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ABSTRACT 
 

Graph clustering is a classical problem, and is proven to be NP-complete. It is at the 
core of many useful algorithms, like Network and VLSI design, computer graphics, data 
mining etc. In recent years, with exponential increase in the use of social network and 
strong incentive for creating applications exploiting the information hidden in these 
networks, clustering of large graphs (social networks) has become an important research 
topic. As the problem is NP-complete, various heuristic algorithms are proposed to find 
near optimal solutions efficiently. Optimization criteria are defined depending on the 
applications. Two important criteria for all heuristic algorithms are quality of the result 
and its stability over different runs on the same problem. In this work, we proposed a two 
stage genetic algorithm for network clustering. Modularity index for the partitioned 
graph is the criterion to optimize. By experimenting with several real-life networks, we 
have shown that our algorithm is stable and delivers a high modularity partitioning 
compared to other competitive heuristic algorithms. The stability of the algorithm is 
analyzed through simulations. 
 
Keywords: Graph clustering, Social network analysis, Multi-objective optimization, 
Genetic algorithm. 
 
 
1. INTRODUCTION 
 

In a random graph, the probability of any pair of nodes being connected are the same, 
or it follows some probability distribution. In this paper, we will use the word graph and 
network interchangeably, meaning the same thing. There are yet other classes of 
networks as follows: 

1. Scale Free Networks (SFN), in which there are a few preferential nodes with higher 
degrees of connections. Thus, the degree distribution is exponential, with most of the 
nodes having very low degree. In scale-free networks (SFN), distance between two 
randomly selected nodes is proportional to the logarithm of the number of nodes. This 
happens due to preferential connection. Small World Networks form communities, where 
nodes within a community are strongly interlinked with short mutual distance. Two 
communities are often connected with a few links. 

2. There are graphs consisting of dense sub-graphs, and those sub-graphs are sparsely 
connected. Those sub-graphs could be nested, and/or overlapping. 

The above two types of graphs could be partitioned into clusters of nodes, or 
communities. Graph clustering is the problem to identify the dense sub-graphs, where 
the elements of the adjacency matrix are non-negative real numbers. 

Graph partitioning problem is a classical problem (Kernighan and Lin, 1970; Andreev 
and Räcke, 2006) and is proved to be NP-complete (Šíma and Schaeffer, 2006). It is 
therefore computationally hard to find the global optimum in case the network consists 
of a large number of nodes. Yet, with the exponential increase in the volume of data
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generation and storing, popularity of social networks, on-
line shopping of goods and services, the need for handling 
networks with large number of nodes is getting more and 
more important. 
  Clustering is at the core of solving various important 
problems, related to analysis and exploration of data. In the 
area of VLSI design (Karypis et al., 1970), parallel 
computing, Software engineering, image segmentation (Shi 
and Malik, 2000), graph clustering is used. In recent years, 
applications have opened up of intuitively clustering of 
similar samples in a data set by mapping the data to a 
network, where elements of the adjacency matrix are the 
similarity between 2 data elements. Clustering of the 
network leads to discovering natural groups of similar 
elements in the data set. Thus, an important variant of data 
clustering is graph clustering where similarity is expressed 
by links on a graph. The network of data would reveal 
hidden structure of data after clustering. Similar data units 
are in the same cluster. The centrality of the cluster of nodes 
would reveal the prototype of the group. As the similarity 
between data elements could be any real number, the 
elements of the adjacency matrix is not just 0 or 1, but a real. 
The algorithm proposed in this paper could handle such 
links, though all the experiments are restricted to un-
weighted un-directed graphs. 

The other important application area is the type of data 
that evolves. This type of data originates from social 
networks, or purchase records of customers from e-
Commerce Portals. 

Several graph clustering algorithms, based on graph 
cliques and cuts were proposed. Those algorithms are too 
complex for very large graphs. Algorithms like minimum 
normalized cut is proved to be NP-complete (Dahlhaus et 
al., 1992). In recent years, several heuristic algorithms were 
presented (Blondel et al., 2008; Dinh et al., 2015; Aloise et 
al., 2010; Newman, 2006). These algorithms optimize 
various fitness functions that measure the quality of a cluster 
which partitions the graph. Examples of such clustering 
measures include modularity index, conductance, local and 
relative densities, etc. Thus, a cluster is a connected 
subgraph induced by a subset of vertices and edges, where 
most of the links from the members of a cluster are internal 
edges within the group and a few edges to vertices outside 
the group. The clustering algorithm searches for proper 
partitioning of the network nodes to optimize one or more 
of the above mentioned fitness measures. 

Several graph partitioning algorithms are proposed in 
recent years.  All algorithms have their respective 
optimization criterion. Heuristic algorithms, starting with 
different random initialization and probabilistic search 
decision as it progresses, deliver different results on 
different runs. An example is GA based graph clustering 
(Chakraborty and Sato, 2017; Lu and Chakraborty, 2019; 
Ghosal et al., 2019), where sometimes the convergences are 
at different local minimums, giving different results in 
different runs. If the network has clear clusters, i.e., the 
modularity index is high, there is only a deep global 

minimum and the algorithm always converges there. If the 
modularity of the network is low, it would converge at 
different shallow minimums, with different clustering 
results. 

The algorithm proposed in this work is based on GA, and 
works in two stages. During the first stage, the optimization 
criterion is Q, the modularity index (Newman, 2010). When 
it converges, we have an estimate of the Q value of the 
network, and we know the cardinalities of different clusters. 
We add component in the fitness function to balance the 
clusters (Dahlhaus et al., 1992). Based on variance of sizes, 
we upgrade our search criterion, to balance it. The fitness 
function is changed to multi-modal. In different experiments, 
the proposed algorithm showed better results with improved 
Q value and more balanced clusters. The results were 
compared with popular heuristics by Louvain (Blondel et al., 
2008), Newman (Newman, 2006), and Aloise (Aloise et al., 
2010). 

The rest of the paper is as follows. Related works and the 
proposed algorithm in the perspective of related works, is 
discussed in section 2. In section 3, we explain the proposed 
two stage genetic algorithm. In section 4, we describe the 
data used and experimental results.  The conclusion and 
future works are in section 5. 
 
2. PROBLEM DEFINITION AND RELATED 

WORKS 
 

Research in network science was initiated by Erdős and 
Rényi (1959), by proposing different random network 
models and their properties. Around the end of 20th. century, 
a special type of random network, called small-world 
network (Matsuo, 2003; Matsuo, 2005; Telesford et al., 
2011; Watts and Strogatz, 1998; Barabási et al., 1999) 
attracted much attention, because of its ubiquity in many 
naturally evolving networks. These networks often form 
closely knitted communities. Finding those communities 
efficiently, for large networks, became an attractive research 
topic for many practical applications. A good survey of 
graph clustering is available at Schaeffer (2007). 

The original graph partitioning algorithms were 2-way 
partitioning, or bi-partitioning. Graph cut (minimizing the 
connecting edges of two groups), or quotient cuts 
(conductance, where two partitions are balanced) were the 
optimization criterion. Spectral graph clustering, using 
graph Laplacian are a set of algorithms pioneered by 
Fieldler (Fiedler, 1975), and followed by subsequent works 
(Pothenf et al., 1990). In general, graphs will form multiple 
clusters, and multiway partitioning is more relevant for real-
life networks. Depending on the application, the partition 
could be motivated towards finding balanced sub-sets of 
nodes, or communities with tight connections. Modularity 
index value (Q) of a graph is defined in Clauset et al. (2004), 
as shown in Equation (1), in section 3.4, is considered as the 
optimization criterion for community detection in many 
works following Clauset et al. (2004). Higher modularity 
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index means nodes within the same group have higher 
probability of being connected. Blondel proposed a fast 
heuristic algorithm (Blondel et al., 2008), popularly known 
as “The Louvain Method” (from the name of the author’s 
city and university). It starts with every node assigned as its 
own community. For every node, evaluate modularity gain 
by removing it from its present community, and place it to 
its neighbor if there is a gain. It is repeated until there is no 
more gain (local maximum). 

Another approach, proposed by Pascal Pons and Matthieu 
Latapy (Pons and Latapy, 2006), using random walks to 
compute similarity measure between nodes. This is also 
known as the “Walktrap” algorithm. Distance between 
nodes are calculated using probabilities for getting from 
node i to node j in t random walk steps. The algorithm is 
useful for factorization of very sparse matrix, e.g., rating 
matrix, for applications like recommendation system (Fouss 
et al., 2007). Once the weighted network is constructed, the 
optimization objective for clustering could be minimizing 
the error nodes, where an error node is one for which the 
number of links to nodes in the same group is less than the 
number of links going out to another partition.  

Recently, there are several works for community 
detection using genetic algorithm (Hafez et al., 2012; Shang 
et al., 2013; Li et al., 2013; Song et al., 2012), including 
those proposed by us (Chakraborty, and Sato, 2017; Lu and 
Chakraborty, 2019; Ghosal et al., 2019). In our previous 
report in 2017 (Chakraborty and Sato, 2017), the main 
contribution was that it could always find the optimum 
number of clusters and node assignments after sufficient 
generations, but only when the modularity index of the 
graph is high. In Lu and Chakraborty (2019), a multi-modal 
GA was proposed where the diameter of the clusters was 
chosen as another optimization parameter. In some graph 
instances, it was more efficient compared to only 
modularity considered as the optimization criterion. 

In our previous work (Lu and Chakraborty, 2019), we 
upgraded the fitness function. In addition to modularity 
index, we added another component to balance the clusters. 
We used a coefficient 𝛼𝛼 for the node balancing term. 

The community structure of network is broadly classified 
into 3 categories: (1) communities of nodes with more links 
within communities than between communities, (2) 
Overlapping communities, (3) Hierarchical communities. 
Different community detection algorithms are suitable to 
different graph structures. Hierarchical graph partitioning is 
proposed in Rossi et al. (2019). 
 
2.1 Background of the Work 

Before introducing our proposed algorithm, to emphasize 
the problems with clustering various types of graphs, here 
we introduce 3 different graph structures. A node is defined 
to belong to a community if the number of inward links to 
other members of the community is more than outward links 
to nodes outside the community. 

Overlapping communities are as shown in Fig. 1, where 

the membership of node 13 and 14 are in two groups. One 
can coalesce overlapping clusters, which will result in poor 
balancing. Depending on application, it may be important to 
identify overlapping clusters. Gergely et al. (2005) used k-
clique percolation technique to efficiently grouping the 
network, and separately identify the two clusters. 
 

 
Fig. 1. Example of overlapping communities. 

 
Hierarchical clustering of nodes is shown in Fig. 2. With 

higher resolution smaller clusters are revealed. This 
structure prevails in many real-world networks, like internet 
or wide area networks, power grid, etc. The Louvain 
Method (Blondel et al., 2008) for community detection is an 
efficient way to find hierarchical clustering. In phase 1, it 
performs local clustering. In phase 2 communities are 
merged recursively to “super nodes’. 

 

 
Fig. 2. Example of hierarchical communities. 
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Recently, many works for community detection tested 
their algorithm performance on real-world networks 
(Agarwal and Kempe, 2008; Dinh et al., 2015; Aloise et al., 
2010). They try to identify community structure with high 
modularity index. For an unknown problem, it is the 
modularity index as well as the number of communities are 
unknown. For a real-world network there are real 
communities, but not known. The target is to discover 
similar structure as the original. How good is modularity 
index a measure of success is an interesting issue.  

In this work, GA is used for community detection. For 
GA search the termination condition is an important issue. 
In this work, we run the algorithm for a large number of 
generations, and convergence occurred before the 
preassigned number of generations are over. It is possible to 
stop genetic search, when the fitness is not improving over 
a certain number of generations. The detail of simulations 
and results are explained in section 4. 
 
3. PROPOSED MULTI-OBJECTIVE 

GENETIC ALGORITHM 
 

The proposed algorithm is performed in two stages. The 
optimization objective changes from stage 1 and stage 2. 
The genetic operations, selection, crossover, mutations, are 
as in a conventional genetic algorithm, similar to our 
previous work (Chakraborty and Sato, 2017). The 
pseudocode is as follow: 

1. Generate Initial population 

2. 
Select subset of chromosome based on 
cross-over rate. Perform cross-over on the selected 
chromosomes. 

3. Perform mutation on the selected genes 

4. 
Fitness evaluation and tournament selection, 
from the new set of chromosomes to form 
population of the next generation. 

5. if (convergence == true) 
6 end algorithm 
7. Else 
8. Go to step 2 
9. End 

 

3.1 An Algorithm Development Process 
Step 1: Create random chromosomes as initial population. 

The chromosome length is the same as the number nodes of 
the network. 

Step 2: After the crossover and mutation steps, the parents 
and off-spring chromosomes are evaluated by the fitness 
function. 

Step 3: Population for the next generation is selected by 
tournament selection. Meanwhile, the Elite preservation 
would store the best chromosome till that generation. 

Step 4: GA search will continue until it reaches 

termination criteria. After convergence, we have the best 
chromosomes for all population throughout the entire 
generations. The best chromosome is the GA search result, 
and will represent the clustering result. 

The best chromosome is evaluated by checking the 
modularity index only. We do not consider to minimize the 
number of error nodes, i.e., nodes with more links outside 
its community compared to links to nodes of its own 
community, in the objective function. Balancing nodes in 
different communities is also considered in the fitness 
function, as explained below. 
 
3.2 Creation of the Initial Population 

A chromosome is defined as the edge list of the network. 
The length of a chromosome is the same as the number 
nodes of the network. Here, we explain how different 
chromosomes are created, and how they define different 
clustering of the network. Let us assume that there are n 
nodes in the network, and we labelled them with the ordinal 
numbers, from 1 to n. For explanation, we use a 10 nodes 
network example, which is shown in Fig. 3. We purposely 
used two colors for two groups of nodes, to explicitly show 
two communities, a possible partition. 
 

 
Fig. 3. Example of 10-nodes network. 

 
While the chromosome is created by a random 
permutation of n, it will represent different partitions of 
the network.  

Table 1 and Table 2 show two random permutations 
(the second rows of the tables) and corresponding 
partitions of the network. By chance, both chromosomes 
created 2 partitions. The first row represents the serial 
number of nodes, from 1 to 10. The second row, we 
randomly put one of the nodes based on the original 
network links. In original structure, node 1 has 
connection with node 2, 3, and 5. Here, second row entry 
is filled with any of the node 2, 3, or 5. In Table 1, node 
2 is selected. In the same way, all entries from 1 to 10 
are filled. The edges from row 1 entries is connected to 
the corresponding row 2 entries, and the generated 
network is illustrated. Similarly, from chromosome of 
Table 2, we form the network of Fig. 5. How the two 
partitions are completed, is explained in section 3.3. 
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Table 1. Connection list of the network with 
unbalanced clusters. 

 
 

Table 2. Connection list of the network with balanced 
clusters. 

 
 

 
Fig. 4. An unbalanced clustering of a 10-nodes network, 

clustered in two communities. 
 

 
Fig. 5. A balanced clustering of a 10-nodes network, 

clustered in two communities. 
 
3.3 From Chromosome to Cluster 

In this section, we explain how chromosomes are 
translated to communities within the network, from what we 
had in Fig. 4 and Fig. 5. As in Fig. 4, after all the connections 
defined in the chromosome, e.g., node #1 is connected to 
node #2, node #2 is connected to node #5, node #3 is 
connected to node #1, etc., we end up with two disjoints 
groups. Within a connected group of nodes, we further add 
the links which were in the original network but not 
connected based on the chromosome. We then get 2 
subgraphs of the original graph. Both chromosomes create 
2 groups of nodes, Fig. 5 is more balanced compared to Fig. 
4, and in Fig. 4 node #6 is an error node. For these reasons, 
we can claim that Fig. 5 is a better clustering, and 
chromosome 2 will have higher fitness value. 
 
3.4 Fitness Evaluation 

Most of the recent graph clustering algorithms (Newman, 
2010) use Newman’s modularity index (Q) as the metric to 
maximize for detecting communities. In our work, two 
optimization criteria are used. One optimization criterion is 
(Q) of the resulting communities calculated by evaluating 
Equation (1). 
 

Q= 1
2𝐸𝐸
∑ ��Ai,j −

kikj

2E
� × 𝛿𝛿�Ci,Cj��𝑖𝑖,𝑗𝑗  (1) 

Where, Q is the modularity index, E is the number of 
edges of the network. A is the adjacency matrix, where Aij is 
the ith row and jth column element. If node i and node j are 
connected, Aij returns 1 and otherwise 0. kij is the degree of 
node i, and Ci is the community to which node i belongs, as 
a result of the partitioning. If node i, and node j belongs to 
the same community δ(Ci, Cj) returns 1, and otherwise 0. 

A graph has an optimum value of Q∗, when the clusters 
are optimally partitioned. Depending on the nature of 
connection between nodes, Q∗ could be high or low. When 
Q∗ is high, it is easy to get the best community partition, 
even with heuristic or random search algorithms like GA. 
Most of the time, the global optimal could be found. If Q∗ is 
low, there is higher probability for the algorithm to converge 
to local minimum, failing to achieve the best clustering 
results. 

As the Q value is higher for a chromosome, during 
genetic search (in the search space of ∏ 𝑘𝑘𝑖𝑖𝑛𝑛

1 ), it means the 
chromosome represents a better community structure. 
Therefore, one optimization criterion is to maximize Qi, or 
minimize (1− Qi), for the ith chromosome. (1− Qi) ranges 
between 0 to 1. The second criteria for optimization is 
balancing the number of nodes in different communities. 
Though with a less priority compared to modularity index, 
we direct the search to balance the nodes in each community. 
We use a term representing variance of cardinalities of 
different subsets of network partitions. Fitness function will 
minimize that. 

The aim of genetic search is to minimize the fitness 
function (fi) of the ith chromosome. The search is done in 
two stages. In the first stage, the fi = (1− Qi). Once the 
genetic search converges, we get a community structure 
based on every chromosome. Suppose, we have K 
communities, and the number of nodes in kth community is 
nk. We calculate the term σi (representing variance of node 
counts in different clusters) for the ith chromosome as: 

𝜎𝜎𝑖𝑖 =
∑ |𝑛𝑛𝑘𝑘 − 𝑛𝑛�|𝐾𝐾
𝑘𝑘=1

𝑛𝑛
 (2) 

Where, n is the total number of nodes in the graph, the 
average number of nodes per cluster is 𝑛𝑛� = 𝑛𝑛

𝐾𝐾
 , and 0 ≤

𝜎𝜎𝑖𝑖 ≤ 1. 
Once stage 1 genetic search converges, the generations 

continue with a different fitness function as defined in 
Equation (3). 

fi = (1 − Qi) + α × σi (3) 
The coefficient α tunes the priority between the modularity 
Qi of the communities and the variance of the number of 
nodes in different communities. We did various experiments 
to find proper σ value. 
 
3.5 Crossover and Mutation 

A subset of chromosomes, called cross-over pool, are 
selected. The cardinality of cross-over pool depends on the 
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Crossover probability. If it is set to 90%, 90% of the 
chromosomes from the population is randomly selected for 
the crossover pool. Two chromosomes from the pool are 
then randomly selected for crossover. We used two-point 
crossover. The middle part of the two points, from two 
chromosomes, are swapped. As, every gene is a valid entry, 
we do not need any validity test after crossover. In addition, 
for better exploration of the search space and to avoid local 
minimum, we use mutation. Because, mutation disrupts a 
chromosome, we kept mutation probability to be low. We 
randomly replace some of the genes on the chromosome, 
with another valid node number, using network adjacency 
matrix, so that mutation does not generate an invalid 
chromosome. 
 
3.6 Tournament Selection 

Tournament selection, with tournament size 2, is used for 
selecting an individual from the population. 2 chromosomes, 
from the pool of parents and off-springs (after crossover and 
mutation) are selected randomly. The one with lower 𝑓𝑓𝑖𝑖 
(better chromosome) goes to the population of the next 
generation. The “Selective pressure” is low with tournament 
size 2. In general, during the beginning of genetic search, 
tournament size of 2 is good for better exploration, but while 
nearing convergence, the tournament size needs to be 
increased. In this work, we kept it same during the whole 
generations. 
 
3.7 Convergence Rule 

Defining an appropriate termination condition is difficult. 
If we terminate early, the resulting solution could be a 
shallow local minimum. If we run for many generations, it 
will be inefficient. For an unknown network, the optimum 
clustering and the corresponding Q value is unknown. The 
optimum solution will require computation of the order of 
𝑑𝑑𝑛𝑛, where d is the average degree and n is the number of 
nodes. 

The common convention is to run genetic search for a 
large number of generations and expect that the algorithm 
will converge to global optimum. The other possibility is to 
check whether the fitness is improving or not, for a pre-
assigned few generations in a row. If it does not, the 
algorithm ends. In our simulation, we run the algorithm for 
a fixed number of generations. We monitor the fitness value 
for convergence and stepwise update the value of α to attain 
better modularity. Further explanation is available in section 
4.3. 
 
4. EXPERIMENTAL RESULTS AND 

COMPARISON 
 

We did simulation experiments on different networks, to 
evaluate the performance of the proposed algorithm, and 
ascertain the appropriate values of parameters so that the 
algorithm converges to a good optimal solution efficiently. 
We also investigate how appropriate values of the 

parameters depend on network size, its optimum modularity 
index, etc. We start with a preliminary experiment of small 
network with 10 nodes created manually, as shown in Fig. 
6. Simulations were performed on a computer with Intel i7-
3930 K CPU @3.20 GHZ and 16 GB RAM. Simulation 
programs were written in MATLAB, and codes not 
optimized. 
 
4.1 Preliminary Experiment 

 

 
Fig. 6. Example of 10-nodes network. There is no optimal 

clustering defined here. 
 

The nodes in Fig. 6 would be partitioned in different 
groups, and the number of clusters the network is 
partitioned would be different, depending on the fitness 
function. The obtained modularity index value will be 
different too. For example, when the network is divided 
over the link between the nodes 6 and 8, we have minimum 
cut, but the partitions are not balanced, with one group much 
larger. If minimum cut is the optimization criterion, this 
division will be acceptable. Else, if inter-cluster 
conductance or balanced partition are the fitness goals, this 
result is not satisfactory. 

 
Table 3. Parameters values for Stage 1 and Stage 2 of 

genetic search. 
Stage → Stage (1) Stage (2) 

Alpha 0 0.01 
# of generations 10 10 
Population size 10 10 
Crossover rate 0.2 0.2 
Mutation rate 0.01 0.01 

 
  We can apprehend how the community structure changes 
when our proposed algorithm runs over generations with 
changing optimization objectives. Two simulations were 
done: (1) We set the value of α = 0, so that the fitness only 
depends on the modularity index Q. Genetic search was run 
till convergence of this first stage. (2) We change the value 
of α from 0 to 0.01, without resetting the chromosomes we 
had after convergence of stage (1). Introduction of a non-
zero α changes the fitness criterion and GA search would 
converge at a different state where the number of nodes in 
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different partitions are forced to balance. Detail parameters 
settings, for this experiment, are shown in Table 3. 
 

 
Fig. 7. Stage (1) convergence result (α = 0), two 
unbalanced clusters, minimum cut, Q = 0.34. 

 
The experiment is performed 30 times. For this small 

network, the result of several runs are the same, except the 
convergence takes a little longer or shorter generations. For 
stage (1), the convergence, almost always, is reached in just 
5 generations. Fig. 7 shows the result when GA reaches 
stage (1) convergence. The network is divided into two 
communities: one community consisting of nodes {#1, #2, 
#3, #4, #5, #6, #7} colored yellow, and the other community 
consists of nodes {#8, #9, #10}. There is no error node, it is 
a lowest cut partitioning, and the modularity index was Q = 
0.34. But, the nodes in two groups are not balanced. The 
other important question is, whether this partition 
maximizes the modularity index or not, in spite of the fact 
that the only fitness criterion was the modularity index in 
stage (1) of genetic search. For stage (2) simulation, the 
fitness function is modified, changing the value of α from 0 
to 0.01. This term will drive the genetic search to balance 
the number of nodes in the two clusters. Stage (2) search 
converges in 3 more generations. Fig. 8 illustrates the 
resulting partition, after stage (2) convergence. We have 
three groups of nodes, cluster whose members are {#1, #2, 
#3, #4} colored yellow, members of the pink community are 
{#5, #6, #7}, and the blue community nodes are {#8, #9, 
#10}. With α = 0.01, we could achieve communities with 
nodes balanced, the number of error node is still zero, and 
modularity index Q is improved to 0.39. Another possible 
partition would be two groups, one consisting of nodes {#1, 
#2, #3, #4, #5}, and the other {#6, #7, #8, #9, #10}. We did 
not have that result, with genetic search. 

From the results of Fig. 7 and Fig. 8, we can conclude that 
by adding the new factor of variance of nodes in the fitness 
function, objective of genetic search, we could achieve 
balanced partition, which is important in many graph 
partitioning applications. In addition, we could improve the 
modularity index. How to set the proper value of α, and how 

 
Fig. 8. Communities formed at the end of Stage 2 

convergence, 3 clusters are formed, nodes are balanced,  
Q = 0.39. 

 
it depends on the size of the problem, are discussed later in 
this section. 
 
4.2 GA Parameter Setting 

For efficient genetic search, optimal parameter setting is 
important. It would result in faster convergence, and to a 
better solution. Depending on the problem complexity, 
appropriate population size, crossover and mutation rates 
are different. For example, larger problems will need large 
population size, longer generations, high crossover and 
mutation rates, to ensure better exploration of the search 
space to avoid converging to local minimum. 

During the initial generations, it is important to ensure 
sufficient exploration so that the potential region of global 
optimum is not missed. Large values of crossover and 
mutation probabilities is required to facilitate sufficient 
exploration of the search space. On the other hand, large 
crossover and mutation probabilities will disrupt 
chromosomes which already attained a high fitness value, 
and approaching optimum. When chromosomes are near 
optimum values, crossover and mutation could destroy the 
results achieved during previous generations of search. The 
best approach is to start with high crossover and mutation 
rates, and slowly reduce them as convergence is approached. 
In all our simulations, we take that strategy. The detail about 
GA parameter settings in different experiments is explained 
in section 4.3. To reduce probability of disrupting good 
chromosomes, crossover and mutation rate are reduced in 
steps. 

In section 4.1, though we have shown that introducing α 
improves balance and modularity index of clustering, it is 
important to estimate the appropriate value of the coefficient. 
An equal priority to the two terms of the fitness function 
means (1−Q) ≈ α × σ. At the end of stage 1, we can take the 
best chromosome and estimate the value for α. Based on the 
value of Q obtained for the network in Fig. 8 obtained after 
stage 1, the estimated value of α would be ~0.2, if we assign 
equal priority to both fitness terms. But, in actual 
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experiment we have seen that a much lower value of α = 
0.01 is a better choice. The other approach could be to start 
with a low value of α and gradually increase it, and 
monitoring the change of modularity index over generations. 
In the next section, we discuss simulation results with larger 
real world networks. In all simulations, we start with high 
crossover and mutation rates, and then gradually decrease. 
The starting value of α is zero and slowly increased in steps. 
 
4.3 Experiment with a Real-world Networks 

In this section, we explain the simulation and results of 
clustering using the proposed genetic algorithm on several 
real-world networks. We compared results with three other 
popular heuristic algorithms, as proposed by Newman 
(2006), Aloise et al. (2010) EIG (Eigenvector-based 
algorithm), and Blondel (Blondel et al., 2008) (Louvain 
algorithm). The different data used in our simulation 
experiments, together with their names and structure details, 
are listed in Table 4. The same set of data was used in other 
works (Dinh et al., 2015; Aloise et al., 2010). The datasets 
are available on the internet (Koblenz, 2013). Short 
descriptions of different networks are given here. Zachary's 
karate club is a social network of a university karate club, 
where 34 nodes are members of the karate club. A link 
between a pair of nodes exists when the two members have 
interaction outside the club. Dolphin Network contains an 
undirected social network of frequent associations between 
a pair of dolphins in a community of 62, living off a creek 
called Doubtful Sound in New Zealand. “Books about US 
Politics” is the network of books published around the year 
2004 US presidential election and sold by Amazon.com. 
Books are the nodes. 

Edges between books represent frequent co-purchasing 
of a pair of books by the same buyer. The link weight is 1/0 
by a threshold. “Football” network is the American College 
Football network, where nodes are teams, and links are 
football games between Division IA colleges during the fall 
of the year 2000. “Jazz Musicians” is the collaboration 
network between a pair of musicians. Each node is a 
musician and edge is the relation between two musicians 
having played together in a band. The data is collected in 
the year 2003. The number of nodes and edges of all 
networks is listed in Table 4. 
 

Table 4. Structure of networks for experiments. 
ID Name #Nodes #Edges 
1 Zachary’s karate club 34 78 
2 dolphin’s social 

Network 62 159 

3 Books about US 
politics 105 441 

4 American college 
football 115 613 

5 Jazz musicians 198 2,742 
 
 

The detail of the GA parameters, as set for our 
simulations, is shown in Table 5. As the network size 
increases, we increased the initial values of crossover and 
mutation rates, for better exploration of the search space. 
Population size is fixed throughout generations. Initial value 
of α is zero. For network #1 and #2, crossover rate and 
mutation rate were decreased in steps of 0.1 and 0.01 
respectively. For large networks, e.g., Books, American 
College Football, Jazz Musicians, the initial crossover and 
mutation rate were higher, and were decreased by 0.1 and 
0.01 at each step. 

Once there is a convergence, with α = 0, the value of α is 
increased, in steps when the GA search converges for a few 
generations. Each experiment, with a particular dataset, is 
repeated for 30 times. The average of the modularity index 
value attained after 200 generations is reported in Table 6. 

 
Table 4. Initial parameters of genetic algorithm. 
Network ID #1, #2 #3, #4 #5 
Generation 200 200 200 

Population size 20 20 20 
Alpha 0 0 0 

Crossover rate 0.3 0.5 0.9 
Mutation rate 0.03 0.05 0.1 

 
For every data, the algorithm converged before running 

200 generations. Typical plots of the change of modularity 
index with search generations are shown in Fig. 9. 

As is evident from Fig. 9, the genetic search converges in 
60 to 80 generations. It takes a little more search generations 
when the network size increases. As already mentioned, we 
started with α = 0, and gradually increased it, after the 
modularity index remain same over a predefined number of 
generations, which is set at 10 in all simulations. 
Immediately after α is increased, the modularity index 
improves, as is evident from the step jumps in the plots of 
Fig. 9. This is not always clear from Fig. 9, as there are 
occasions when the fitness is not changed for a few 
generations (< 10), and then increases by itself without 
increasing the value of α. The algorithm converges in less 
than 100 generations. 

The actual membership of nodes to different clusters are 
known for two networks: “Zachary’s Karate Club” and 
“American College Football”. But, that real-world grouping 
does not always make the highest value of modularity index. 
In Aloise et al. (2010), the modularity values were claimed 
to be optimum, as shown in the rightmost column of Table 
6. But, as shown in column second, results from the 
proposed algorithm could achieve better or equally good 
modularity index compared to any previous works, 
especially for “Dolphins social networks” and “Books about 
US politics” data. 

Modularity index, as defined in Equation (1), is the 
measure for ensuring good community structure in a 
network. High modularity index value means network have 
dense connections between the nodes within community but 
sparse connections between nodes in different communities, 
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Fig. 9. Improvement of the modularity index with generations, for different networks. 

  
Table 5. Comparison of modularity indices obtained by different algorithms: Equation (1), Louvain algorithm (Blondel et 

al., 2008), EIG (Aloise et al., 2010), and Newman (Newman, 2006). 
 Proposed 

algorithm 
Blondel 

et al. (2008) 
Aloise et al. 

(2010) Newman (2006) Eq.(1) 

Karate 0.42 0.42 0.42 0.42 0.40 
Dolphin (Lusseau, 2003) 0.58 0.42 0.53 0.49 0.38 

Books 0.55 0.52 0.53 0.53 − 
Football 0.60 0.61 0.60 0.49 0.55 

Jazz (Gleiser and Danon, 2003) 0.44 0.44 − 0.42 − 
 

Table 6. Comparison of erroneous nodes of the proposed 
algorithm and Louvain algorithm. 

 Proposed 
algorithm 

Louvain 
algorithm 

Actual  
data 

Karate 4 11 3 
Dolphin 3 3 2 
Books 10 4 − 

Football 12 8 10 
Jazz 7 10 − 

 
if the nodes are properly assigned to their respective 
communities. 

The actual community information of “Karate”, “Dolphin” 
and “Football” data is available. We calculated the 
corresponding modularity index, using Equation (1) and 
included in the last column of Table 6. Our algorithm could 
achieve higher Modularity Index compared to the actual 
communities. This is possible, because in real life the 
community structure does not always form to attain highest 

modularity. 
Louvain algorithm (Blondel et al., 2008) is an efficient 

heuristic bottom up clustering algorithm which converges 
fast. Our algorithm could achieve higher or equally good 
fitness values compared to Louvain algorithm (Blondel et 
al., 2008). We also compared the result with the 
Eigenvector-based algorithm (EIG) (Aloise et al., 2010). 
Our algorithm could achieve higher fitness value when the 
number of nodes is small, e.g. Karate, Dolphin, and Jazz. 
For the large networks, e.g., Books, and Football, our 
algorithm and EIG algorithm achieve similar results. 

In addition to modularity index, and node balancing, the 
other evaluation criterion for good clustering is the number 
of error nodes, as explained in section 2.1. In our genetic 
search, in the fitness function, it is not included as an 
optimization parameter. We are not minimizing the number 
of error nodes. In Table 7 we showed the number of error 
nodes after convergence. We can see that for the “Dolphin 
social networks” data, and “Books on US politics” data, GA 



International Journal of Applied Science and Engineering 
 

Lu et al., International Journal of Applied Science and Engineering, 17(3), 299–310 
 

 
https://doi.org/10.6703/IJASE.202009_17(3).299                  308 
 

search did not produce the minimum error node clustering, 
though in both cases we could achieve the best modularity 
indices. 

The number of error nodes are shown in Table 7. Except 
for “Books on US Politics”, we could achieve better or 
equally good number of error nodes, compared to Louvain 
Algorithm. Error nodes from actual data are listed in the last 
column. The number of error nodes using the proposed 
algorithm is slightly higher than the actual data. 
 
4.4 Stability of the algorithm 

As the genetic search starts with random chromosomes, 
and because the search space is multi-modal, the solution 
often converges to a local minimum. In fact, most of the 
heuristic algorithms (like k-means) initialize randomly, and 
depending on the initial state, converges to different 
solutions. Thus, the stability of result is an important 
concern with such algorithms. In this section, we evaluated 
the stability of our proposed algorithm, and compared it 
with Louvain algorithm (Blondel et al., 2008), which is a 
bottom up greedy heuristic algorithm starting with a 
randomly selected node. 

For evaluation of stability, we ran both the proposed 
algorithm and Louvain algorithm for 30 times, for all the 5 
networks listed in Table 4. The modularity index values for 
4 networks, on 30 different runs, for both algorithms, are 
plotted and shown in Fig. 10. “Zakary’s karate club” 
network is small with only 34 nodes. Almost all runs 
converged to the similar nearly optimum results, except 

Louvain converged twice to a bad solution. For “Dolphin 
social networks” and “Books on US politics”, the proposed 
algorithm did better than Louvain, in all runs, and the 
variance of the results are similar. 

For the rest two networks, “American College football” 
and “Jazz”, the results are similar too. The average of the 
modularity indices for all the five networks are given in 
Table 6, for the proposed algorithm and Louvain algorithm. 
The variance of results were calculated, and presented in 
Table 8. The low variance confirms stability of the proposed 
algorithm, in comparison to Louvain. 
 

Table 7. Standard deviation of 30 runs. 

Networks Louvain 
algorithm 

Proposed 
algorithm 

Karate 0.007 0.004 
Dolphin 0.004 0.007 
Books 0.006 0.002 

Football 0 0.004 
Jazz 0.003 0.002 

 
5. CONCLUSIONS 
 

The result of community detection in a network depends 
on what is the optimization criterion. Depending on the 
application, the optimization metric could be different. 
There could be cases, where the actual community may not 
be the one with highest modularity index. Depending on the 
application, the objective function could be Inter-Cluster 

 

 
 

 
Fig. 10. Simulation results from 30 runs.
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Conductance, node balancing, modularity index, or 
minimizing error nodes. 

In this paper, we proposed a two stage genetic algorithm 
for community detection in a network. In stage 1, the 
modularity index is maximized, and in stage 2 the fitness 
function adds another optimization parameter to balance the 
number of nodes in different communities. If the network 
consists of highly modular, nearly balanced communities, 
the first stage of the algorithm could achieve the optimum 
result. The probability of GA to converge in local minimum 
is low. When the communities are not well defined or 
overlapping, GA and other heuristic algorithms often 
converge to local optimum. We have shown, by simulation 
experiments, that our two stage algorithm could improve not 
only the balance of different clusters but also the modularity 
index. 

Setting proper balance in the fitness function, between 
two optimizing parameters is difficult. In our previous 
works (Lu and Chakraborty, 2020), we used fixed α, but 
could not achieve optimal solutions. In this works, 
monitoring the convergence, we slowly increase alpha value 
to avoid local minimum and attain better results. 

We need to continue simulation to other networks, with 
overlapping and hierarchical clusters, and how to program 
the genetic search to explore them in stages. We also need 
to run our algorithm on bigger real life networks, and 
evaluate the efficiency and efficacy of the algorithm. We 
need to explore with fitness function that minimizes the 
number of error nodes. 

The algorithm is suitable to solve networks of a few 
thousand nodes in reasonable time, but does not scale for 
networks with the number of nodes counting a million to a 
billion. As Ant Colony Optimization (ACO) is faster 
compared to GA, we are working to extend our idea to solve 
the problems using ACO, and do comparison of 
computational efficiency. 
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