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ABSTRACT 
 

Unbound Knapsack Problems (UKP) are important research topics in many fields like 
portfolio and asset selection, selection of minimum raw materials to reduce the waste, 
and generating keys for cryptosystems. Given the uncertainty in data, capacity, and time 
constraints, users have to look at the possible combination of data to get maximum 
benefit. This paper uses UKP as a numerical model to represent different industrial 
combination problems. It applies Evolutionary Algorithms (EA) with Bound Constrained 
Strategy (BCS) to construct a search space and algorithm parameters for finding the 
optimal solution. Evolutionary Algorithms (EA) like Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO) are designed based on reusable components for the 
algorithms to converge faster. Simulation for various objectives indicates that the GA 
and PSO can find the near-optimal solution in all cases. The execution time of GA and 
PSO for different goals and the variations in the algorithm parameters are measured. The 
measurement result shows the performance of GA and PSO is the same on an average 
for the differences in bounded constraints and parameter settings. 

 
Keywords: Unbound knapsack problem, Constrained optimization, Genetic algorithm, 
Particle swarm optimization, Evolutionary algorithms. 
 

 
1. INTRODUCTION 
 

Evolutionary Algorithms (EA) are generally perceived as fruitful optimization 
techniques with regards to unconstrained streamlining. The use of EA to constrained 
optimization has lately picked up attention. Looking for an ideal solution in the search 
space with certain constraints on the optimization tasks led to the development of the 
constrained optimization techniques. In many optimization problems, constraints result 
from physical boundaries on the input data, time limit, problem-specific considerations, 
and limitations on the problem resources. This is especially obvious with regards to 
black-box and random input based optimization techniques. The conceptual perspective 
of EA is very less matured. Subsequently, the development of EA techniques on 
constrained optimization issues has become popular among researchers. Few 
applications of constrained optimization are finding the collision probability between 
robot and obstacle using a chance-constrained nonlinear model of predictive control 
problem (Zhu and Alonso-Mora, 2019), Delay-Optimal Joint Processing in 
Computation-Constrained Fog Radio Access Networks (Han et al., 2019), Sensor 
determination technique that limits the input sample size, subject to the requirements on 
the error probabilities and sensor uses (Li et al., 2019), Stochastic Spacecraft Trajectory 
Optimization with the Consideration of Chance Constraints (Chai et al., 2020) and so on. 

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en
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Unbound Knapsack Problem (UKP) is a search 
constrained optimization problem emerging from many 
real-world problems like budget allocation, project 
management, and traffic scheduling, etc. There are 
restrictions to the physical bounds of input data, limited 
resources, time, and solution parameters. In this paper, UKP 
is defined as the problem of finding the set of items 𝐼𝐼𝑠𝑠 in 
the search space 𝑆𝑆  of N-dimensional real coordinate 
space 𝑅𝑅𝑁𝑁. The objective function 𝑓𝑓(𝐼𝐼𝑠𝑠)or error function to 
find the feasible solution for the UKP is defined in 
Equations (1)-(3).  
Minimize: 𝑓𝑓(𝐼𝐼𝑠𝑠)= 𝐶𝐶 − ∑ 𝑁𝑁𝐶𝐶𝑖𝑖𝑛𝑛

𝑖𝑖=1 × 𝑊𝑊𝑖𝑖             (1)                     
Maximize :  ∑ 𝑁𝑁𝐶𝐶𝑖𝑖 × 𝑉𝑉𝑖𝑖𝑛𝑛

𝑖𝑖=1                         (2)                                
𝐼𝐼𝑠𝑠 ⊆ 𝑆𝑆 ⊆ 𝑅𝑅𝑁𝑁                                     (3) 
where 𝐶𝐶 is the maximum capacity of Knapsack, 𝑁𝑁𝐶𝐶𝑖𝑖 is the 
number of copies of item i, 𝑊𝑊𝑖𝑖 is the weight of item i and 
𝑉𝑉𝑖𝑖 is the value of item i respectively and 1≤ i ≤ n. 

Recently, optimization techniques have incorporated 
evolutionary algorithms with adaptive strategies. 
Evolutionary algorithms with structure mutations are 
proposed in Yuan et al. (2015). Optimization is the process 
of obtaining the best outcome under a given set of 
circumstances. Many population-based search techniques 
have surfaced to become a mainstay of optimization. These 
techniques rely on search ideologies that work based on 
manipulating samples, which are representatives of the 
search sub-regions within the solution landscape (Chen et 
al., 2011). 

Constrained optimization models are developed to find 
the best solution, either minimize or maximize the goal 
specified in the objective function and helping the decision-
makers to take the best action in a reasonable time. Some of 
the challenges of dynamic constrained optimization are 
discussed in Nguyen and Yao (2012). The optimization 
technique is an important research topic when dealing with 
the uncertainty of the data. The design of an optimal 
controller to minimize the integral of squared error (ISE) of 
the closed-loop system for an interval plant via evolutionary 
approaches is proposed in Hsu and Yu (2004). The advent 
of modern computing technologies has enhanced the size 
and complexity of optimization problems that can be solved 
in a reasonable time. 

Summarizing, the main contribution of this paper is 
fourfold: (1) To utilize the advantages of EA to find the best 
optimal solution in a reasonable time using bound constrain 
strategies. (2) To build a reusable EA procedure for solving 
two different types of UKP based real-world problem. (3) 
To present a system implementation, based on the proposed 
strategy. (4) Finally, to evaluate scalability and the 
computational cost of EAs with two optimization objectives, 
namely, coverage by minimum error and maximum profit. 
 
2. RELATED WORKS 
 

Advancement in Machine Learning in recent years has 

contributed to several methods for solving real-world 
problems. The quest for an optimal solution for the real-
world problems is based on the choice of decision variables 
and restricted to unique constraints of the search space for 
the solution. UKP refers to many real-world problems like 
group seat reservation of knapsack problems (Deplano et al., 
2019); many researchers and engineers work to find the best 
alternative. UKP can also be included in the Multiobjective 
Optimization Problem (MOP), with two or more objectives 
to solve. Many researchers in the past were involved in 
solving the MOP, but the metaheuristic based Evolutionary 
Algorithms have gained popularity in recent years. Despite 
the intense research activities, there are a few open 
challenges to the algorithm designs and the scalability of the 
objective functions, as discussed in Coello et al. (2019). 

Different optimization algorithms are used in the current 
industry like Teaching Learning Based  Evolutionary 
Algorithms (EA) for finding the optimal global solution 
(Satapathy et al., 2013). EA is an artificial intelligence 
technique for finding the optimal solution inspired by 
natural evolution. In this paper, GA and PSO are considered 
to solve the UKP problem. PSO is applied in Nonlinear 
Optimization Problems, Training Neural Networks, Heating 
System Planning, and Power Systems. Hellwig et al. (2019) 
reviewed EA in constrained benchmarking and shed light on 
solving problems in different domains. Genetic Algorithms 
are applied in different system modeling, where the 
experimental data is iterated multiple times to get the best 
optimal solutions like the one discussed by Marius et al. 
(2017). 

Though all real-world problems look complicated, they 
are bound by certain patterns and constraints. In some 
evloutionary constrained optimization techniques, the 
values for bounds are fixed and predefined monotonically 
by a non-decreasing sequence of values in the search space. 
This approach was suitable for many problems; it worked 
well for simple problems with limited data sets but failed 
for the more difficult ones with large data sets. There was a 
need to develop an adaptive approach for setting the 
constrained parameter values dynamically by the EA itself. 
For example, initial population information can be 
computed adaptively, leading to different population values 
for various problems. T Efren Ju'arez-Castillo et al. (2017) 
discusses Bounded strategies or Constrained Optimization 
techniques in PSO. Jiang, H et al.(2019) used Least angle 
regression algorithm to reduce the high-dimensional data. 
excellent performance, especially for high-dimension data. 

By surveying EAs applied to optimization problems, it is 
found that the existing techniques lack the reuse of 
knowledge acquired from one problem to another. Notably, 
the major drawback of existing search methods is the 
assumption of non-similarities between the current problem 
and those encountered in the past. In this paper, more focus 
is given for developing a common procedure, which is 
applied to different types of EAs. The reusability of the 
constrained computation narrowed the search space, hence, 
helping to reduce the computational cost and the 
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convergence of data much faster. In the study of Chen et al. 
(2011), the assumption of zero usable information and the 
lack of knowledge transfers across the problems is 
discussed in detail. 
 
3. METHODOLOGY 
 

The methodology used to solve the UKP optimization 
problem is the modified EA with the bound-constrained 
strategy applied in search space, initial population, and 
evolutionary process. When the constructed system is 
constrained, the objective function's error stays very 
minimal, and the data converges to an optimized solution 
faster. The desired performance for the robust control 
systems is achieved using the constraint-following error is 
discussed in Sun et al. (2020). Based on the literature 
reviews, boundary constrained strategies are considered for 
optimization problems, which means the search space 𝑆𝑆 
consists of n dimensional real-valued parameters 𝑟𝑟, where 
each parameter is bounded to an interval [LowerBound(LB), 
UpperBound(UB)] as referred in Nguyen and Yao (2012). 
The bound constraint coefficient for each parameter is 𝛽𝛽𝑖𝑖 
and 𝛾𝛾𝑖𝑖, defined in Equations (6) and (7) respectively. 
𝑆𝑆 ⊆  𝑟𝑟𝑛𝑛                                     (4)                                               
𝑟𝑟 = C/max(𝑊𝑊)                                (5)                                                     
𝛾𝛾𝑖𝑖 ∈ { 0,max(𝑉𝑉)/𝑉𝑉𝑖𝑖 }  i = 1,……..,n              (6)                                              
𝛽𝛽𝑖𝑖 ∈{ 0, C/𝑊𝑊𝑖𝑖 }  i = 1,……..,n                  (7)                                         
The objective function defined for UKP in Equations (1) and 
(2) are modified to Equations (8) and (9) as shown below: 
Minimize: 𝑓𝑓(𝐼𝐼𝑠𝑠)= C − ∑ 𝑊𝑊i

n
i=1  ×𝛽𝛽𝑖𝑖                               (8)                                                                 

Maximize :  ∑ 𝑉𝑉in
i=1  ×𝛽𝛽𝑖𝑖                         (9)                                   

The EA techniques based on bounded strategy are 
developed based on the optimization problem defined by the 
Equations (4)-(9). From the literature reviews, it is evident 
that different EAs like PSO and GA share many common 
points though they are based on two different evolutionary 
principles. Both algorithms start with the initial population, 
have fitness values to evaluate the population, update the 
population and search for the optimum solution with their 
own evolutionary techniques. 

1. Creation of Search Space 𝑆𝑆𝑛𝑛  for n number of items 
is the union of bound constraint coefficients of the n 
items as shown in Equation (10). 

𝑆𝑆𝑛𝑛  = { 𝛽𝛽1 ∪ 𝛽𝛽2  ∪ … … … … … …∪  𝛽𝛽𝑛𝑛 }          (10)                                                                              
2. Creation of Initial Population based on the Search 

Space and Equation (5) is given in Equation (11). 
Total Number of Individuals in Initial Population = 𝑟𝑟 × n                         

(11) 
3. The initial population fitness is evaluated as a single 

function, i.e., the evaluation of the objective function 
and all related constraints, as shown in Chai et al. 
(2020). 

4. The evolution process of the population is based on 
PSO and GA's evolution principles, but modifying 
certain steps based on the bound constraint 
coefficients βi and γi . 

5. The evolution process of the Dataset towards the 
optimal solution is continued until the termination 
criteria are met. 
 

3.1 Genetic Algorithm 
Genetic algorithms are used in many industrial processes 

to optimize the model parameters, as investigated by Marius 
et al. (2017). In this paper, the GA is modified based on the 
EA procedures developed with bound constraint 
coefficients. The creation of the Initial Population, the 
development of genetic mechanisms of selection, crossover, 
and mutations are driven by the bound constraint 
coefficients towards the feasible search space for finding the 
optimal solution. The flow diagram of the modified GA is 
shown in Fig. 1. 

The creation of chromosomes and generation of the 
Initial Population involves identifying the gene, size of the 
population, and the length of the chromosomes using 
bound-constrained strategy. The chromosomes are made up 
of sequences of genes with the 0 and 1 binary combinations. 
The number of selection of an item is represented in the 
form of genes. For example, the number of selection of  
four items are bounded to the constraints 2, 0, 0 and 1 
respectively, then the gene coding for the selection of the 
items are shown in Table 1 and the chromosome is 
represented as 10000001. The fitness of chromosomes are 
evaluated using the Equation (8) and Equation (9). 
 

Table 1. Gene coding 
Item1 Item2 Item3 Item4 

1 0 0 0 0 0 0 1 
 
Finding an efficient crossover mechanism to recombine 

individuals into higher quality solutions plays an essential 
role in evolutionary computations, as discussed in Corus 
and Oliveto (2018). The Multi-point crossover method is 
used in this research. An N point crossover mates the 
selected parents based on the fitness values, and the length 
of the gene gives the benefit of N. Each bit in the 
chromosome is subject to mutation with a probability. 
Suppose a random float number is more significant than 0.5 
flip 0 with one and vice versa. The maximum number of 
generations is considered as the stopping criteria.The 
creation of chromosomes with bound constrained strategy 
are shown in algorithm 1. 
 
3.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO), as discussed in Chai 
et al. (2020), is an evolutionary computation technique 
based on the initial population called swarm with the n 
possible solution candidates as particles. In PSO, a swarm 
of n particles (individuals) is guided towards the best 
optimal solution, either by communicating their best-known 
position or the entire swarm best position with one another 
using search directions. The objective functions guide the 
most important position of the particles. The bound 



International Journal of Applied Science and Engineering 
 

Saravanarajan et al., International Journal of Applied Science and Engineering, 18(1), 2020205 
 

 
https://doi.org/10.6703/IJASE.202103_18(1).002                 4 
          

 
Fig. 1. The workflow of GA with Bound Constraint Strategy 

 
constraint coefficients bound the search direction and the 
evolution process of a set of particles. The flow diagram of 
the modified PSO Algorithm is shown in Fig. 2. 

The solution space among the particles relies on Lower 
and Upper bounds limits the number of combinations 
examined while looking for the solution. The optimal 
solution is a set of particles having minimum error and 
maximum profit. Each particle represents an item from the 
list, and the number of particles used is the length of the 
input items. The particle position in the swarm is initialized 
with 0; the initial swarm velocity is the random uniform 
value between the range 0 and c ÷ min (W). The size of the 

swarm is the length of the input items. Pbest, the best-
known position of an individual and Gbest, the best position 
of the swarm are evaluated by the objective function, as 
shown in Equation (8) and Equation (9). 

The evolution process of PSO is the computation of 
velocity and the direction of the particles in the swarm. The 
movement of particles is guided by various velocity rules, 
as discussed in Harman et al. (2015), to avoid the premature 
convergence to local minima. The modified PSO discussed 
in this paper, updates the particle's velocity and moves the 
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particle-based on Bound Constraint coefficient γi and βi, 
respectively. Update the particle's velocity according to the 
relative values of Pbest and Gbest, using the following 
expression, as explained in the Algorithm 2. 

The rate of change of velocity of the particles Vt+1 is 
computed using Equation (12). 
Vt+1 = ω × Vt+C1 × R1 × (Pbest –Xt) + C2 × R2 × (Gbest - Xt) 

(12) 
Where C1 and C2 are acceleration coefficients; ω is inertia 
weight; Gbest is global best position; Pbest is self best 
position. R1, R2 are modified with Bound Constraint 
 
 

 
coefficient γi to control the magnitude of velocity to move 
towards Pbest and Gbest position with maximum profit. 

Each particle's position is updated to accelerate them 
towards the best position found by it so far (Pbest) and the 
global best position (Gbest). The rate of change of position 
of the particles is computed using Equation (13). 
Xt+1 = Xt + Vt+1                                       (13) 

In this way, the particle moves in search of the optimal 
solution until the maximum number of iterations is reached. 
The Algorithm 2 shows the implementation of a bounded 
strategy in updating the particles' position and velocity for 
achieving the optimal solution. 
 

Algorithm 2:  Bound strategy for PSO Algorithm 
Initialize Variables  
positionbounds← βi #evaluate using Equation (7) 
velocitybounds← γi #evaluate using Equation (6) 
num_dimensions←len(weight) 
 
UpdateVelocity (pos_best_g, velocitybounds) 
         for i in range(0,num_dimensions) do: 
            r1[i] ← rand(velocitybounds) 
            r2[i] ← rand(velocitybounds) 
           Velocity[i] ← Vt+1 
Return Velocity 
 
UpdatePosition (positionbounds) 
         for i in range(0,num_dimensions) do: 
            Position[i] ← Xt+1 
            if Position[i] > positionbounds[LBi] 
                then Position[i] = positionbounds[LBi] 
              if Position[i] < positionbounds[UBi] 
                    then Position[i] = positionbounds[UBi] 
Return Position 
 

 

Algorithm 1:  Bound strategy for Genetic Algorithm 
Initialize Variables 
gene ← βi #evaluate using Equation (7) 
geneEncode ← maxItem 
totalPopulation ← 100 
 
InitialPopulation (geneLength, totalPopulation) 
    iniPopulation ← Ø 
    for i in range(0,totalPopulation) do 
         iniPopulation ← ChromosomeGenerator(geneLength, totalItem) 
Return iniPopulation 
 
ChromosomeGenerator (geneLength, totalItem) 
     Chromosome ← Ø 
      lenChromosome ← r × totalItem 
     for i in range(0, totalItem) do 
         n ← random(geneLength[i]) 
        Chromosome ← decimalToBinary(n, geneEncode, lenChromosome) 
Return Chromosome 
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Fig. 2. The workflow of PSO with Bound Constraint Strategy 
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4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

 
4.1 Dataset 

Considering different features of the optimization 
problem with different numbers and types of boundary 
constraints, as discussed in Michalewicz et al. (2000), 
scalable test data, as shown in Table 2, is generated for 
experimental purposes. 

The optimum solution is found by varying the capacity(C) 
= 150, 450 and 800. 

The parameters used to design the Evolutionary 
Algorithms with bound constraints for the capacities 150, 
450, and 800 are shown in Table 3. Some parameter values 
change with the capacity, and some remain constant. For 

example, the Mutation rate of GA and C1, C2, and ω of PSO 
remains constant, as shown in Table 3. 

 
4.2 Simulation 

The simulation engine is composed of modified GA and 
PSO models. The simulation engine is designed using the 
python platform. The set of initial conditions and 
parameters required by the simulation engine are defined 
in  Table 3. The simulation engine creates an instance of the 
model in the simulation environment, applies the initial 
conditions to that instance, and then uses the equations 
expressed by the model to determine the change of state of 
that instance as a function of time. Random simulation for 
finding the optimal solution is computationally expensive, 
as discussed in Digabel and Wild (2015). 

 
Table 2. Test Data for GA and PSO 

Item 1 2 3 4 5 6 7 8 9 
weight(𝑊𝑊) 70 73 77 80 90 94 98 106 110 
value(𝑉𝑉) 135 139 149 150 173 184 192 201 210 

Item 10 11 12 13 14 15 16 17 18 
weight(𝑊𝑊) 113 115 118 120 122 125 130 135 140 
value(𝑉𝑉) 214 221 229 240 245 250 253 255 258 

Item 19 20 21 22 23 24 25 26 27 
weight(𝑊𝑊) 142 145 148 152 154 155 156 158 160 
value(𝑉𝑉) 262 268 272 275 280 282 285 288 292 

Item 28 29 30 31 32 33 34 35 
weight(𝑊𝑊) 165 167 169 172 175 178 82 87 
value(𝑉𝑉) 295 300 302 308 412 415 156 163 

 
Table 3. Parameter settings for GA and PSO 

GA PSO 
Variable Capacity(C) Values Variable Capacity(C) Values 

Initial population size 150 100 Initial swarm particle 
Position 

150 (0,0,…,0) 
450 100 450 (0,0,…,0) 
800 100 800 (0,0,…,0) 

Genes 150 2 Swarm size 150 35 
450 6 450 35 
800 11 800 35 

Chromosome length 150 70 C1(Constant) - 1 
450 210 C2(Constant) - 2 
800 385 ω (Constant) - 0.5 

Parent size 150 25 R1 150 (0,2),…,(0,1) 
450 25 R1 450 (0,2),…,(0,6) 
800 25 R1 800 (0,4),…,(0,11) 

Offsprings size 150 25 R2 - (0,1),…..,(0,3) 
450 25 Xt+1 150 (0,2) 
800 25 Xt+1 450 (0,6) 

Multipoint crossover 150 2 Xt+1 800 (0,11) 
450 6 Initial velocity 150 Random(0,2) 
800 11 Initial velocity 450 Random(0,6) 

Mutation 
(Constant) 

- 0.5 Initial velocity 
 

800 Random(0,11) 

Number of generation 
(Constant) 

- 50 Number of iterations 
(Constant) 

- 7 
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The parameters used in the simulation are adaptive to 
improve the efficiency of the simulation engine. 

The objective function and constraint coefficients defined 
in the modified EA are employed in each evolutionary 
mechanism for favorable convergence and diversity, as 
proposed in Sun et al. (2019). The total number of parents 
is (length of population ÷  4), and the total number of 
offsprings is (length of population ÷ 2) − total number of 
parents. The parameter values are shown in Table 3. 

 
4.3 Result 

The converged optimal solution should have minimum 
error and maximum profit. Table 4 shows the optimal 
solution for GA with the capacity 150, 450 and 800 and the 
profit of 288, 864 and 1525, respectively. Table 4 shows that 
items were selected only once for capacity 150 and 450. So 
𝐼𝐼𝑠𝑠 is a single copy of the item, whereas 𝐼𝐼𝑠𝑠 for capacity 800 
is 7 copies of the item with weight 70 and 4 copies of the 
item with weight 77. 

 
Table 4. Optimized solutions by GA 

Capacity(C) Weight(𝑊𝑊) Items Solution(𝐼𝐼𝑠𝑠) 

150 73 1 
77 1 

450 

70 1 
73 1 
77 1 
80 1 

800 70 7 
77 4 

 
Table 5 shows the optimal solution for PSO with a 

capacity of 150, 450 and 800 and a profit of 277, 850 and 
1547. The optimal solution of PSO consists of only a portion 
of the items. For example, from Table 5. Item of weight 90 
contributes 0.12 times, which is a fraction compared to the 
whole number in GA. But PSO and GA are designed for 
solving different industrial problems, a subset of the 
unbound knapsack problem. GA has the selection operator, 
but there is no selection operator in PSO. All individuals are 
kept as members of the population throughout the operation 
in PSO. However, PSO does not have genetic operators like 
crossover and mutation. Particles update themselves with 
the internal velocity. They also have memory, which is 
essential to the algorithm. 

The different GA and PSO applications are discussed: (1) 
PSO is used in budget scheduling problems. A portion of the 
budget can be used for different items. Finally, the total cost 
should not exceed the final allocated budget. (2) GA is used 
for Machine Scheduling Problems (MPS) to calculate the 
quantity required for enabling the efficient use of resources. 
Both these applications have the same objective to reduce 
the cost and contribute to a consistent rise in the company's 
profit margin. The reusability approach proposed in this 
 
 

Table 5. Optimized solutions by PSO 

Capacity(C) Weight(𝑊𝑊) Items 
Solution(𝐼𝐼𝑠𝑠) 

150 

90 0.12 
110 0.13 
130 0.29 
142 0.10 
158 0.32 

450 

94 0.009 
106 0.03 
110 1.07 
120 1.15 
125 0.66 
140 0.05 
152 0.24 
154 0.24 
155 0.06 
156 0.16 
169 0.12 

800 

94 0.63 
110 0.05 
115 0.30 
122 0.16 
125 0.12 
130 1.03 
135 0.02 
148 0.60 
158 0.53 
169 0.21 
175 0.86 
178 0.92 

 
paper is useful when two different departments of a 
company try to implement the cost reduction strategy. The 
PSO based model can be applied to the Finance Department, 
and the GA based model can be used to the Production 
Department. 

To test the bounded strategy on the PSO Algorithm and 
the Genetic Algorithm, the objective function is plotted 
against iterations. The data seem to converge in max 
iteration ÷ 2 for PSO, as shown in Fig. 3a, Fig. 3c, and Fig. 
3e. GA maintained the solution quality from the first 
generation to the last generation, as shown in Fig. 3b, Fig. 
3d, and Fig. 3f. Our results show that the algorithms can be 
applied to different real-world scenarios. 

In this experiment, the main objective is to find the 
minimum error and the maximum profit. But, if the 
decision-makers prefer to trade off with the error, then the 
objective function can be modified to get higher profit. For 
example, an optimized solution with the profit of 300 can 
be achieved if the acceptable error value is set between 0 
and 10 as shown in Fig. 3a. Thus multiple optimized 
solutions are available based on the preference of the 
decision-makers. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 3. Optimal solution convergence of PSO and GA 
 

Execution time for PSO is better than GA in the 
benchmark algorithms discussed in Chaturvedi et al. (2016).  
Table 6 shows that the execution time of both the algorithms 
are the same if the same number of iterations are considered. 
 
 

The execution time cannot be kept as a benchmark for 
comparing the algorithms' performance since both the 
algorithms are applied to different types of UKP 
optimization. 
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Table 6. Execution time in seconds for GA and PSO 

Method 
Capacity(C) Number of 

Iterations 150 450 800 
GA 0.07133 0.08402 0.12416 50 
PSO 0.01775 0.01823 0.01896 7 

 
5. CONCLUSION 
  

A modified EA with bound constraint strategy is present 
in this paper, to provide an optimized solution faster by 
constructing a feasible search space and a range of values 
bound constraints for the number of selection of an item. 
The bound constraints are determined by the minimum 
weight, maximum weight, minimum value, and maximum 
value of the items available in the search space to attain the 
optimal solution. The bound constraints coefficients are 
computed and implemented in the EA. The required strategy 
applied to EA modifies the GA and PSO, resulting in a 
different optimized solution for the same objective function. 
The summary of the series of the experiment results are as 
follows: (1) Solved UKP as a more general real-world 
problem whose optimum solutions were reached by bound 
constrain search strategies of EA. (2) The computational 
results demonstrated good performance and stability by 
varying the capacity and iterations. (3) The formulation of 
scalable constrained functions shows the algorithm's ability 
to deal with growing search space dimensions. (4) The 
reusability of the algorithm procedure in PSO and GA 
shows the EA's computational efficiency with a bound-
constrained strategy. The proposed algorithm applies to 
UKP, but it can be extended to other similar problems, such 
as the Multiple Combination Problem, hard optimization 
problems, and bounded optimization problems. Part of the 
future work consists of designing hybrid methods that 
combine PSO and GA with backpropagation algorithms in 
finding the optimal weights and training the artificial neural 
networks for object detection technologies. 
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