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ABSTRACT

This work is an extended version of the paper published by Ito and Chakraborty (2019).
Time Series Classification (TSC) is gaining importance in the area of pattern recognition,
as the availability of time series data has been increased recently. TSC is a complicated
problem because of needs to consider the characteristics of temporal data; periodicity,
time correlation, elasticity and unequal lengths of the time series. As all of those
characteristics are usually not expressed simultaneously in raw data, design of a unified
similarity metric for time series classification or clustering is difficult to achieve. In
addition to traditional feature-based, model-based or distance-based algorithms for TSC,
ensemble and deep neural network have been proposed recently, and deep neural network
model like ResNet is known to be quite effective. However, deep neural network model
requires enormous computing resources and computing time as well as large number of
training samples. Feature based and distance based approaches till have potential to
outperform them in computational time with reasonable classification accuracy. In this
work, new temporal data transformation algorithms have been proposed and their
combination with nearest neighbor classifier have been compared to existing time series
classification methods. From the experimental results, the proposed algorithms with
nearest neighbor classifier are found to be inferior to ResNet regarding classification
accuracy though comparable to Dynamic Time Warping (DTW) but the computation is
much faster than ResNet and DTW, and also the classification accuracy is better in case
of small datasets which seems to be important for many real life applications with limited
resources.

Keywords: Time series classification; feature extraction; deep neural network.

1. INTRODUCTION

Time series is a sequence of data that describes the change of the observed
phenomenon over time. Due to increased use of sensors, the improvement of
computation power and decreased cost of storage, enormous temporal data are collected
and stored from various application areas ranging from financial prediction to health care.
Because of this high volume of data, the demand of analysis of big time series data is
increasing. Among them, time series classification is an important task because many
applications rely on it, for example, online signature verification (Tamilarasi and Nithya
Kalyani, 2017), human gait recognition (Ebenezer et al., 2019) authentication problem,
electroencephalogram (EEG) and electrocardiogram (ECG) analysis in medical field
(Wang et al., 2012), stock price and exchange rate prediction in financial field (Fisher
and Krauss, 2018) or human activity recognition (Lara and Labrador, 2013) in the area
of healthcare. Time series classification is a challenging problem as traditional machine
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learning algorithms for static data are difficult to use
directly for temporal data, because of elasticity, periodicity
and unequal length of time series. Traditional time series
classification algorithms can be roughly grouped into three
types — model-based feature-based, and distance-based.

The model-based approaches make model of each class
from raw time series data by fitting appropriate parameters
and classify the given data according to the best fit of the
model. The examples are Autoregressive (Kini and Sekhar,
2013), Markov and Hidden Markov Model (HMM)
(Antonucci et al., 2015), Naive Bayes, or Neural Network
models. Most of the models are based on statistical
probability distribution. Autoregressive model is based on
stochastic process in which the value at some point of time
series depend on all previous values. On the other hand,
Markov process is another stochastic process where the
value at some point of time series depends on the previous
one. HMM is an automaton in which the state transition
occurs probabilistically. Naive Bayes is the simplest
probability distribution based model, commonly used for
text classification. Among neural networks, Recurrent
Neural Network (RNN) (Smirnov and Nguifo, 2018) is
suitable for time series classification because it considers
variable length input and is dependent on previous values.
Long Short-Term Memory (LSTM) (Karim et al., 2018),
extended form of RNN, tends to have better performance
due to consideration of long term dependency. Currently, it
is found that convolutional neural network based models are
also effective for time series classification.

The feature-based approaches extract features and
transform the raw time series into a feature vector before
classifying with traditional classification methods. The
examples of feature extraction methods are Fourier
Transform, Wavelet Transform, Shapelet (Ye et al., 2010),
Time Series Bag of Features (TSBF) (Baydogan et al., 2013)
etc.

The distance-based approaches compare raw time series
by a distance metric and assign it to the class of the nearest
class sample. Euclidean distance, Dynamic Time Warping
(DTW) (Sakoe and Chiba, 1978) and its derivations are the
popular metrics used for this purpose. Euclidean distance,
though the simplest one, is not suitable for unequal length
time series, because it compares the values of time series at
the same time, and elasticity and periodicity of temporal
data are not considered. On the other hand, DTW with k-
nearest neighbor classifier shows better performance as it is
capable of taking care of time distortion though it is
computationally costly.

Recently ensemble based approaches have been
developed in which different classifiers are combined to
achieve higher performance. Some of the examples are
Elastic Ensembles (Lines and Bagnall.,, 2015), COTE
(Bagnall et al., 2015) and HIVE-COTE (Lines et al., 2018),
an extended version of COTE. Though ensemble of
classifiers can produce good classification accuracy, the
computation time is very high even using recent high
performance machines. A comparative study of several

approaches can be found in Bagnall et al. (2017). Another
recent development of time series classification algorithms
is based on deep neural networks (DNN). A review of the
DNN based time series classification approaches can be
found in Fawaz et al. (2019). Among several DNN models,
Convolutional neural networks (CNN) and Residual
Network (RESNET) (He et al., 2016) are known to be the
most successful in time series classifications. As very recent
state-of-the-art time series classification algorithms based
on ensemble algorithms or DNN requires too much
computational resources, their versatile use is difficult in
real life resource-constrained applications. Also deep neural
network seems to have poor interpretability due to the black
box architecture having a large number of layers of
computing elements with no definite method for setting
parameters. Though researchers are trying to interpret DNN
models, it is still in its early phase.

In many real world applications of time series
classification, fast and interpretable algorithms capable of
producing reasonable classification accuracy with limited
resources are needed and research on developing these
algorithms is important. As there are various types of time
series, for example, time series having seasonal trend like
weather parameters, almost changeless and spike, or
random, dealing all types of time series uniformly with one
approach is unfortunately not the solution, the shape seems
to be the only common feature of the most of the time series.
Model based and Feature based traditional TSC algorithms
possess better interpretability than deep network based
models. Feature based algorithms are also faster than raw
time series based approaches. Elastic distance based
measure, Dynamic Time Warping (DTW) is the most
popular similarity measure for distance based algorithms. In
fact, the combination of DTW and k-nearest neighbor
classifier (Bishop, 1995) is known to be an effective
approach and was considered as the best algorithm for time
series classification problems until a few years ago before
the development of ensemble and deep network based
algorithms.

Though the performance of DTW- kNN is the best
regarding classification accuracy among traditional
algorithms for most of the applications, the computational
complexity is high, of the order of O(n*) where n the
length of the time series. There are many proposed
improvements for the computational bottleneck, however in
all cases, ultimately it is required to calculate precise
similarity. Besides, DTW executes matching two sequences
with shortest path, while finding corresponding segment of
one series to another series as shown in Fig 1. At that time,
pairs that could not be matched in the same segment are
summed as dissimilarity. In other words, similar segments
in two sequences are equated, and the differences are
counted as the distance. It can be regarded as geometrical
difference.

In this work, an approach to reduce the computational
cost of similarity computation of two unequal time series
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keeping the classification accuracy as high as possible, three
new shape based characteristics transformation measures
for similarity computation are proposed and their
performance in TSC compared to state-of-the art popular
algorithms is analyzed. In the next section a brief
description of the popular similarity measures, feature
extraction techniques and classification algorithms related
to this work are presented followed by the section
containing our proposed approach. Section 4 contains the
simulation experiments and results while section 5, the final
section, presents discussion and conclusion.

2. RELATED BACKGROUND ON TIME
SERIES CLASSIFICATION

Among several traditional feature based, model based
and similarity based time series classification algorithms,
DTW-kNN, the combination of dynamic time warping
(DTW) as a similarity measure and k nearest neighbor
classification algorithm, is considered to be the best time
series classification algorithm at least until very recently. As
mentioned before in introduction, DTW incurs high
computational cost and many proposals are already evolved
to reduce the cost. Fast DTW (Salvador and Chan, 2007),
Multiscale DTW (Keogh and Pazzani, 2000) or Sparse
DTW (Al-Naymat et al., 2009) are some of the popular
approaches already developed. The authors also previously
proposed a few algorithms, DTW-GA (Chakraborty and
Yoshida, 2017), DTE (dynamic translational error)
(Chakraborty and Yoshida, 2016) and Edge-detectional
DTW (Ito and Chakraborty, 2018) for improvement of
computational cost of DTW without much sacrificing
classification accuracy.

In this section a brief description of a few representative
popular similarity metrics, feature based representation of
time series and classification techniques used in this work
are presented.

2.1 Similarity Metrics

In similarity based time series classification algorithms,
the simplest measure is Euclidean distance, but it cannot be
used for unequal time series. The most popular elastic
similarity measure is Dynamic Time Warping.

2.1.1 Euclidean Distance

Euclidean distance is the simplest similarity measure that
defined as below for two same length time series X =
{xij0<i<n} and Y={x0<i<n}. O(n) is the
order of computational complexity for the time series length
n.

distance(X,Y) = (D

2.1.2 Dynamic Time Warping

Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978)
is the most popular time series similarity measure. It
computes the shortest matching path of two sequences, as
shown in Fig. 1, while finding corresponding segment of
one side to another side with a (m+ 1) X (n+ 1) cost
matrix for X = {x;|0 <i<m} and Y = {y;]0 < i < n}.
The cost matrix D is computed with following procedure:

initially, Do..io.; = 0
Doo = 0
D-i—l.j:
then, D;; = |x;—y;|+ming Di—1 -1,
D; i
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Fig. 1. Illustration of matching two time series with
Dynamic Time Warping

5

2.2 Time Series Feature Extraction
In this section, some feature extraction methods for time
series are introduced.

2.2.1 Time Series Bag of Features

Time Series Bag of Features (TSBF) (Baydogan et al.,
2013) is a feature extraction method for time series like bag-
of-words in case of natural language processing. It considers
a local segment of time series as a codeword, and counts
that in a time series, then represents the time series as a
histogram of codewords.

2.2.2 Shapelet

Shapelet (Ye et al., 2010) is a feature extraction method
which finds the subsequence within a time series that takes
maximum information gain to represent the class, usually
used with the decision tree whether the time series includes
the shapelet or not. Let T = ¢y, ...,t,;,, be a time series,
Sk = {tp, s tpr—1}l1 <p <m—1+1} be a set of all
subsequences of length [ extracted from T,d*(T,S) =
min(d(S,S* € S;S})) be a distance from the time series T
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Gain(S,dosp(p,s)) = Gain(S, dy,), ()

Gam()\(D), dOSP(D,/\(D))) Z Gam(S, dogp(Dﬁ)), (3)

to the subsequence S. For a shapelet candidate S of a
dataset D which consists of two classes, a distance
threshold, Optimal Split Point (OSP), is found to split a
dataset D into D, and D,, such that; Equation (2) for any
other threshold dj;, a shapelet A(D) is defined with its
corresponding OSP, Equation (3) for any other subsequence
S, where Gain(sp) is an information gain. Searching a
shapelet is performed by the brute-force algorithm, with the
theoretical worst-case complexity is O(m*) on the length
of time series.

2.3 Time Series Classification
In this section, some time series classification methods
used in this work have been introduced.

2.3.1 Residual Network

Residual Network (ResNet) (He et al., 2016) is a kind of
deep convolutional neural network that enabled to learn
many layers (more than 10 or 100 layers). Layers of plain
networks approximate the function H(x), but that of
ResNet approximate F = H(x) — x where x denotes the
inputs to the first of these layers. In order to identify residual
function F as original function F + x, connecting the
inputs to the outputs by shortcuts. In the simulation
experiments, the ResNet architecture of Hassan, et al
(Fawaz et al., 2019), shown in Fig. 2 is used. The paper
"strongly suggests to use ResNet instead of any other deep

input time series

v

conv (64)
conv (64)
conv (64)

residual connection

—

conv (128)
conv (128)
conv (128)

v

conv (128)
conv (128)
conv (128)

—
global average pooling

fully connected

+

output classes

Fig. 2. Illustration of ResNet architecture

learning algorithm - it is the most accurate one with similar
runtime to FCN (the second most accurate DNN)." (Fawaz
et al., 2019) FCN is Fully Convolutional Neural Networks.

2.3.2 k-Nearest Neighbor

k-Nearest Neighbor (k-NN) (Bishop, 1995) is one of the
most basic classification method that decides the class of the
data by majority classes of k ofthe closest training samples.
Distance metrics are used with this classifier to measure the
distance between the given data and training samples. The
number of k should be odd number of greater than or equal
to one, specifically in case of k = 1, it is called Nearest
Neighbor or 1-NN.

3. PROPOSED TRANSFORMATIONS FOR
TSC

Time series has variety of characteristics such as
elasticity and periodicity, and most of those are expressed
as geometric features on the plot. In this work, two new
shape based transformation technique of time series for
similarity based classification have been proposed. These
are named as Fold Count (FC) and Time Axis Area (TAA),
basically an improvement of Fold Count that considers
elasticity, periodicity an unequal length of time series for
similarity calculation and also resembles shapelet, a feature
extraction method. All of them take four parameters,
original time series (T), its lower and upper limit of values
(L and U) and n, an user defined parameter that represents

the number of divisions or folding between L and U. The
algorithms are described below successively.

3.1 Fold Count

Fold Count (Ito and Chakraborty, 2019) is a time series
transformation method that counts the overlaps of time
series values along the time, while the time series is
approximated as a line plot. The concept is illustrated in Fig.
3. The folding values P are computed by user chosen
parameter n € N according to the following equation.

Pm.cu)= | {M+£}. (4)
0<i<n )

For the time series T = ty, ..., t,,, foldings between t;
and t;,, are counted for all time intervals to the end of the
time series; for all p € P, L, U). Fold Count
dissimilarity is defined as sum of differences of FC(p) for
all p for two time series. The pseudo code is shown in
Algorithm 1 and Algorithm 2.

m—1
FC(p) =" if (t; <p <tis1) then else 0. (5)

%
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Algorithm 1 Fold Count Transformation

Input: Time-series TY0.....m], the lower £ and the upper U

bounds, number of dividing folding positions n.

Output: FoldCount(T, £, U, n)

R A A i

Let a vector F'C be the accumulated folding counts such
that FC[O0,...,n], P be the folding positions such that
PlO,....n].

cfor i=0ton do

FC[i] := 0

- end for

fori=0tor—1do
Plil] =ix (U —L)/n+ L

- end for

fori=0tom—1do
Tiowers Tupper = sorted(T[i], T[i+1])
for j=0ton do
if Tlower S P[]] & PLI] S Tupper then
FCj] += 1
end if
end for

: end for
: return FC

Algorithm 2 Fold Count Dissimilarity

Input: Time-series X[0,....p], Y/[0.....ql, the lower £ and the

upper U bounds, number of dividing folding positions n.

Output: FoldCountDissimilarity(X, Y, £, U, n)

I

: dissimilarity = 0
. FCx = FoldCount(X, L, U, n)
. F'Cy = FoldCount(Y, £, U, n)

for i = 0 ton do
dissimilarity += abs(F'Cx[i]-FCy[i])

. end for
: return dissimilarity

Algorithm 3 Time Axis Area

Input: Time-series T[0.....m], the lower £ and the upper &/
bounds, number of dividing folding positions n.

Output: TimeAxisArea(T, £, U, n)

Let a vector TAL be the accumulated length such
thar TAL[O,...,n], a vector T'S be the timestamps such
that TS[O, ..., n], P be the folding positions such that
P[O,....n].

I: for i=0ton do

2 TAL[] =0

3 TS[i] = -1

4: end for
s:fori=0tor—1do

6: Plil=ix(U—-L)/n+L

7: end for

g fori:=0tom—1do

9 Tiowers Tupper = sorted(T[i], T[i+1])
10 for j=0ton do

11: if Tiower < P[J] & P[]] < T-u,pper then
12: if TS[j] > O then

13: TAL[j] +=1i - TS[jl

14: end if

15: TS[j] =i

16: end if

17:  end for

18: end for

19: return TS

Interpolate Quantize
Difference
$ K 8
< o0 [
2 Q0 - 7 —
2 ra o @ ra -
' rd [+'s] [==] ra %
2 e o) oo r 4 2
2 yoa =] - Y a -
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% £ Count % g $ Count S 3
& y: > S < 3
T £ 2 8 g2 % =
Y .4 2 8 [5505) 2 i —
o e ] g g::: &— %
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% 1] 00 . — a3
g $ & = 3
o0 [ 000

Fig. 3. Illustration of Fold Count Dissimilarity Algorithm (H. and B., 2019)
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3.2 Time Axis Area

Time Axis Area (TAA) (Ito and Chakraborty, 2019) is a
modification of Fold Count algorithm which adds the
concept of elasticity in FC. Time Axis Area is the area
bounded by the time series if the number of folding
positions n is taken as infinity. The pseudo code is shown
in Algorithm 3.

4. SIMULATION EXPERIMENTS AND
RESULTS

In this section simulation experiments and results with
benchmark data sets for evaluation of the efficiency of the
proposed technique have been presented.

4.1 Simulation Experiments and Data sets

Simulation experiments have been done to compare the
performance of proposed transformations compared to raw
time series for time series classification problems. The
performance of nearest neighbor classifier (INN) with
proposed FC and TAA, INN-FC and INN-TAA, is
compared with ResNet and INN-DTW by simulation. 88
benchmark datasets of UCR Time Series Classification
Archive 2018 (Dau et al., 2019) shown in Table 4 are used
for simulation experiments. Each dataset is already split into
training samples and test samples, thus each classifier is
trained with all training samples, then classified with all test
samples.

The parameters of FC and TAA are as follows; the lower
L and the upper U bounds are minimum value and
maximum value of the training samples; the number of
folding positions n is 128. For ResNet, the architecture of
the model resembles the model as in He et al. (2016), the
batch size is 64, 300 epochs learning have done, and the
simulation experiment is repeated for ten times, the results
in the tables are medians of all simulation results.

The simulation experiments have been performed on all
thread of Intel Core 17-6700 CPU (3.40GHz) with Ubuntu
18.04, and NVIDA GeForce GTX970 have used for training
ResNet. The experimental program has been implemented
by Python 3 and Keras for ResNet, C ++ for INN-DTW,
INN-FC and 1INN-TAA.

4.2 Simulation Results and Discussion

All simulation results are shown in Table 5, classification
accuracies and computational times for classification of
proposed methods as well as DTW-1NN and ResNet with
raw time series for all the 88 datasets have been presented.
The computational time shown in the table is in
milliseconds. From the experimental results, it is seen that
classification accuracies with ResNet are almost always
better than other methods, but simpler algorithms like 1NN-
based classifiers are better for some datasets that have few
training samples, such as DiatomSizeReduction and Fungi.
It is to be noted that data augmentation or fine tuning are
required for deep neural model if there is only few training
samples.

But the computational times are widely different between
the classification results of ResNet and 1NN-based
classifiers. Especially, FC and TAA based approaches are
much faster to use in real-time situation compared to ResNet
or DTW based classifier. Each method's results have also
been compared using the Wilcoxon signed-rank two-sided
test (Wilcoxon, 1945) in Table 1 and Table 2. Wilcoxon
signed-rank test is a non-parametric statistical hypothesis
test to compare two related samples for check whether there
is any difference between the two samples. For instance, the
null hypothesis "there is no difference between INN-FC and
INN-TAA for classification accuracy”" cannot be reject in
significant level 1% < 17.8%. Other pairs are less than 1%,
that is, there are significant differences for classification
accuracy and predict time.

o1 T
0.8 4 —‘7
0.6 1

0.4
8
0.2 1

]

1

I :

Raw-ResNet FoldCount-INN TimeAxisArea-1NN DTW-1NN

Fig. 4. Box-plot of classification accuracies
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Fig. 5. Box-plot of prediction time

Table 1. Wilcoxon signed-rank test's p values of Table 3. Accuracy differences (ResNet -1NN-FC)

classification accuracies

Accuracy Difference

INN-FC INN-TAA INN-DTW Fungi -0.669
ResNet 0.000 0.000 0.000 DiatomSizeReduction -0.567
INN-FC 0.178 0.000 Wine -0.241
INN-TAA 0.000 BirdChicken 0.000
InlineSkate 0.009
Table 2. Wilcoxon signed-rank test's p values of Plane 0.010
computational times Lightning2 0.016
INN-FC  INN-TAA  INN-DTW Wafer 0.030
ResNet 0.000 0.000 0.000 ECG3000 0.034
INN-FC 0.000 0.000 Mallat 0.037
INN-TAA 0.000 HandOutlines 0.039
Strawberry 0.045
From the comparative study it is found that on the average WormsTwoClass 0.058
of 88 data sets, ResNet achieves quite higher classification Symbols 0.060
accuracy compared to our proposed technique though it is Trac«_e . . 0.060
seen to be comparable to INN-DTW. Table 3 represents 20 RefrigerationDevices 0.065
data sets for which the classification accuracy difference Earthquakes 0.072
computed by ResNet and INN-FC (proposed technique) is Meat_ 0.083
. o . StarLightCurves 0.088
not very large. The negative values indicate INN-FC is BeetleFl 0.100
better. It is noted from the description of those data sets that Y :
in most of them, the shape of the time series plays critical
role in classifying the time series. So for shorter time series,
time series having characteristic shape and in case of
smaller number of training samples, the proposed technique
can have better effect in classification task.
In the proposed approach, raw time series is transformed
into FC and TAA, but effects of preprocessing are not
verified. Therefore, further modification or preprocessing of
the algorithm can possibly improve performance. Regarding
interpretability of an algorithm, the proposed technique is
interpretable and can be applied efficiently to a particular
class of time series data sets in contrast to ResNet or any
deep network based algorithm in which the correlation
between the algorithm and the data set cannot be assessed.
https://doi.org/10.6703/IJASE.202009 17(3).269 275



International Journal of Applied Science and Engineering

Ito et al., International Journal of Applied Science and Engineering, 17(3), 269-280

Table 4. Overview of datasets

Datasets Train Test  Class Length Train Range Test Range
Adiac 390 391 37 177 -1.988 — 2.625 -2.053 - 2.464
ArrowHead 36 175 3 252 -2.257 — 2.554 -2.549 — 2,487
Beef 30 30 5 471 -3.290 - 3.721 -3.386 — 3.151
BeetleFly 20 20 2 513 -2.517 — 2.506 -2.515 - 2,408
BirdChicken 20 20 2 513 -2.825 —2.124 -3.096 — 2.442
CBF 30 900 3 129 -2.317 — 3.245 -3.547 - 3.793
Car 60 60 4 578 -2.210 — 1.991 -2.246 — 2.142
ChlorineConcentration 467 3840 3 167 -11.839 — 7.442  -12.419 — 12.633
CinCECGTorso 40) 1380 4 1640  -8.594 — 10.536 -11.213 - 11.733
Coffee 28 28 2 287 -2.064 — 2.177 2,115 - 2.104
Computers 250 250 2 721 -3.748 — 21.596 -1.611 — 26.387
CricketX 390 390 12 301 -4.766 — 11.494 -5.373 — 12.653
CricketY 390 390 12 301 -9.775 — 6.839 -10.199 — 7.414
CricketZ 390 390 12 301 -4.758 - 11.924 -5.125 - 12.707
DiatomSizeReduction 16 306 4 346 -1.773 — 1.985 -1.979 — 2.447
DistalPhalanxOutline A geGroup 400 139 3 81 -1.994 — 2.058 -1.914 — 2.025
DistalPhalanxOutlineCorrect 600 276 2 81 -2.159 — 2.446 -2.180 — 2.460
DistalPhalanx TW 400 139 6 81 -1.994 — 2.058 -1.897 — 2.000
ECG200 100 100 2 97 -2.617 — 4.199 -3.014 — 4.148
ECG5000 500 4500 5 141 -5.798 — 4.058 -7.090 — 7.402
ECGFiveDays 23 861 2 137 -6.511 — 5.421 -7.108 - 6.033
Earthquakes 322 139 2 513 -0.886 — 7.863 -0.730 - 7.728
ElectricDevices 8926 7711 7 97 -9.696 — 9.696 -6.811 — 9.696
FaceAll 560 1690 14 132 -4.485 — 4.876 -4.823 — 9.189
FaceFour 24 88 4 351 -4.688 — 5.908 -4.252 — 5.345
FacesUCR 200 2050 14 132 -3.959 — 8.739 -4.823 - 9.189
Fifty Words 450 455 50 271 -2.354 - 5.018 -2.522 - 5.281
Fish 175 175 7 464 -1.951 — 2.126 -1.790 — 15.053
FordA 3601 1320 2 501 -4.618 — 5.059 -4.557 — 4.315
FordB 3636 810 2 501 -5.539 — 5.090 -4.088 — 4.930
FreezerRegularTrain 150 2850 2 302 -2.229 - 5.022 -2.230 - 17.148
FreezerSmall Train 28 2850 2 302 -2.227 — 1.425 -2.230 - 17.148
Fungi 18 186 18 202 -1.494 — 80.786 -2.050 — 85.056
GunPoint 50 150 2 151 -2.369 — 2.053 -2.500 - 2.320
Ham 109 105 2 432 -2.054 — 8.033 -1.778 — 9.431
HandOutlines 1000 370 2 2710 -3.218 - 2.090 -2.801 — 1.778
Haptics 155 308 5 1093  -11.147 — 3.123 -14.860 — 3.903
Herring 64 64 2 513 -2.186 — 2.134 -2.209 - 2.074
InlineSkate 100 550 7 1883 -2.263 — 4.339 -2.519 - 3.827
InsectWingbeatSound 220 1980 11 257 -1.082 — 6.421 -1.305 - 6.590
ItalyPowerDemand 67 1029 2 25 -1.991 — 2.425 -2.393 - 3.294
LargeKitchenAppliances 375 375 3 721 -1.575 - 26.796 -1.107 = 25.703
Lightning2 60 6l 2 638 -1.396 - 23.131  -1.447 - 22.683
Lightning7 70 73 7 320 -1.781 - 17.413 -1.728 - 16.641
Mallat 55 2345 8 1025 -1.607 — 2.762 -1.704 — 2.936
Meat 60 60 3 449 -1.542 — 3.390 -1.493 — 3.399
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Table 5. Overview of datasets (Continued)

Datasets Train Test Class  Length Train Range Test Range
MedicalImages 381 760 10 100 -2.392 - 7.222 -2.831 — 8.034
MiddlePhalanxOutlineA geGroup 400 154 3 81 -1.641 - 1.924 -1.719 - 1.722
MiddlePhalanxOutlineCorrect 600 291 2 81 -1.660 — 2.067 -1.719 - 1.876
MiddlePhalanx TW 399 154 6 81 -1.719 - 1.924 -1.585 - 1.712
MoteStrain 20 1252 2 85 -8.400 - 2.468 -8.638 — 8.544
NonlInvasiveFetal ECG Thorax | 1800 1965 42 751 -5.732 - 4.794 -5.750 — 5.195
NonlnvasiveFetal ECGThorax2 1800 1965 42 751 -5.416 — 4.677 -5.360 — 5.634
OSULeaf 200 242 6 428 -3.157 - 3.669 -3.427 — 3.400
OliveOil 30 30 4 571 -1.001 - 3.719 -1.000 — 3.732
PhalangesOutlinesCorrect 1800 858 2 81 -2.159 — 2.446 -2.180 — 2.460
Phoneme 214 1896 39 1025 -13.324 - 8.091  -11.190 — 12.524
Plane 105 105 7 145 -2.113 - 2911 -2.115 - 2.924
ProximalPhalanxOutlineAgeGroup 400 205 3 81 -1.483 - 1.903 -1.442 — 1.824
ProximalPhalanxQOutlineCorrect 600 291 2 81 -1.483 — 1.903 -1.442 — 1.824
ProximalPhalanxTW 400 205 6 81 -1.483 — 1.903 -1.469 - 1.850
RefrigerationDevices 375 375 3 721 -5.466 — 5.590 -4.952 - 7.041
ScreenType 375 375 3 721 -2.922 - 26.796 -7.834 — 26.796
ShapeletSim 20 180 2 501 -1.811 - 1.892 -1.868 — 1.874
ShapesAll 600 600 60 513 -3.220 - 2.819 -3.290 — 2.846
SmallKitchenA ppliances 375 375 3 721 -5.067 — 26.795 -3.875 - 26.795
SonyAIBORobotSurface 1 20 601 2 71 -2.727 - 3.626 -3.626 — 4.002
SonyAIBORobotSurface?2 27 953 2 66 -4.138 — 4.231 -4.021 — 4.502
StarLightCurves 1000 8236 3 1025 -2.678 — 5.288 -2.625 - 5.459
Strawberry 613 370 2 236 -2.328 - 3.682 -2.128 - 3.723
SwedishLeaf 500 625 15 129 -3.412 - 3.222 -2.940 — 3.289
Symbols 25 995 6 399 -2.311 - 2.205 -2.595 — 2.869
SyntheticControl 300 300 6 61 -2.454 - 2.412 -2.619 — 2.605
ToeSegmentation | 40 228 2 278 -3.583 - 3.932 -6.682 — 4.822
ToeSegmentation2 36 130 2 344 -2.636 — 3.926 -3.679 — 5.550
Trace 100 100 4 276 -2.221 - 3.967 -2.392 - 3.937
TwoLeadECG 23 1139 2 83 -3.149 - 1.870 -3.797 - 1.929
TwoPatterns 1000 4000 4 129 -1.939 - 1.939 -1.933 - 1.918
UWaveGesture Library All 896 3582 8 946 -4.434 - 7.628 -5.683 — 6.509
UWaveGestureLibraryX 896 3582 8 316 -4.438 — 4.434 -5.709 - 6.515
UWaveGestureLibraryY 896 3582 8 316 <4.103 — 7.654 -3.867 — 5.228
UWaveGestureLibraryZ 896 3582 8 316 -3.548 - 4.779 -4.296 — 4.864
Wafer 1000 6164 2 153 -3.054 — 11.787 -2.984 - 12.127
Wine 57 54 2 235 -1.943 - 3.201 -1.922 - 3.192
WordSynonyms 267 638 25 271 -2.261 - 5.003 -2.522 - 5.281
Worms 181 77 5 901 4.311 - 4.859 -4.887 — 4.196
WormsTwoClass 181 77 2 901 -4.311 — 4.859 -4.887 — 4.196
Yoga 300 3000 2 427 -2.419 - 2.405 -2.854 — 2.438
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Table 6. Experimental results

Raw-ResNet FoldCount-TNN TimeAxisArea- INN DTW-INN
Dataset Learning Time  Predict Time  Accuracy Predict Time  Accuracy Predict Time  Accuracy | Predict Time  Accuracy
Adiac 125029.849 444.423 0.827 0.021 0.251 0.032 0.501 25.044 0.532
AmowHead 148301.445 433.662 0.849 0.007 0.514 0.006 0.611 1.269 0.697
Beef 74596.158 359.827 0.633 0.003 0.500 0.003 0.467 2.849 0.567
BeetleFly 78856.258 356.226 0.850 0.002 0.750 0.002 0.700 1.510 0.700
BirdChicken 79547.187 357.597 0.850 0.002 0.850 0.002 0.450 0.573 0.750
CBF 381734.281 488.821 0.994 0.015 0.661 0.016 0.672 2.559 0.997
Car 95595.689 373.218 0.908 0.008 0.433 0.011 0.417 15.390 0.767
ChlorineConcentration 417639.460 972.358 0.843 0.201 0.550 0.269 0.538 379.241 0.626
CinCECGTorso 1185173.577 1839.012 0.791 0.256 0.562 0.250 0.560 1746.230 0.692
Coffee 120962.963 355.021 L.000 0.014 0.786 0.008 0.964 0.210 1.000
Computers 220331.440 484.950 0.816 0.043 0.680 0.043 0.632 406.484 0.660
CricketX 175164.436 454710 0.785 0.031 0.438 0.039 0.321 79.083 0.772
CricketY 178266.521 454.294 0.796 0.032 0.408 0.048 0.328 78.443 0.728
CricketZ 182047.549 455.306 0.805 0.034 0.390 0.044 0.331 78.305 0.795
DiatomSizeReduction 447592.985 441.892 0.322 0.021 0.889 0.015 0.879 2.685 0.958
DistalPhalanx Outline A geGroup 92462.856 366.252 0.723 0.013 0.590 0.012 0.640 2.050 0.748
DistalPhalanx OutlineCorrect 107191.593 393.706 0.795 0.018 0.630 0.021 0.678 7.493 0.699
DistalPhalanx TW 104673.435 376.804 0.676 0.007 0.475 0.021 0.597 2.734 0.633
ECG200 74915.238 358.606 0.875 0.010 0.770 0.004 0.740 0.095 0.810
ECG5000 395824.734 1015.393 0.935 0.170 0.902 0.350 0.893 279.297 0.929
ECGFiveDays 517680.967 486.477 0.984 0.015 0.822 0.026 0.720 1.659 0.758
Earthquakes 174916.121 400.325 0.727 0.029 0.655 0.033 0.669 141.670 0.662
ElectricDevices 1326089.383 1370.004 0.729 18.884 0.617 38.606 0.543 4318.372 0.650
FaceAll 217793.082 612.111 0.836 0.075 0.451 0.125 0.411 127.226 0.769
FaceFour 133267.802 373.250 0.955 0.009 0.534 0.005 0.341 2.687 0.841
FacesUCR 207754.868 672.602 0.948 0.056 0.566 0.062 0.512 54.994 0.934
FiftyWords 183946.519 470.401 0.701 0.034 0.343 0.043 0.215 76.551 0.714
Fish 145846.387 416.694 0.971 0.022 0.566 0.024 0.497 87.021 0.811
FordA 1471013.018 883.699 0.936 0.543 0.638 1.751 0.505 7591.564 0.567
FordB 1416649.492 670.404 0.817 0.403 0.596 0.678 0.531 4768.061 0.605
FreezerRegularTrain 501813.981 1078.156 0.999 0.117 0.896 0.125 0.948 191.802 0.920
FreezerSmall Train 1625337.370 1075.469 0.932 0.098 0.786 0.110 0.756 35.802 0.719
Fungi 338452.501 388.140 0.126 0.007 0.796 0.007 0.565 0.129 0.876
GunPoint 115023.791 420.115 0.990 0.004 0.680 0.004 0.827 0.662 0.893
Ham 101389.183 383.766 0.743 0.014 0.543 0.014 0.533 29.831 0.552
HandOutlines 1807790.820 983.649 0.874 0.419 0.835 0.405 0.819 23443.569 0.865
Haptics 278112.929 584.279 0.511 0.059 0.266 0.056 0.325 765.729 0.357
Herring 98230.247 370.198 0.656 0.015 0.453 0.010 0.547 14.159 0.547
InlineSkate 534305.185 1023.797 0.291 0.138 0.282 0.132 0.367 2622.469 0.376
InsectWingbeatSound 326130.248 836.139 0.487 0.075 0.153 0.090 0.184 149.834 0.435
ItalyPowerDemand 265975.108 463.250 0.961 0.013 0.836 0.011 0.805 0.127 0.925
LargeKitchenAppliances 329012.960 571.575 0.891 0.062 0.752 0.066 0.757 387.708 0.835
Lightning2 91499.968 378.611 0.770 0.010 0.754 0.011 0.754 19.054 0.803
Lightning7 81425.820 367.812 0.822 0.025 0.562 0.006 0.425 6.335 0.767
Mallat 1194586.581 1982.350 0.968 0.268 0.931 0.269 0.728 734.422 0.915
Meat 84440.694 367.656 0.883 0.006 0.800 0.012 0.850 8.894 0.867
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Table 7. Experimental results (Continued)

Raw-ResNet FoldCount-INN TimeAxisArea- INN DTW-INN
Dataset Learmning Time  Predict Time  Accuracy | Predict Time  Accuracy | Predict Time  Accuracy | Predict Time  Accuracy
Medicallmages 132081.156 458.402 0.751 0.029 0.616 0.034 0.604 18.041 0.766
MiddlePhalanxQutline A geGroup 92717.344 365.205 0.578 0.008 0.396 0.011 0.487 3.025 0.494
MiddlePhalanxQutlineCorrect 105576.528 386.936 0.818 0.015 0.529 0.023 0.636 7.836 0.636
MiddlePhalanxTW 104712.317 391.568 0.510 0.011 0.305 0.010 0.448 2.017 0.468
MoteStrain 696450.722 499.046 0.922 0.017 0.772 0.014 0.790 0.350 0.890
NonlInvasiveFetalECGThorax | 1279491.548 1447.469 0.953 0.491 0.428 1.189 0.623 10819.214 0.758
NonlInvasiveFetalECGThorax2 1278670.116 1431.964 0.947 0.500 0.516 1.644 0.721 10783.542 0.843
OSULeaf 162491.195 436.816 0,977 0.023 0.566 0.036 0.298 48.315 0.632
OliveQil 83127.123 363.010 0.567 0.014 0.367 0.019 0.833 3.313 0.633
PhalangesOutlinesCorrect 249551.291 449.700 0.837 0.071 0.565 0.234 0.649 72.732 0.679
Phoneme 839740.375 1731.913 0,324 0.255 0.177 0.270 0.114 2823.801 0.270
Plane 108051.158 395.829 1.000 0.012 0.990 0.004 0.848 0.457 1.000
Proximal PhalanxOutline AgeGroup 82162.928 372.267 0.839 0.016 0.654 0.013 0.737 3.548 0.785
ProximalPhalanxOutlineCorrect 93458.148 385.890 0.919 0.019 0.667 0.027 0.698 8.306 0.729
ProximalPhalanxTW 88023.604 369.745 0.776 0.021 0.556 0.012 0.600 3.065 0.741
RefrigerationDevices 310522.109 548.520 0.535 0.063 0.469 0.070 0.435 435.121 0.477
ScreenTy pe 312790.892 553.425 0.628 0.064 0.461 0.078 0.400 393.783 0.413
ShapeletSim 181992.606 422.037 0.931 0.022 0.800 0.014 0.478 13.939 0.778
ShapesAll 346662.006 599.892 0.920 0.079 0.522 0.090 0.407 529.949 0.773
SmallKitchenAppliances 330047.979 573.234 0.752 0.063 0.621 0.067 0.563 390.006 0.696
SonyAIBORobotSurface 1 374001.286 423.091 0,966 0.010 0.805 0.008 0.787 0.088 0.732
SonyAIBORobotSurface2 578033.665 464.232 0.978 0.013 0.621 0.013 0.600 0.309 0.843
StarLightCurves 2588520.640 6062.343 0,974 2.250 0.886 5.023 0.861 46778.334 0.887
Strawberry 180661.494 436475 0,966 0.035 0.922 0.043 0.935 64.682 0.938
SwedishLeaf 136632.578 448.516 0.959 0.030 0.528 0.038 0.610 31.475 0.762
Symbols 633664.205 695.532 0.926 0.045 0.866 0.046 0.855 20.277 0.949
SyntheticControl 90752.972 410.284 0,997 0.016 0.563 0.013 0.573 3.204 0.983
ToeSegmentation| 150702.977 408.871 0.954 0.010 0.842 0.015 0.737 3.494 0.798
ToeSegmentation2 120645.311 386.151 0.908 0.010 0.800 0.007 0.785 7.684 0.846
Trace 79660.783 376.322 L1000 0.010 0.940 0.008 1.000 8.487 0.990
TwoLeadECG 651991.678 489.810 1.000 0.018 0.861 0.014 0.763 0.279 0.922
TwoPatterns 367034.745 925.783 0.983 0.623 0.268 1.163 0.270 511.754 1000
UWaveGestureLibrary All 1320920.413 2673.218 0.846 0.614 0.342 1.087 0.384 15355.783 0.918
UWaveGestureLibraryX 610795.255 1293.986 0773 0.309 0.391 0.754 0.405 1625.963 0.729
UWaveGestureLibrary Y 614737.090 1284.347 0.663 0.306 0.317 0.769 0.326 1618.227 0.644
UWaveGestureLibraryZ 616038.114 1292.523 0.749 0.310 0.381 0.770 0414 1620.951 0.658
Wafer 545608.004 1285.151 0.997 0.731 0.967 2.664 0.981 798.986 0.984
Wine 84334.573 362.018 0.500 0.015 0.741 0.017 0.611 1.323 0.685
WordSynonyms 187079.914 515.874 0.610 0.033 0.315 0.047 0.251 63.568 0.674
Worms 182298.571 398.691 0.734 0.026 0.610 0.028 0.481 147.322 0.519
WormsTwoClass 184298.922 396.439 0.747 0.027 0.688 0.027 0.584 147.939 0.636
Yoga 647321.432 1374.364 0.873 0.181 0.698 0.251 0.687 862.279 0.839
#MEAN 409982.369 715.908 0.809 0.338 0.608 0.688 0.595 1644.598 0.743
#MEDIAN 185689.418 454.502 0.845 0.026 0.603 0.033 0.600 33.639 0.758
#SD 472049.674 724.275 0.182 2.019 0.202 4.144 0.201 5967.368 0.162
5. CONCLUSION samples. Also the black box nature of ResNet hinders the

In this work, a hybrid feature based and similarity based
time series classification approach is proposed and its
performance compared to the most popular (DTW-kNN)
and recent deep network based (ResNet) algorithms have
been investigated. The proposed approach is very fast with
moderate classification accuracy and can be implemented
for real life applications in resource constrained platforms.
With the recent increase of sensor technologies and
smartphone platforms, many smartphone based health care
applications are developing. Those applications require low
computational cost and resources for their implementation.
The proposed approach of time series classification is low
cost and suitable for such applications.

The comparative study with benchmark data sets also
shows that for some of the data sets, the classification
accuracy of the proposed approach is not statistically very
different from DTW-kNN while computational cost is far
less. Though the classification accuracy of the proposed
approach on the average is quite poor compared to ResNet
but implementation of ResNet is restricted to high
computational resources and large number of training

interpretability of the classification process while it is easier
to find out the characteristics of the applicable data sets with
our proposed approach. We have not experimented with
ensemble classifier due to their high computational burden.
As our proposed approach seems to be quite fast and
interpretable, it can be used for many practical applications
where light computational burden is the primary criterion.
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	1. INTRODUCTION

	Time series is a sequence of data that describes the change of the observed phenomenon over time. Due to increased use of sensors, the improvement of computation power and decreased cost of storage, enormous temporal data are collected and stored from...
	learning algorithms for static data are difficult to use directly for temporal data, because of elasticity, periodicity and unequal length of time series. Traditional time series classification algorithms can be roughly grouped into three types — mode...
	The model-based approaches make model of each class from raw time series data by fitting appropriate parameters and classify the given data according to the best fit of the model. The examples are Autoregressive (Kini and Sekhar, 2013), Markov and Hid...
	The feature-based approaches extract features and transform the raw time series into a feature vector before classifying with traditional classification methods. The examples of feature extraction methods are Fourier Transform, Wavelet Transform, Sh...
	The distance-based approaches compare raw time series by a distance metric and assign it to the class of the nearest class sample. Euclidean distance, Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978) and its derivations are the popular metrics used ...
	Recently ensemble based approaches have been developed in which different classifiers are combined to achieve higher performance. Some of the examples are Elastic Ensembles (Lines and Bagnall., 2015), COTE (Bagnall et al., 2015) and HIVE-COTE (Lines e...
	In many real world applications of time series classification, fast and interpretable algorithms capable of producing reasonable classification accuracy with limited resources are needed and research on developing these algorithms is important. As the...
	Though the performance of DTW- kNN is the best regarding classification accuracy among traditional algorithms for most of the applications, the computational complexity is high, of the order of 𝑂(,𝑛-2.) where 𝑛 the length of the time series. There ...
	In this work, an approach to reduce the computational cost of similarity computation of two unequal time series keeping the classification accuracy as high as possible, three new shape based characteristics transformation measures for similarity compu...
	2. Related Background on Time Series Classification

	Among several traditional feature based, model based and similarity based time series classification algorithms, DTW-kNN, the combination of dynamic time warping (DTW) as a similarity measure and k nearest neighbor classification algorithm, is conside...
	In this section a brief description of a few representative popular similarity metrics, feature based representation of time series and classification techniques used in this work are presented.
	2.1 Similarity Metrics

	In similarity based time series classification algorithms, the simplest measure is Euclidean distance, but it cannot be used for unequal time series. The most popular elastic similarity measure is Dynamic Time Warping.
	2.1.1 Euclidean Distance

	Euclidean distance is the simplest similarity measure that defined as below for two same length time series 𝑋=,,𝑥-𝑖..0≤𝑖≤𝑛} and 𝑌=,,𝑥-𝑖..0≤𝑖≤𝑛}. 𝑂(𝑛) is the order of computational complexity for the time series length 𝑛.
	2.1.2 Dynamic Time Warping

	Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978)
	is the most popular time series similarity measure. It computes the shortest matching path of two sequences, as shown in Fig. 1, while finding corresponding segment of one side to another side with a (𝑚+1)×(𝑛+1) cost matrix for X=,,𝑥-𝑖..0≤𝑖≤𝑚} a...
	2.2 Time Series Feature Extraction
	2.2.1 Time Series Bag of Features
	2.2.2 Shapelet
	2.3 Time Series Classification

	In this section, some time series classification methods used in this work have been introduced.
	2.3.1 Residual Network

	Residual Network (ResNet) (He et al., 2016) is a kind of deep convolutional neural network that enabled to learn many layers (more than 10 or 100 layers). Layers of plain networks approximate the function 𝐻(𝑥), but that of ResNet approximate 𝐹=𝐻,...
	Fig. 2. Illustration of ResNet architecture
	learning algorithm - it is the most accurate one with similar runtime to FCN (the second most accurate DNN)." (Fawaz et al., 2019) FCN is Fully Convolutional Neural Networks.
	2.3.2 k-Nearest Neighbor

	k-Nearest Neighbor (k-NN) (Bishop, 1995) is one of the most basic classification method that decides the class of the data by majority classes of 𝑘 of the closest training samples. Distance metrics are used with this classifier to measure the distanc...
	3. Proposed Transformations for TSC

	Time series has variety of characteristics such as elasticity and periodicity, and most of those are expressed as geometric features on the plot. In this work, two new shape based transformation technique of time series for similarity based classifica...
	3.1 Fold Count

	Fold Count (Ito and Chakraborty, 2019) is a time series transformation method that counts the overlaps of time series values along the time, while the time series is approximated as a line plot. The concept is illustrated in Fig. 3. The folding values...
	For the time series 𝑇=,𝑡-1.,…,,𝑡-𝑚., foldings between ,𝑡-𝑖. and ,𝑡-𝑖+1. are counted for all time intervals to the end of the time series; for all 𝑝 ∈ P(n, L, U). Fold Count dissimilarity is defined as sum of differences of 𝐹𝐶(𝑝) for all 𝑝...
	Fig. 3. Illustration of Fold Count Dissimilarity Algorithm (H. and B., 2019)
	3.2 Time Axis Area

	Time Axis Area (TAA) (Ito and Chakraborty, 2019) is a modification of Fold Count algorithm which adds the concept of elasticity in FC. Time Axis Area is the area bounded by the time series if the number of folding positions 𝑛 is taken as infinity. Th...
	4. Simulation Experiments and Results

	In this section simulation experiments and results with benchmark data sets for evaluation of the efficiency of the proposed technique have been presented.
	4.1 Simulation Experiments and Data sets

	Simulation experiments have been done to compare the performance of proposed transformations compared to raw time series for time series classification problems. The performance of nearest neighbor classifier (1NN) with proposed FC and TAA, 1NN-FC and...
	The parameters of FC and TAA are as follows; the lower L and the upper U bounds are minimum value and maximum value of the training samples; the number of folding positions 𝑛 is 128. For ResNet, the architecture of the model resembles the model as in...
	The simulation experiments have been performed on all thread of Intel Core i7-6700 CPU (3.40GHz) with Ubuntu 18.04, and NVIDA GeForce GTX970 have used for training ResNet. The experimental program has been implemented by Python 3 and Keras for ResNet,...
	4.2 Simulation Results and Discussion

	All simulation results are shown in Table 5, classification accuracies and computational times for classification of proposed methods as well as DTW-1NN and ResNet with raw time series for all the 88 datasets have been presented. The computational tim...
	But the computational times are widely different between the classification results of ResNet and 1NN-based classifiers. Especially, FC and TAA based approaches are much faster to use in real-time situation compared to ResNet or DTW based classifier. ...
	Fig. 4. Box-plot of classification accuracies
	Fig. 5. Box-plot of prediction time
	Table 1. Wilcoxon signed-rank test's 𝑝 values of classification accuracies
	Table 2. Wilcoxon signed-rank test's 𝑝 values of computational times
	From the comparative study it is found that on the average of 88 data sets, ResNet achieves quite higher classification accuracy compared to our proposed technique though it is seen to be comparable to 1NN-DTW. Table 3 represents 20 data sets for whic...
	In the proposed approach, raw time series is transformed into FC and TAA, but effects of preprocessing are not verified. Therefore, further modification or preprocessing of the algorithm can possibly improve performance. Regarding interpretability of ...
	deep network based algorithm in which the correlation between the algorithm and the data set cannot be assessed.
	5. Conclusion

	In this work, a hybrid feature based and similarity based time series classification approach is proposed and its performance compared to the most popular (DTW-kNN) and recent deep network based (ResNet) algorithms have been investigated. The proposed...
	The comparative study with benchmark data sets also shows that for some of the data sets, the classification accuracy of the proposed approach is not statistically very different from DTW-kNN while computational cost is far less. Though the classifica...
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