
International Journal of Applied Science and Engineering

Special issue: The 10th International Conference on Awareness Science and Technology (iCAST 2019)

https://doi.org/10.6703/IJASE.202009_17(3).299 299

OPEN ACCESS

Received: April 25, 2020
Revised: July 6, 2020
Accepted: August 27, 2020

Corresponding Author:
Goutam Chakraborty
goutam@iwate-pu.ac.jp

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

A two stage converging genetic algorithm for graph
clustering

Yu-Ching Lu1, Goutam Chakraborty1,2*, Masafumi MatsuHara1

1 Graduate School of Software Information Science, Iwate Prefectural University,

Iwate, Japan
2 Sendai Foundation of Applied Information Sciences, Japan

ABSTRACT

Graph clustering is a classical problem, and is proven to be NP-complete. It is at the
core of many useful algorithms, like Network and VLSI design, computer graphics, data
mining etc. In recent years, with exponential increase in the use of social network and
strong incentive for creating applications exploiting the information hidden in these
networks, clustering of large graphs (social networks) has become an important research
topic. As the problem is NP-complete, various heuristic algorithms are proposed to find
near optimal solutions efficiently. Optimization criteria are defined depending on the
applications. Two important criteria for all heuristic algorithms are quality of the result
and its stability over different runs on the same problem. In this work, we proposed a two
stage genetic algorithm for network clustering. Modularity index for the partitioned
graph is the criterion to optimize. By experimenting with several real-life networks, we
have shown that our algorithm is stable and delivers a high modularity partitioning
compared to other competitive heuristic algorithms. The stability of the algorithm is
analyzed through simulations.

Keywords: Graph clustering, Social network analysis, Multi-objective optimization,
Genetic algorithm.

1. INTRODUCTION

In a random graph, the probability of any pair of nodes being connected are the same,
or it follows some probability distribution. In this paper, we will use the word graph and
network interchangeably, meaning the same thing. There are yet other classes of
networks as follows:

1. Scale Free Networks (SFN), in which there are a few preferential nodes with higher
degrees of connections. Thus, the degree distribution is exponential, with most of the
nodes having very low degree. In scale-free networks (SFN), distance between two
randomly selected nodes is proportional to the logarithm of the number of nodes. This
happens due to preferential connection. Small World Networks form communities, where
nodes within a community are strongly interlinked with short mutual distance. Two
communities are often connected with a few links.

2. There are graphs consisting of dense sub-graphs, and those sub-graphs are sparsely
connected. Those sub-graphs could be nested, and/or overlapping.

The above two types of graphs could be partitioned into clusters of nodes, or
communities. Graph clustering is the problem to identify the dense sub-graphs, where
the elements of the adjacency matrix are non-negative real numbers.

Graph partitioning problem is a classical problem (Kernighan and Lin, 1970; Andreev
and Räcke, 2006) and is proved to be NP-complete (Šíma and Schaeffer, 2006). It is
therefore computationally hard to find the global optimum in case the network consists
of a large number of nodes. Yet, with the exponential increase in the volume of data

mailto:goutam@iwate-pu.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 300

generation and storing, popularity of social networks, on-
line shopping of goods and services, the need for handling
networks with large number of nodes is getting more and
more important.
 Clustering is at the core of solving various important
problems, related to analysis and exploration of data. In the
area of VLSI design (Karypis et al., 1970), parallel
computing, Software engineering, image segmentation (Shi
and Malik, 2000), graph clustering is used. In recent years,
applications have opened up of intuitively clustering of
similar samples in a data set by mapping the data to a
network, where elements of the adjacency matrix are the
similarity between 2 data elements. Clustering of the
network leads to discovering natural groups of similar
elements in the data set. Thus, an important variant of data
clustering is graph clustering where similarity is expressed
by links on a graph. The network of data would reveal
hidden structure of data after clustering. Similar data units
are in the same cluster. The centrality of the cluster of nodes
would reveal the prototype of the group. As the similarity
between data elements could be any real number, the
elements of the adjacency matrix is not just 0 or 1, but a real.
The algorithm proposed in this paper could handle such
links, though all the experiments are restricted to un-
weighted un-directed graphs.

The other important application area is the type of data
that evolves. This type of data originates from social
networks, or purchase records of customers from e-
Commerce Portals.

Several graph clustering algorithms, based on graph
cliques and cuts were proposed. Those algorithms are too
complex for very large graphs. Algorithms like minimum
normalized cut is proved to be NP-complete (Dahlhaus et
al., 1992). In recent years, several heuristic algorithms were
presented (Blondel et al., 2008; Dinh et al., 2015; Aloise et
al., 2010; Newman, 2006). These algorithms optimize
various fitness functions that measure the quality of a cluster
which partitions the graph. Examples of such clustering
measures include modularity index, conductance, local and
relative densities, etc. Thus, a cluster is a connected
subgraph induced by a subset of vertices and edges, where
most of the links from the members of a cluster are internal
edges within the group and a few edges to vertices outside
the group. The clustering algorithm searches for proper
partitioning of the network nodes to optimize one or more
of the above mentioned fitness measures.

Several graph partitioning algorithms are proposed in
recent years. All algorithms have their respective
optimization criterion. Heuristic algorithms, starting with
different random initialization and probabilistic search
decision as it progresses, deliver different results on
different runs. An example is GA based graph clustering
(Chakraborty and Sato, 2017; Lu and Chakraborty, 2019;
Ghosal et al., 2019), where sometimes the convergences are
at different local minimums, giving different results in
different runs. If the network has clear clusters, i.e., the
modularity index is high, there is only a deep global

minimum and the algorithm always converges there. If the
modularity of the network is low, it would converge at
different shallow minimums, with different clustering
results.

The algorithm proposed in this work is based on GA, and
works in two stages. During the first stage, the optimization
criterion is Q, the modularity index (Newman, 2010). When
it converges, we have an estimate of the Q value of the
network, and we know the cardinalities of different clusters.
We add component in the fitness function to balance the
clusters (Dahlhaus et al., 1992). Based on variance of sizes,
we upgrade our search criterion, to balance it. The fitness
function is changed to multi-modal. In different experiments,
the proposed algorithm showed better results with improved
Q value and more balanced clusters. The results were
compared with popular heuristics by Louvain (Blondel et al.,
2008), Newman (Newman, 2006), and Aloise (Aloise et al.,
2010).

The rest of the paper is as follows. Related works and the
proposed algorithm in the perspective of related works, is
discussed in section 2. In section 3, we explain the proposed
two stage genetic algorithm. In section 4, we describe the
data used and experimental results. The conclusion and
future works are in section 5.

2. PROBLEM DEFINITION AND RELATED

WORKS

Research in network science was initiated by Erdős and
Rényi (1959), by proposing different random network
models and their properties. Around the end of 20th. century,
a special type of random network, called small-world
network (Matsuo, 2003; Matsuo, 2005; Telesford et al.,
2011; Watts and Strogatz, 1998; Barabási et al., 1999)
attracted much attention, because of its ubiquity in many
naturally evolving networks. These networks often form
closely knitted communities. Finding those communities
efficiently, for large networks, became an attractive research
topic for many practical applications. A good survey of
graph clustering is available at Schaeffer (2007).

The original graph partitioning algorithms were 2-way
partitioning, or bi-partitioning. Graph cut (minimizing the
connecting edges of two groups), or quotient cuts
(conductance, where two partitions are balanced) were the
optimization criterion. Spectral graph clustering, using
graph Laplacian are a set of algorithms pioneered by
Fieldler (Fiedler, 1975), and followed by subsequent works
(Pothenf et al., 1990). In general, graphs will form multiple
clusters, and multiway partitioning is more relevant for real-
life networks. Depending on the application, the partition
could be motivated towards finding balanced sub-sets of
nodes, or communities with tight connections. Modularity
index value (Q) of a graph is defined in Clauset et al. (2004),
as shown in Equation (1), in section 3.4, is considered as the
optimization criterion for community detection in many
works following Clauset et al. (2004). Higher modularity

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 301

index means nodes within the same group have higher
probability of being connected. Blondel proposed a fast
heuristic algorithm (Blondel et al., 2008), popularly known
as “The Louvain Method” (from the name of the author’s
city and university). It starts with every node assigned as its
own community. For every node, evaluate modularity gain
by removing it from its present community, and place it to
its neighbor if there is a gain. It is repeated until there is no
more gain (local maximum).

Another approach, proposed by Pascal Pons and Matthieu
Latapy (Pons and Latapy, 2006), using random walks to
compute similarity measure between nodes. This is also
known as the “Walktrap” algorithm. Distance between
nodes are calculated using probabilities for getting from
node i to node j in t random walk steps. The algorithm is
useful for factorization of very sparse matrix, e.g., rating
matrix, for applications like recommendation system (Fouss
et al., 2007). Once the weighted network is constructed, the
optimization objective for clustering could be minimizing
the error nodes, where an error node is one for which the
number of links to nodes in the same group is less than the
number of links going out to another partition.

Recently, there are several works for community
detection using genetic algorithm (Hafez et al., 2012; Shang
et al., 2013; Li et al., 2013; Song et al., 2012), including
those proposed by us (Chakraborty, and Sato, 2017; Lu and
Chakraborty, 2019; Ghosal et al., 2019). In our previous
report in 2017 (Chakraborty and Sato, 2017), the main
contribution was that it could always find the optimum
number of clusters and node assignments after sufficient
generations, but only when the modularity index of the
graph is high. In Lu and Chakraborty (2019), a multi-modal
GA was proposed where the diameter of the clusters was
chosen as another optimization parameter. In some graph
instances, it was more efficient compared to only
modularity considered as the optimization criterion.

In our previous work (Lu and Chakraborty, 2019), we
upgraded the fitness function. In addition to modularity
index, we added another component to balance the clusters.
We used a coefficient 𝛼𝛼 for the node balancing term.

The community structure of network is broadly classified
into 3 categories: (1) communities of nodes with more links
within communities than between communities, (2)
Overlapping communities, (3) Hierarchical communities.
Different community detection algorithms are suitable to
different graph structures. Hierarchical graph partitioning is
proposed in Rossi et al. (2019).

2.1 Background of the Work

Before introducing our proposed algorithm, to emphasize
the problems with clustering various types of graphs, here
we introduce 3 different graph structures. A node is defined
to belong to a community if the number of inward links to
other members of the community is more than outward links
to nodes outside the community.

Overlapping communities are as shown in Fig. 1, where

the membership of node 13 and 14 are in two groups. One
can coalesce overlapping clusters, which will result in poor
balancing. Depending on application, it may be important to
identify overlapping clusters. Gergely et al. (2005) used k-
clique percolation technique to efficiently grouping the
network, and separately identify the two clusters.

Fig. 1. Example of overlapping communities.

Hierarchical clustering of nodes is shown in Fig. 2. With

higher resolution smaller clusters are revealed. This
structure prevails in many real-world networks, like internet
or wide area networks, power grid, etc. The Louvain
Method (Blondel et al., 2008) for community detection is an
efficient way to find hierarchical clustering. In phase 1, it
performs local clustering. In phase 2 communities are
merged recursively to “super nodes’.

Fig. 2. Example of hierarchical communities.

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 302

Recently, many works for community detection tested
their algorithm performance on real-world networks
(Agarwal and Kempe, 2008; Dinh et al., 2015; Aloise et al.,
2010). They try to identify community structure with high
modularity index. For an unknown problem, it is the
modularity index as well as the number of communities are
unknown. For a real-world network there are real
communities, but not known. The target is to discover
similar structure as the original. How good is modularity
index a measure of success is an interesting issue.

In this work, GA is used for community detection. For
GA search the termination condition is an important issue.
In this work, we run the algorithm for a large number of
generations, and convergence occurred before the
preassigned number of generations are over. It is possible to
stop genetic search, when the fitness is not improving over
a certain number of generations. The detail of simulations
and results are explained in section 4.

3. PROPOSED MULTI-OBJECTIVE

GENETIC ALGORITHM

The proposed algorithm is performed in two stages. The
optimization objective changes from stage 1 and stage 2.
The genetic operations, selection, crossover, mutations, are
as in a conventional genetic algorithm, similar to our
previous work (Chakraborty and Sato, 2017). The
pseudocode is as follow:

1. Generate Initial population

2.
Select subset of chromosome based on
cross-over rate. Perform cross-over on the selected
chromosomes.

3. Perform mutation on the selected genes

4.
Fitness evaluation and tournament selection,
from the new set of chromosomes to form
population of the next generation.

5. if (convergence == true)
6 end algorithm
7. Else
8. Go to step 2
9. End

3.1 An Algorithm Development Process
Step 1: Create random chromosomes as initial population.

The chromosome length is the same as the number nodes of
the network.

Step 2: After the crossover and mutation steps, the parents
and off-spring chromosomes are evaluated by the fitness
function.

Step 3: Population for the next generation is selected by
tournament selection. Meanwhile, the Elite preservation
would store the best chromosome till that generation.

Step 4: GA search will continue until it reaches

termination criteria. After convergence, we have the best
chromosomes for all population throughout the entire
generations. The best chromosome is the GA search result,
and will represent the clustering result.

The best chromosome is evaluated by checking the
modularity index only. We do not consider to minimize the
number of error nodes, i.e., nodes with more links outside
its community compared to links to nodes of its own
community, in the objective function. Balancing nodes in
different communities is also considered in the fitness
function, as explained below.

3.2 Creation of the Initial Population

A chromosome is defined as the edge list of the network.
The length of a chromosome is the same as the number
nodes of the network. Here, we explain how different
chromosomes are created, and how they define different
clustering of the network. Let us assume that there are n
nodes in the network, and we labelled them with the ordinal
numbers, from 1 to n. For explanation, we use a 10 nodes
network example, which is shown in Fig. 3. We purposely
used two colors for two groups of nodes, to explicitly show
two communities, a possible partition.

Fig. 3. Example of 10-nodes network.

While the chromosome is created by a random
permutation of n, it will represent different partitions of
the network.

Table 1 and Table 2 show two random permutations
(the second rows of the tables) and corresponding
partitions of the network. By chance, both chromosomes
created 2 partitions. The first row represents the serial
number of nodes, from 1 to 10. The second row, we
randomly put one of the nodes based on the original
network links. In original structure, node 1 has
connection with node 2, 3, and 5. Here, second row entry
is filled with any of the node 2, 3, or 5. In Table 1, node
2 is selected. In the same way, all entries from 1 to 10
are filled. The edges from row 1 entries is connected to
the corresponding row 2 entries, and the generated
network is illustrated. Similarly, from chromosome of
Table 2, we form the network of Fig. 5. How the two
partitions are completed, is explained in section 3.3.

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 303

Table 1. Connection list of the network with
unbalanced clusters.

Table 2. Connection list of the network with balanced
clusters.

Fig. 4. An unbalanced clustering of a 10-nodes network,

clustered in two communities.

Fig. 5. A balanced clustering of a 10-nodes network,

clustered in two communities.

3.3 From Chromosome to Cluster

In this section, we explain how chromosomes are
translated to communities within the network, from what we
had in Fig. 4 and Fig. 5. As in Fig. 4, after all the connections
defined in the chromosome, e.g., node #1 is connected to
node #2, node #2 is connected to node #5, node #3 is
connected to node #1, etc., we end up with two disjoints
groups. Within a connected group of nodes, we further add
the links which were in the original network but not
connected based on the chromosome. We then get 2
subgraphs of the original graph. Both chromosomes create
2 groups of nodes, Fig. 5 is more balanced compared to Fig.
4, and in Fig. 4 node #6 is an error node. For these reasons,
we can claim that Fig. 5 is a better clustering, and
chromosome 2 will have higher fitness value.

3.4 Fitness Evaluation

Most of the recent graph clustering algorithms (Newman,
2010) use Newman’s modularity index (Q) as the metric to
maximize for detecting communities. In our work, two
optimization criteria are used. One optimization criterion is
(Q) of the resulting communities calculated by evaluating
Equation (1).

Q= 1
2𝐸𝐸
∑ ��Ai,j −

kikj

2E
� × 𝛿𝛿�Ci,Cj��𝑖𝑖,𝑗𝑗 (1)

Where, Q is the modularity index, E is the number of
edges of the network. A is the adjacency matrix, where Aij is
the ith row and jth column element. If node i and node j are
connected, Aij returns 1 and otherwise 0. kij is the degree of
node i, and Ci is the community to which node i belongs, as
a result of the partitioning. If node i, and node j belongs to
the same community δ(Ci, Cj) returns 1, and otherwise 0.

A graph has an optimum value of Q∗, when the clusters
are optimally partitioned. Depending on the nature of
connection between nodes, Q∗ could be high or low. When
Q∗ is high, it is easy to get the best community partition,
even with heuristic or random search algorithms like GA.
Most of the time, the global optimal could be found. If Q∗ is
low, there is higher probability for the algorithm to converge
to local minimum, failing to achieve the best clustering
results.

As the Q value is higher for a chromosome, during
genetic search (in the search space of ∏ 𝑘𝑘𝑖𝑖𝑛𝑛

1), it means the
chromosome represents a better community structure.
Therefore, one optimization criterion is to maximize Qi, or
minimize (1− Qi), for the ith chromosome. (1− Qi) ranges
between 0 to 1. The second criteria for optimization is
balancing the number of nodes in different communities.
Though with a less priority compared to modularity index,
we direct the search to balance the nodes in each community.
We use a term representing variance of cardinalities of
different subsets of network partitions. Fitness function will
minimize that.

The aim of genetic search is to minimize the fitness
function (fi) of the ith chromosome. The search is done in
two stages. In the first stage, the fi = (1− Qi). Once the
genetic search converges, we get a community structure
based on every chromosome. Suppose, we have K
communities, and the number of nodes in kth community is
nk. We calculate the term σi (representing variance of node
counts in different clusters) for the ith chromosome as:

𝜎𝜎𝑖𝑖 =
∑ |𝑛𝑛𝑘𝑘 − 𝑛𝑛�|𝐾𝐾
𝑘𝑘=1

𝑛𝑛
 (2)

Where, n is the total number of nodes in the graph, the
average number of nodes per cluster is 𝑛𝑛� = 𝑛𝑛

𝐾𝐾
 , and 0 ≤

𝜎𝜎𝑖𝑖 ≤ 1.
Once stage 1 genetic search converges, the generations

continue with a different fitness function as defined in
Equation (3).

fi = (1 − Qi) + α × σi (3)
The coefficient α tunes the priority between the modularity
Qi of the communities and the variance of the number of
nodes in different communities. We did various experiments
to find proper σ value.

3.5 Crossover and Mutation

A subset of chromosomes, called cross-over pool, are
selected. The cardinality of cross-over pool depends on the

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 304

Crossover probability. If it is set to 90%, 90% of the
chromosomes from the population is randomly selected for
the crossover pool. Two chromosomes from the pool are
then randomly selected for crossover. We used two-point
crossover. The middle part of the two points, from two
chromosomes, are swapped. As, every gene is a valid entry,
we do not need any validity test after crossover. In addition,
for better exploration of the search space and to avoid local
minimum, we use mutation. Because, mutation disrupts a
chromosome, we kept mutation probability to be low. We
randomly replace some of the genes on the chromosome,
with another valid node number, using network adjacency
matrix, so that mutation does not generate an invalid
chromosome.

3.6 Tournament Selection

Tournament selection, with tournament size 2, is used for
selecting an individual from the population. 2 chromosomes,
from the pool of parents and off-springs (after crossover and
mutation) are selected randomly. The one with lower 𝑓𝑓𝑖𝑖
(better chromosome) goes to the population of the next
generation. The “Selective pressure” is low with tournament
size 2. In general, during the beginning of genetic search,
tournament size of 2 is good for better exploration, but while
nearing convergence, the tournament size needs to be
increased. In this work, we kept it same during the whole
generations.

3.7 Convergence Rule

Defining an appropriate termination condition is difficult.
If we terminate early, the resulting solution could be a
shallow local minimum. If we run for many generations, it
will be inefficient. For an unknown network, the optimum
clustering and the corresponding Q value is unknown. The
optimum solution will require computation of the order of
𝑑𝑑𝑛𝑛, where d is the average degree and n is the number of
nodes.

The common convention is to run genetic search for a
large number of generations and expect that the algorithm
will converge to global optimum. The other possibility is to
check whether the fitness is improving or not, for a pre-
assigned few generations in a row. If it does not, the
algorithm ends. In our simulation, we run the algorithm for
a fixed number of generations. We monitor the fitness value
for convergence and stepwise update the value of α to attain
better modularity. Further explanation is available in section
4.3.

4. EXPERIMENTAL RESULTS AND

COMPARISON

We did simulation experiments on different networks, to
evaluate the performance of the proposed algorithm, and
ascertain the appropriate values of parameters so that the
algorithm converges to a good optimal solution efficiently.
We also investigate how appropriate values of the

parameters depend on network size, its optimum modularity
index, etc. We start with a preliminary experiment of small
network with 10 nodes created manually, as shown in Fig.
6. Simulations were performed on a computer with Intel i7-
3930 K CPU @3.20 GHZ and 16 GB RAM. Simulation
programs were written in MATLAB, and codes not
optimized.

4.1 Preliminary Experiment

Fig. 6. Example of 10-nodes network. There is no optimal

clustering defined here.

The nodes in Fig. 6 would be partitioned in different
groups, and the number of clusters the network is
partitioned would be different, depending on the fitness
function. The obtained modularity index value will be
different too. For example, when the network is divided
over the link between the nodes 6 and 8, we have minimum
cut, but the partitions are not balanced, with one group much
larger. If minimum cut is the optimization criterion, this
division will be acceptable. Else, if inter-cluster
conductance or balanced partition are the fitness goals, this
result is not satisfactory.

Table 3. Parameters values for Stage 1 and Stage 2 of

genetic search.
Stage → Stage (1) Stage (2)

Alpha 0 0.01
of generations 10 10
Population size 10 10
Crossover rate 0.2 0.2
Mutation rate 0.01 0.01

 We can apprehend how the community structure changes
when our proposed algorithm runs over generations with
changing optimization objectives. Two simulations were
done: (1) We set the value of α = 0, so that the fitness only
depends on the modularity index Q. Genetic search was run
till convergence of this first stage. (2) We change the value
of α from 0 to 0.01, without resetting the chromosomes we
had after convergence of stage (1). Introduction of a non-
zero α changes the fitness criterion and GA search would
converge at a different state where the number of nodes in

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 305

different partitions are forced to balance. Detail parameters
settings, for this experiment, are shown in Table 3.

Fig. 7. Stage (1) convergence result (α = 0), two
unbalanced clusters, minimum cut, Q = 0.34.

The experiment is performed 30 times. For this small

network, the result of several runs are the same, except the
convergence takes a little longer or shorter generations. For
stage (1), the convergence, almost always, is reached in just
5 generations. Fig. 7 shows the result when GA reaches
stage (1) convergence. The network is divided into two
communities: one community consisting of nodes {#1, #2,
#3, #4, #5, #6, #7} colored yellow, and the other community
consists of nodes {#8, #9, #10}. There is no error node, it is
a lowest cut partitioning, and the modularity index was Q =
0.34. But, the nodes in two groups are not balanced. The
other important question is, whether this partition
maximizes the modularity index or not, in spite of the fact
that the only fitness criterion was the modularity index in
stage (1) of genetic search. For stage (2) simulation, the
fitness function is modified, changing the value of α from 0
to 0.01. This term will drive the genetic search to balance
the number of nodes in the two clusters. Stage (2) search
converges in 3 more generations. Fig. 8 illustrates the
resulting partition, after stage (2) convergence. We have
three groups of nodes, cluster whose members are {#1, #2,
#3, #4} colored yellow, members of the pink community are
{#5, #6, #7}, and the blue community nodes are {#8, #9,
#10}. With α = 0.01, we could achieve communities with
nodes balanced, the number of error node is still zero, and
modularity index Q is improved to 0.39. Another possible
partition would be two groups, one consisting of nodes {#1,
#2, #3, #4, #5}, and the other {#6, #7, #8, #9, #10}. We did
not have that result, with genetic search.

From the results of Fig. 7 and Fig. 8, we can conclude that
by adding the new factor of variance of nodes in the fitness
function, objective of genetic search, we could achieve
balanced partition, which is important in many graph
partitioning applications. In addition, we could improve the
modularity index. How to set the proper value of α, and how

Fig. 8. Communities formed at the end of Stage 2

convergence, 3 clusters are formed, nodes are balanced,
Q = 0.39.

it depends on the size of the problem, are discussed later in
this section.

4.2 GA Parameter Setting

For efficient genetic search, optimal parameter setting is
important. It would result in faster convergence, and to a
better solution. Depending on the problem complexity,
appropriate population size, crossover and mutation rates
are different. For example, larger problems will need large
population size, longer generations, high crossover and
mutation rates, to ensure better exploration of the search
space to avoid converging to local minimum.

During the initial generations, it is important to ensure
sufficient exploration so that the potential region of global
optimum is not missed. Large values of crossover and
mutation probabilities is required to facilitate sufficient
exploration of the search space. On the other hand, large
crossover and mutation probabilities will disrupt
chromosomes which already attained a high fitness value,
and approaching optimum. When chromosomes are near
optimum values, crossover and mutation could destroy the
results achieved during previous generations of search. The
best approach is to start with high crossover and mutation
rates, and slowly reduce them as convergence is approached.
In all our simulations, we take that strategy. The detail about
GA parameter settings in different experiments is explained
in section 4.3. To reduce probability of disrupting good
chromosomes, crossover and mutation rate are reduced in
steps.

In section 4.1, though we have shown that introducing α
improves balance and modularity index of clustering, it is
important to estimate the appropriate value of the coefficient.
An equal priority to the two terms of the fitness function
means (1−Q) ≈ α × σ. At the end of stage 1, we can take the
best chromosome and estimate the value for α. Based on the
value of Q obtained for the network in Fig. 8 obtained after
stage 1, the estimated value of α would be ~0.2, if we assign
equal priority to both fitness terms. But, in actual

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 306

experiment we have seen that a much lower value of α =
0.01 is a better choice. The other approach could be to start
with a low value of α and gradually increase it, and
monitoring the change of modularity index over generations.
In the next section, we discuss simulation results with larger
real world networks. In all simulations, we start with high
crossover and mutation rates, and then gradually decrease.
The starting value of α is zero and slowly increased in steps.

4.3 Experiment with a Real-world Networks

In this section, we explain the simulation and results of
clustering using the proposed genetic algorithm on several
real-world networks. We compared results with three other
popular heuristic algorithms, as proposed by Newman
(2006), Aloise et al. (2010) EIG (Eigenvector-based
algorithm), and Blondel (Blondel et al., 2008) (Louvain
algorithm). The different data used in our simulation
experiments, together with their names and structure details,
are listed in Table 4. The same set of data was used in other
works (Dinh et al., 2015; Aloise et al., 2010). The datasets
are available on the internet (Koblenz, 2013). Short
descriptions of different networks are given here. Zachary's
karate club is a social network of a university karate club,
where 34 nodes are members of the karate club. A link
between a pair of nodes exists when the two members have
interaction outside the club. Dolphin Network contains an
undirected social network of frequent associations between
a pair of dolphins in a community of 62, living off a creek
called Doubtful Sound in New Zealand. “Books about US
Politics” is the network of books published around the year
2004 US presidential election and sold by Amazon.com.
Books are the nodes.

Edges between books represent frequent co-purchasing
of a pair of books by the same buyer. The link weight is 1/0
by a threshold. “Football” network is the American College
Football network, where nodes are teams, and links are
football games between Division IA colleges during the fall
of the year 2000. “Jazz Musicians” is the collaboration
network between a pair of musicians. Each node is a
musician and edge is the relation between two musicians
having played together in a band. The data is collected in
the year 2003. The number of nodes and edges of all
networks is listed in Table 4.

Table 4. Structure of networks for experiments.
ID Name #Nodes #Edges
1 Zachary’s karate club 34 78
2 dolphin’s social

Network 62 159

3 Books about US
politics 105 441

4 American college
football 115 613

5 Jazz musicians 198 2,742

The detail of the GA parameters, as set for our
simulations, is shown in Table 5. As the network size
increases, we increased the initial values of crossover and
mutation rates, for better exploration of the search space.
Population size is fixed throughout generations. Initial value
of α is zero. For network #1 and #2, crossover rate and
mutation rate were decreased in steps of 0.1 and 0.01
respectively. For large networks, e.g., Books, American
College Football, Jazz Musicians, the initial crossover and
mutation rate were higher, and were decreased by 0.1 and
0.01 at each step.

Once there is a convergence, with α = 0, the value of α is
increased, in steps when the GA search converges for a few
generations. Each experiment, with a particular dataset, is
repeated for 30 times. The average of the modularity index
value attained after 200 generations is reported in Table 6.

Table 4. Initial parameters of genetic algorithm.
Network ID #1, #2 #3, #4 #5
Generation 200 200 200

Population size 20 20 20
Alpha 0 0 0

Crossover rate 0.3 0.5 0.9
Mutation rate 0.03 0.05 0.1

For every data, the algorithm converged before running

200 generations. Typical plots of the change of modularity
index with search generations are shown in Fig. 9.

As is evident from Fig. 9, the genetic search converges in
60 to 80 generations. It takes a little more search generations
when the network size increases. As already mentioned, we
started with α = 0, and gradually increased it, after the
modularity index remain same over a predefined number of
generations, which is set at 10 in all simulations.
Immediately after α is increased, the modularity index
improves, as is evident from the step jumps in the plots of
Fig. 9. This is not always clear from Fig. 9, as there are
occasions when the fitness is not changed for a few
generations (< 10), and then increases by itself without
increasing the value of α. The algorithm converges in less
than 100 generations.

The actual membership of nodes to different clusters are
known for two networks: “Zachary’s Karate Club” and
“American College Football”. But, that real-world grouping
does not always make the highest value of modularity index.
In Aloise et al. (2010), the modularity values were claimed
to be optimum, as shown in the rightmost column of Table
6. But, as shown in column second, results from the
proposed algorithm could achieve better or equally good
modularity index compared to any previous works,
especially for “Dolphins social networks” and “Books about
US politics” data.

Modularity index, as defined in Equation (1), is the
measure for ensuring good community structure in a
network. High modularity index value means network have
dense connections between the nodes within community but
sparse connections between nodes in different communities,

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 307

Fig. 9. Improvement of the modularity index with generations, for different networks.

Table 5. Comparison of modularity indices obtained by different algorithms: Equation (1), Louvain algorithm (Blondel et

al., 2008), EIG (Aloise et al., 2010), and Newman (Newman, 2006).
 Proposed

algorithm
Blondel

et al. (2008)
Aloise et al.

(2010) Newman (2006) Eq.(1)

Karate 0.42 0.42 0.42 0.42 0.40
Dolphin (Lusseau, 2003) 0.58 0.42 0.53 0.49 0.38

Books 0.55 0.52 0.53 0.53 −
Football 0.60 0.61 0.60 0.49 0.55

Jazz (Gleiser and Danon, 2003) 0.44 0.44 − 0.42 −

Table 6. Comparison of erroneous nodes of the proposed
algorithm and Louvain algorithm.

 Proposed
algorithm

Louvain
algorithm

Actual
data

Karate 4 11 3
Dolphin 3 3 2
Books 10 4 −

Football 12 8 10
Jazz 7 10 −

if the nodes are properly assigned to their respective
communities.

The actual community information of “Karate”, “Dolphin”
and “Football” data is available. We calculated the
corresponding modularity index, using Equation (1) and
included in the last column of Table 6. Our algorithm could
achieve higher Modularity Index compared to the actual
communities. This is possible, because in real life the
community structure does not always form to attain highest

modularity.
Louvain algorithm (Blondel et al., 2008) is an efficient

heuristic bottom up clustering algorithm which converges
fast. Our algorithm could achieve higher or equally good
fitness values compared to Louvain algorithm (Blondel et
al., 2008). We also compared the result with the
Eigenvector-based algorithm (EIG) (Aloise et al., 2010).
Our algorithm could achieve higher fitness value when the
number of nodes is small, e.g. Karate, Dolphin, and Jazz.
For the large networks, e.g., Books, and Football, our
algorithm and EIG algorithm achieve similar results.

In addition to modularity index, and node balancing, the
other evaluation criterion for good clustering is the number
of error nodes, as explained in section 2.1. In our genetic
search, in the fitness function, it is not included as an
optimization parameter. We are not minimizing the number
of error nodes. In Table 7 we showed the number of error
nodes after convergence. We can see that for the “Dolphin
social networks” data, and “Books on US politics” data, GA

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 308

search did not produce the minimum error node clustering,
though in both cases we could achieve the best modularity
indices.

The number of error nodes are shown in Table 7. Except
for “Books on US Politics”, we could achieve better or
equally good number of error nodes, compared to Louvain
Algorithm. Error nodes from actual data are listed in the last
column. The number of error nodes using the proposed
algorithm is slightly higher than the actual data.

4.4 Stability of the algorithm

As the genetic search starts with random chromosomes,
and because the search space is multi-modal, the solution
often converges to a local minimum. In fact, most of the
heuristic algorithms (like k-means) initialize randomly, and
depending on the initial state, converges to different
solutions. Thus, the stability of result is an important
concern with such algorithms. In this section, we evaluated
the stability of our proposed algorithm, and compared it
with Louvain algorithm (Blondel et al., 2008), which is a
bottom up greedy heuristic algorithm starting with a
randomly selected node.

For evaluation of stability, we ran both the proposed
algorithm and Louvain algorithm for 30 times, for all the 5
networks listed in Table 4. The modularity index values for
4 networks, on 30 different runs, for both algorithms, are
plotted and shown in Fig. 10. “Zakary’s karate club”
network is small with only 34 nodes. Almost all runs
converged to the similar nearly optimum results, except

Louvain converged twice to a bad solution. For “Dolphin
social networks” and “Books on US politics”, the proposed
algorithm did better than Louvain, in all runs, and the
variance of the results are similar.

For the rest two networks, “American College football”
and “Jazz”, the results are similar too. The average of the
modularity indices for all the five networks are given in
Table 6, for the proposed algorithm and Louvain algorithm.
The variance of results were calculated, and presented in
Table 8. The low variance confirms stability of the proposed
algorithm, in comparison to Louvain.

Table 7. Standard deviation of 30 runs.

Networks Louvain
algorithm

Proposed
algorithm

Karate 0.007 0.004
Dolphin 0.004 0.007
Books 0.006 0.002

Football 0 0.004
Jazz 0.003 0.002

5. CONCLUSIONS

The result of community detection in a network depends
on what is the optimization criterion. Depending on the
application, the optimization metric could be different.
There could be cases, where the actual community may not
be the one with highest modularity index. Depending on the
application, the objective function could be Inter-Cluster

Fig. 10. Simulation results from 30 runs.

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 309

Conductance, node balancing, modularity index, or
minimizing error nodes.

In this paper, we proposed a two stage genetic algorithm
for community detection in a network. In stage 1, the
modularity index is maximized, and in stage 2 the fitness
function adds another optimization parameter to balance the
number of nodes in different communities. If the network
consists of highly modular, nearly balanced communities,
the first stage of the algorithm could achieve the optimum
result. The probability of GA to converge in local minimum
is low. When the communities are not well defined or
overlapping, GA and other heuristic algorithms often
converge to local optimum. We have shown, by simulation
experiments, that our two stage algorithm could improve not
only the balance of different clusters but also the modularity
index.

Setting proper balance in the fitness function, between
two optimizing parameters is difficult. In our previous
works (Lu and Chakraborty, 2020), we used fixed α, but
could not achieve optimal solutions. In this works,
monitoring the convergence, we slowly increase alpha value
to avoid local minimum and attain better results.

We need to continue simulation to other networks, with
overlapping and hierarchical clusters, and how to program
the genetic search to explore them in stages. We also need
to run our algorithm on bigger real life networks, and
evaluate the efficiency and efficacy of the algorithm. We
need to explore with fitness function that minimizes the
number of error nodes.

The algorithm is suitable to solve networks of a few
thousand nodes in reasonable time, but does not scale for
networks with the number of nodes counting a million to a
billion. As Ant Colony Optimization (ACO) is faster
compared to GA, we are working to extend our idea to solve
the problems using ACO, and do comparison of
computational efficiency.

ACKNOWLEDGMENT

Part of this research is funded by iMOS research fund,
research promotion wing of Iwate Prefectural University,
Japan and Sendai Foundation of Applied Information
Sciences, Japan.

REFERENCES

Agarwal, G., Kempe, D. 2008. Modularity-maximizing

graph communities via mathematical programming, Eur.
Phys. J. B, 66.

Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S.,
Liberti, L. 2010. Column generation algorithms for exact
modularity maximization in networks, Phys. Rev. E, 82.

Andreev K., Räcke, H. 2006. Balanced graph partitioning,
Theory of Computing Systems, 39, 929–939.

Barabási, Albert-László, Albert, Réka, 1999. Emergence of
scaling in random networks, Science, 286, 509–512.

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.
2008. Fast unfolding of communities in large networks,
Statistical Mechanics: Theory and Experiment.

Chakraborty, G. Sato, N. 2017. A reliable graph clustering
method using genetic algorithm, International
Symposium on Nonlinear Theory and Applications,
Cancun, Mexico, December.

Clauset, A., Newman, M.E.J., Moore, C. 2004. Finding
community structure in very large networks, Physical
Review, 066111.

Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour,
P.D., Yannakal, M. 1992. The complexity of multiway
cuts (Extended Abstract), 24th. Annual ACM STOC,
241–251.

Dinh, T.N., Li X., Thai, M.T. 2015. Network clustering via
maximizing modularity: Approximation algorithms and
theoretical limits, 2015 IEEE International Conference on
Data Mining, Atlantic City, NJ, 101–110.

Erdős, P., Rényi, A., 1959. On random graphs, Publicationes
Mathematicae, 6, 290–297.

Fiedler, M. 1975. A property of eigenvectors of nonnegative
symmetric matrices and its application to graph theory,
Czechoslovak Mathematical Journal, 25, 619–633.

Fouss, F., Pirotte, A., Renders, J.M., Saerens, M. 2007.
Random-Walk computation of similarities between nodes
of a graph with application to collaborative
recommendation, IEEE trans. On Knowledge and Data
Engineering, 19, 355–369.

Gergely, P., Imre, D., Illes, F., Tamas, V. 2005. Uncovering
the overlapping community structure of complex
networks in nature and society, Nature, 435, 814–818.

Ghosal, A.K., Das, N., Bhattacharjee, S., Chakraborty, G.
2019. A fast parallel genetic algorithm based approach for
community detection in large Networks, 11th
International Conference on Communication Systems
and Networks (COMSNETS2019), Bengaluru, India.

Gleiser, P., Danon, L. 2003. Community structure in jazz,
Advances in Complex Systems, 6, 565–573.

Hafez, A.I. Ghali, N.I. Hassanien, A.E., Fahmy, A.A. 2012.
Genetic algorithms for community detection in social
networks, in 12th International Conference on Intelligent
Systems Design and Applications (ISDA), 460–465.

Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S. 1970.
Multilevel hypergraph partitioning: Applications in VLSI
domain, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 7, 69–79.

Kernighan, B.W., Lin, S. 1970. An efficient heuristic
procedure for partitioning graphs, Bell System Technical
Journal, 49, 291–307.

Koblenz Network, 2013. Available: http://konect.uni-
koblenz.de/.

Li, Y., Liu, G., Lao, S.Y. 2013. A genetic algorithm for
community detection in complex networks, Central South
University, 20, 1269–1276.

Lu, Y.C., Chakraborty, G. 2019. Definition and goal of
graph clustering motivation to explore a new Algorithm,”
ICAST conference, Japan.

International Journal of Applied Science and Engineering

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310

https://doi.org/10.6703/IJASE.202009_17(3).299 310

Lu, Y.C., Chakraborty, G. 2020. Improving efficiency of
graph clustering by genetic algorithm using multi-
objective optimization, International Journal of Applied
Science and Engineering.

Lu, Y.C., Chakraborty, G., March, 2019. An efficient graph
clustering algorithm using multiobjective pareto
optimization, Advance Information Technology, 29–30
Taichung, Taiwan.

Lusseau, D. 2003. The emergent properties of a dolphin
social network, Proc. of the Royal Society of London B,
270, 186–188.

Matsuo, Y. 2003. Prediction and discovering small world
network, Society of Artificial Intelligence (in Japanese),
18.

Matsuo, Y. 2005. Network structure and its emergence,
Proceedings of AAAI, 11–14.

Newman, M.E.J. 2006. Modularity and community
structure in networks, Proceedings of the National
Academy of Sciences, 103.

Newman, M.E.J. 2010. Networks: An introduction, Oxford.
Pons, P., Latapy, M. 2006. Computing communities in large

networks using random walks, Graph Algorithms and
Applications, 10, 191–218.

Pothenf, A., Simon, H.D., Liou, K.P. 1990. Partitioning
sparse matrices with eigenvectors of graphs, Industrial
and Applied Mathematics, 11, 430–452.

Rossi, R., Ahmed, N.K., Koh, E., Kim, S. 2019. Linear-time
hierarchical community detection,
https://arxiv.org/pdf/1906.06432.pdf.

Schaeffer, S.E. 2007. Graph dlustering, Computer Science
Review, 1, 27–64.

Shang, R., Bai, J., Jiao, L., Jin, C. 2013. Community
detection based on modularity and an improved genetic
algorithm, Physica A: Statistical Mechanics and its
Applications, 392, 1215–1231.

Shi, J., Malik, J. 2000. Normalized cuts and image
segmentation. Pattern Analysis and Machine
Intelligence”, IEEE Transactions on, 22, 888–905.

Šíma, J., Schaeffer, S.E. 2006. On the np-completeness of
some graph cluster measures. In SOFSEM 2006: Theory
and Practice of Computer Science, 530–537.

Song, Y., Li, J., Zhang, X., Liu, C. 2012. Community
detection using parallel genetic algorithms, Fifth
International Conference on Advanced Computational
Intelligence (ICACI), 374–378.

Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H.,
Laurienti, P.J. 2011. The ubiquity of small-world
networks, Brain Connect, 1, 67–375.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics
of ’Small-World’ networks, Nature, 393.

	A two stage converging genetic algorithm for graph clustering
	ABSTRACT
	1. INTRODUCTION
	2. Problem Definition And Related Works
	2.1 Background of the Work

	Fig. 1. Example of overlapping communities.
	Fig. 2. Example of hierarchical communities.
	3. Proposed Multi-objective Genetic algorithm
	3.1 An Algorithm Development Process
	3.2 Creation of the Initial Population
	3.3 From Chromosome to Cluster
	3.4 Fitness Evaluation
	3.5 Crossover and Mutation
	3.6 Tournament Selection
	3.7 Convergence Rule

	4. Experimental Results and Comparison
	4.1 Preliminary Experiment
	4.2 GA Parameter Setting
	4.3 Experiment with a Real-world Networks
	4.4 Stability of the algorithm

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

