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ABSTRACT

In recent years, SDN has gained a lot of popularity. There is a basic principle behind
the growth of SDN which states the separation of the control plane from the data plane.
In the data plane, all the network devices constitute whereas in the control plane the core
element is situated known as SDN controller. The controller is the integral element of
SDN based network. It manages the entire network and maintains the overall
functionality. In the last years, there are many SDN controllers came into existence. This
paper aims to provide the experimental comparison among the seven most used SDN
controllers both in research and industry. The comparison and experimentation analysis
is carried out in an emulator tool known as Mininet with four different network
topologies (single, linear, tree, custom) and the varied number of nodes (10, 50, 100, 500,
1000). The parameters for comparison are Round Trip Time (minimum, maximum,
average) and standard deviation. This paper will prove to be beneficial for the researchers
and industry people who are making use of these SDN controllers, it will help them to
choose a particular controller and analyze their performance against the selected network
topologies and number of hosts.

Keywords: SDN controllers, Network topology, Nodes, Performance, Analysis.

1. INTRODUCTION

Until now, most network equipment’s are configured individually by connecting to
them. On one hand, this method is costly in time for big networks and in the hand subject
to human error. SDN or software-defined network is an approach that allows separating
the different component of the networking infrastructure (Software and Hardware)
(Badotra and Singh, 2017; Papavassiliou, 2020). By separating the different component,
SDN helps the network administrators to manage, optimize configure and secure network
services very fast due to SDN dynamic and automated program. SDN is not dependent
on any proprietary software or hardware due to its specific architecture (Badotra and
Panda, 2020).

Its architecture is separated between 3 layers: application (Business Applications),
control (Network Services) and infrastructure (OpenFlow Switch). Application layer
communicate, via API (application programming interface) the needed resources and
comportment to the SDN controller (in the control layer) (de Almeida Amazonas, 2014).
The application layer can help the control layer for decision-making by collecting
information from him. The control layer gets instructions from the application layer and
transmits them to the infrastructure layer (Rowshanrad et al., 2014). It also gathers
information’s from the infrastructure layer and sends them back to the application layer
(statistics, host tracks, and issues). The infrastructure layer role is to manage the
forwarding data process (between devices and with the control layer). Between different
layer north and south protocol is used and between devices in the same layer, west and
east protocol is used. As we can see, the controllers play an essential role in the SDN
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architecture (Horvath et al., 2015).

About the role of controllers and SDN controller is the
application in SDN architecture which manages the flow
control, it’s the brain in this architecture. There are 2 types
of SDN controller, SDN controller for NFV (Network
function virtualization) in the data center and SDN
controller to manage the switches in the network. The SDN
controllers can play various roles in the SDN architecture
such as allow the servers to tell the switches where the
packets must be sent. There are many SDN controllers like
Pox (Prete et al., 2014), ODL (Badotra and Singh, 2017),
ONOS (Berde et al., 2014), Ryu (Badotra and Singh, 2019),
Trema (Fernandez, 2013), Floodlight (Morales et al., 2015),
and NOX (Zhang et al., 2014) which are coded in different
languages (Python for Pox, Ruby for Trema, and Java for
ODL, etc.) with different performances and applications.

The aim of the proposed work is to find out the
differences in the performance of the different controllers
with respect to the number of hosts, switches, Min time,
Average time, Max time, and Mean deviation time for four
different topologies (single, linear, tree, custom) on mininet
testbed. For experimentation we have considered seven
different popularly used SDN controllers (default or
reference controller, Pox, Ryu, Floodlight, ONOS, ODL,
and Trema).

The structure of the paper can be categorized into
multiple sections. In section 2 related works are depicted
with the research gaps. The methodology used for the
experimentation is illustrated in section 3. In section 4 the
results and analysis are provided. At last, the conclusion is
given in section 5.

2. RELATED WORKS

In the recent time with the emergence in the field of SDN,
many researchers have contributed towards the selection of
the controller. In this section, related works in choosing the
best controller are depicted.

Shah et al. (2013) had selected four different open-source
SDN controllers for experimentation namely NOX, Beacon,
Maestro, and Floodlight. The comparison was made on the
basis of architectural view and memory which is shared
among the multi-core machines. The comparison among
Pox, Ryu, Trema, Floodlight, and ODL was made by the
Khondoker et al. (2014). As per the author's selection of the
best SDN controller for a network is based on Multi-Criteria
Decision Making (MCDM). It is because making use of
different varied properties of an SDN controller is one of the
crucial tasks for the users. A procedure for the comparison
and testing of the different Opensource SDN controllers is
illustrated by Shalimov et al. (2013). They have made use
of NOX, Pox, Beacon, Floodlight, Maestro, and Ryu for
their experimentation and analysis. The parameters for the
comparison were security, latency, reliability, throughput,
latency, and scalability. Al-Somaidai et al. (2014) illustrated
a discussion on five different versions of OpenFlow based

switch having different versions such as 1.0, 1.1, 1.2, 1.3
and 1.4. In order to perform the experimentation 4 different
platforms (simulation and emulation) were used. 7 different
types of controllers including NOX, Pox, Floodlight, ODL,
Ryu, Mul and Beacon were considered.

Rowshanrad et al. (2016) evaluated the performance of
the Floodlight and ODL. They had considered network QoS
parameters. They had evaluated latency on the basis of three
modes. One mode is having low network load the second
one is having a mid load network and the last one is
comprised of a heavy load network. For this, they had
performed the experimentation on three different network
topologies (single linear and tree).

Vishnu priya and Radhika (2019) had compared the
performance of some of the popularly used OpenFlow
controllers like NOX, Pox, Ryu, FloodLight and OpenFlow
reference controller. The parameter for the comparison was
based on their ability of data packet handling capacity. The
authors had varied the different packet sizes, a number of
packets, and patterns of arrival.

Badotra and Panda (2019) had compared the ODL and
ONOS on the basis of burst rate, bandwidth, Round Trip
Time (RTT) and throughput. They had made use of mininet
emulation tools and Wireshark to capture the real data
packets in the network.

The performance analysis of popular SDN controllers
with respect to different topologies and a number of hosts/
switches used in the network is still an open problem. In the
proposed work we have analyzed the efficiency of the
different controllers with respect to aforementioned
parameters.

3. METHODOLOGY

In order to evaluate the performance of the different
controllers, we have executed the experimentation by using
the Mininet emulation tool. It is a tool that creates the virtual
environment for different machines. It is very helpful in
running the different network topologies within a few
seconds. Every time for new network topology and different
SDN controller we have executed the cleanup process for
the experiment. This will help to avoid any previous logs
and cache data.

The methodology of the experimentation is depicted in
Fig. 1. We have compared the performance of seven
different SDN controllers which are illustrated as follows:

* Reference Controller: 1t is a default SDN controller in
the mininet. It is also known as the reference or inbuilt
Mininet controller. With the help of reference
controller we can run different network topologies
(default and custom).

e Trema: The SDN controller which includes a
framework in which we can create any element by
making use of programming languages such as Ruby
and C.
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* Floodlight: 1t is an SDN controller which makes use
of Java programming language to run its functionality.
The support for a higher number of network routers,
switches and other elements are there. This controller
can sustain with both OpenFlow and non OpenFlow
protocols.

* Pox: It is an open-source SDN controller developed in
Python. One the advantage of Pox is to be easy to set
up (install and run). Pox controller is already installed
with the official Mininet Virtual Machine.

* Ryu: It is another OpenFlow SDN controller which is
based on component rich functions. It is expanded by
NTT labs. It is comprised of multiple defaults
functionalities such as wuser isolation, network
topology visibility, and support for different
customized network controlled applications.

e ODL: ODL or Open Daylight, founded on the 8 of
April 2013 is an open-source SDN the controller
developed in Java. The project is as part of The Linux
Foundation and it’s the larger open-source, SDN
controller.

* ONOS: ONOS or Open Network Operating System,
founded in 2014, is also an open-source SDN
controller, written in Java and like ODL is a part of The
Linux Foundation collaborative project. The
advantage of this controller is high performance and
availability and scalability.

About the topologies: In Mininet (Network Emulator for
SDN), Network topologies are created with the command
“sudo mn”, the created hosts switch (OpenFlow switch),
controller (Pox, Ryu, Trema) and computer act and works
like real devices. Mininet permits the creation of different
topologies, from | switch to n switch with multiple host and
various link. It allows the creation of custom topology as
well. During this experimentation, we used 4 topologies:
Single, Linear, Tree and Custom topology, and a different
number of hosts: from 10 to 1024 host. Single: The default
topology, it incorporates 1 OpenFlow switch connected and
N host connected to the switch. The switch is connected to
the controller. To create a single topology: “sudo mn — topo
= single, N” where N is the number of the host. Linear:
Linear topology incorporates N switch for N host: each host
is connected to 1 switch and each switch is connected to the
controller. To create a linear topology: “sudo mn — topo =
linear, N” where N is the number of host/switch. Tree: Tree
topology has 1 switch and others are linked to it based on a
fanout number. For example, a fanout number of 5 means 5
OpenFlow switch with 5 hosts connected to every switch.
To create a tree topology: “sudo mn — topo = linear, depth =
x, fanout = y”. Custom: Custom topology are created in
Python; custom topology allows you almost everything like
2 switches and only 1 host etc. In this experimentation we
have switch linked together and all the host are connected
to the 2 switches. To launch a custom topology: “sudo mn —
custom topology name.py — topo my topo”.

Reference

Controller

FloodLight

Different SDN
Controllers

" ®

Mininet

Performance

Different Network
Topologies

Different
Number of Hosts|
and Switches

Fig. 1. Methodology
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4. RESULT AND ANALYSIS

In this section analysis of 4 different attributes (minimum
time, maximum time, average time and standard deviation)
with respect to 4 different network topologies (single, linear,
tree and custom) is illustrated. The comparison and analysis
are carried out in a virtual environment of the Mininet
emulation tool. The virtual machines are comprised of 32
bit Ubuntu machine 16 GB RAM and i7 processor. The
mininet machine is connected to the other machines (where
controllers are placed) through a layer 2 virtual switch.

Analysis of minimum RTT: In Fig. 2 it can be clearly
seen that minimum RTT among all controllers against the
rate of the increased number of hosts is taken by ODL. This
indicates the good performance of a controller which takes
less time to respond with the increased number of hosts. In

Minimum time in Single Topology

1]

single topology for 10 numbers of hosts, ODL is taking
0.024 ms, whereas for 1000 number of hosts it is taking only
0.023 ms time to establish a connection that is less than
other controllers. In the case of linear topology, ODL is
taking 0.029 ms time against 1000 hosts whereas for 10
numbers of hosts it is taking 0.025 ms. In tree topology, it
can be observed that for 9 a number of hosts 0.032 ms time
and on the other hand for an increased number of hosts
(1024), it is taking only 0.031 ms.

In case of custom topology having for 10, 1000 number
of hosts, ODL is taking minimum time i.e. 0.035 ms and
0.018 ms. This clearly indicates that ODL takes the
minimum time to establish the connectivity among the hosts.
With the increase in the number of hosts, the minimum time
is taken by the ODL controller. This makes the
ODL perform better in the aforementioned topologies and
other parameters as shown in Fig. 2.
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Fig. 2. Minimum time analysis
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Maximum time in Single Topology

Maximum time in Tree Topology
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Fig. 3. Maximum time analysis

Analysis of maximum RTT: In Fig. 3(a), the maximum
RTT taken by the controllers against the varied number of
hosts is illustrated. The maximum RTT taken by the SDN
controllers is depicting the extreme time taken by the source
and destination hosts to establish a communication. It is one
of the important parameters to evaluate the performance of
a controller. In single topology, for 10 numbers of hosts
ODL controller is taking the maximum RTT of 7.657 ms and
for 1000 hosts Pox controller takes 67.631 ms RTT. For 9
hosts in a tree topology, the maximum RTT is 33.907 ms
which is happened in the case of the Pox controller. On the

other hand, when the number of hosts is increased to 1024
the maximum RTT is achieved by the Floodlight controller
in case of tree topology.

When the same scenario mentioned above is executed in
case of linear and custom topology, it is observed from Fig.
3(b) that for 10 numbers of hosts the maximum RTT is
35.332 ms, 44.256 ms which is happened in the case of the
Pox controller. When the numbers of hosts are increased to
1000 in case of both the topologies the maximum 552.772
ms (Pox) and 524.668 ms (Floodlight).
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Average time in Single Topology

Average time in Linear Topology
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Fig. 4. Average time analysis

Analysis of average RTT: In Fig. 4 the average RTT
analysis of all the selected topologies against the different
SDN controllers is depicted. In every case, the average RTT

varies. It illustrates the varied functionality among the
number of hosts and the type of network topology. The
average time is directly proportional to the number of nodes
in the network and used network topology.
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Standard Deviation (mdev) time in Single Topology Standard Deviation (mdev) in Linear Topology
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Fig. 5. Standard deviation analysis

Analysis of standard deviation (mdev is a standard
acronym used for standard deviation): In Fig. 5 the
standard deviation of ping times for all the selected SDN
controllers. Like other experimentation procedure done
earlier, numbers of hosts are ranging from 10-1000 and Fig.
5 illustrates the time in ms against the seven selected
parameters.

5. CONCLUSIONS

With the varied availability of multiple SDN controllers,
it creates a lot of ambiguity to select the best controller. In
this paper, we have evaluated the performance analysis of
seven SDN controllers in a network prototype emulator
(Mininet). For evaluation, one of the crucial parameters was
RTT. From experimentation, we have evaluated that
different controller performs differently and their
performance is directly proportional to the network load
(Number of hosts, switches). For real network, when
aforementioned controllers are chosen this research work
would prove to be beneficial for various network
administrators to analyses the performance.
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