 
the experimental simulation [Scenario 2], the WE-SJF scheduling algorithm proposed by this 
research enables the data processing tasks with a weight of 1 sent by the earth and rock disaster 
area to get higher execution priority. Therefore, the tasks in the disaster area can be sent to the 
cloud node to assign agents for task scheduling. 
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Figure 3. Scheduling results of WE-SJF and E-SJF (Scenario 2). 

 
Finally, this study observes the comparison of task execution requirements with a Weight 

value of 1 in time [Scenario 1] and time [Scenario 2]. The observation results are shown in 
Figure 4. In [Scenario 1], the order different of the task with the last Weight value of 1 in the 
E-SJF and the task with the Weight value of 1 in the last order of the WE-SJF is 22, which 
means that WE-SJF has performed 22 fewer execution tasks, so WE-SJF has 933.2 fewer 
execution requirements than E-SJF execution requirements. In [Scenario 2], since the order 
different of the task with the last Weight value of 1 in the E-SJF and the task with the Weight 
value of 1 in the last order of WE-SJF is 80. That is, WE-SJF has less execution with 80 tasks; 
hence, WE-SJF has 3,192 fewer execution requirements than E-SJF. By observing the 
simulation results of [Scenario 1] and [Scenario 2], data processing tasks in disaster areas can 
be quickly processed by WE-SJF. 

 

 
Figure 4. Comparison of task execution requirements. 
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5.2.2 The Impact of SDPM on Task Execution Time in the Earth and Rock Flow 
Monitoring 

 
When tasks are sorted by a scheduling algorithm and sent to a cloud node to select an agent 

for task scheduling, the total work will be received as [Scenario 1] with 70 tasks; [Scenario 2] 
with 110 tasks to be performed task scheduling. In the experiment, it will be assumed that the 
general task and urgent task of the above two different scenarios are scheduled, and the number 
of urgent task is 10 in [Scenario 1] and [Scenario 2]. First observe the situation [Scenario 1], 
the schedule comparison results of 70 tasks, as shown in Figure 5. Figure 5 shows the 
comparison of the schedules of [WE-SJF+Urgent first Min-Min] and [E-SJF + Min-Min] for 
the tasks in the disaster area. The number of general tasks set in the scheduling experiment at 
this stage is to receive the results of 60 general task scheduling. Five general tasks with a 
Weight value of 1 are 1, 5, 6, 17, and 34, and the rest are 55. The number of urgent tasks at this 
stage is scheduled to generate 10 urgent tasks, which are tasks 101, 102, 103, 104, 105, 106, 
107, 108, 109, and 110. The sum of general task and urgent task is 70. 

From the experimental observations in Figure 5, we can know that the [WE-SJF + Urgent 
first Min-Min] proposed by this research is more efficient than the [E-SJF + Min-Min] in the 
disaster area when processing the disaster area. And, the total number of reduced time is 
150,525. Because [Urgent first Min-Min] prioritizes urgent task scheduling and [WE-SJF] 
prioritizes task batching, the method proposed by this research can effectively reduce the data 
processing time in disaster areas. 

 

 
Figure 5. Comparison of WE-SJF + Urgent first Min-Min and E-SJF + Min-Min task schedules in 

disaster areas (Scenario 1). 
 

The next observation is [Scenario 2]; Figure 6 shows the comparison result of the task 
schedule when there are 110 tasks. Figure 6 shows the comparison of [WE-SJF + Urgent first 
Min-Min] and [E-SJF + Min-Min] task schedules in disaster areas. The number of general tasks 
set in the scheduling experiment at this stage is to receive the results of 100 general tasks. The 
10 general tasks with a Weight value of 1 are 1, 5, 6, 17, 24, 27, 31, 32, 34 and 49, and the rest 
are 90 general task with a Weight value of 0. The number of urgent tasks at this stage is 
scheduled to generate 10 urgent tasks, which are tasks 101, 102, 103, 104, 105, 106, 107, 108, 
109, and 110. The total of general task and urgent task is 110. 

From the experimental observations in Figure 6, we can know that the [WE-SJF + Urgent 
first Min-Min] proposed by this research is more effective than the [E-SJF + Min-Min] in the 
disaster area when processing the disaster area. And, the total number of reduced time is 
285,829. Because [Urgent first Min-Min] prioritizes urgent task scheduling and [WE-SJF] 
prioritizes task batching, the method proposed by this research can effectively reduce the data 
processing time in disaster areas. 
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Based on the evaluation results of [Scenario 1] and [Scenario 2] in simulation, when [WE-

SJF + Urgent first Min-Min] is used to process the task in the earth and rock flow monitoring, 
it is possible to reduce the task processing time more efficiently than [E-SJF + Min-Min], 
because the task in the earth and rock flow monitoring and the task that occurs in an urgent are 
preferentially processed than the faster data processing speed can be gotten. 

 

 
Figure 6. Comparison of WE-SJF + Urgent first Min-Min and E-SJF + Min-Min task schedules in 

disaster areas (Scenario 2). 
 

6.  Conclusion 
 
Because the IoT uses smart objects embedded with sensors, and through the IoT 

communicate with each other, it can achieve the life of universal computing, automation, and 
remote operation of objects [1]. When the concept of the IoT is used, users can enjoy IoT 
services through various terminals connected to the Internet. In order to provide diversified 
services to users, these sensors from different applications will continue to provide mass 
information, so that the services of these applications can be maintained normally. However, 
when massive amounts of IoT data are continuously transmitted to the Internet and a large 
number of users use the Internet to send service requests to the IoT, it will cause an increase in 
the burden of Internet transmission.  

In order to reduce the quality of services affected by the large amount of heterogeneous data 
and service requirements transmitted through the Internet, and considering that the current IoT 
architecture does not yet have a standard. In this research, a service-oriented architecture for 
the IoT (SoAIoT) is proposed, SoAIoT uses SDPM to reduce the burden of the IoT data 
transmission on the Internet, while also meeting the needs of users for different services. 
Overall, the architecture and operating mechanism proposed by this research can provide a 
large number of application developments in the IoT, and can provide users’ services of 
different needs of the IoT. 
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