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ABSTRACT 
 

This paper presents an intelligent means of addressing characterization and grading 
problems in the oil palm industry for the purpose of quality control. A Layer-Sensitivity 
Based Artificial Neural Network (LSB_ANN) which updates its layer weights based on 
sensitivity analysis was designed to predict the oil content and dielectric constant of 
mature oil palm fruitlets. The LSB_ANN was designed, optimized and trained with 604 
data points obtained from laboratory microwave coaxial sensor measurements within 2-
4 GHz. The performance evaluation of the model when tested with a separate set of data 
showed that the properties of the fruitlets were accurately modeled. To further investigate 
the generalization ability of the trained neural network, three other neural network 
training algorithms were deployed for the same dataset. A multi-criteria evaluation of the 
performances of the networks showed that the proposed LSB_ANN outperformed the 
other three in generalization accuracy, time and computing resources. The LSB_ANN 
therefore represents a handy tool for rapid and intelligent characterization of oil palm 
fruitlets for quality control and research purposes. 

 
Keywords: Open-ended coaxial sensor, Sensitivity analysis, Artificial neural network, 
Training algorithms, Dielectric properties, Oil palm fruitlets. 
 

 
1. INTRODUCTION 
 

The oil palm is the world’s most common source of edible oil with an annual yield of 
4.2 tonnes per hectare and global annual yield of 45 million tonnes (Ong et al., 2011). 
Apart from direct human consumption, oil palm has also found extensive use in other 
products including biodiesel, sugar and fibreboards (Ismail et al., 2011). Due to the rising 
stakes of massive palm oil production and in order to achieve optimum production yield, 
it is imperative to device a means to accurately and rapidly grade oil palm fruitlets before 
bunches are selected for major production. The major challenge with this step however 
is that the fruitlets are non-homogeneous in mesocarp; made up of oil, fibre and water. 
This heterogeneous nature coupled with the need for nondestructive sensing, suitability 
for insitu measurement, ease of setup, computing speed and efficiency makes the 
prospect of softcomputing and microwave sensing an appealing solution. 

Artificial Neural Network (ANN) is a connection of processing elements which learns 
patterns by mimicking the natural human brain in adapting associated layer weights 
(Rodger, 2014; Erzin et al., 2010). ANN has been widely applied in many fields for 
pattern matching, modeling and classification over the last few decades just as much as 
other softcomputing techniques – Adaptive Neurofuzzy Inference System (ANFIS) 
(Negnevitsky, 2005), Fish Swarm Optimization (FSO), and Genetic Algorithm (Otkovic, 
2013). ANN has the advantages of relatively fast convergence, ability to model complex 
nonlinear systems, and large data space generalization capacity. The two major areas for 
improvement however are training speed and avoidance of local minima convergence. 

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en
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Several approaches have been taken to address this; the 
standard backpropagation algorithm, the linear least square 
methods and the widely reported second order training 
algorithms that include the Quasi-Newton (Ghaffari et al., 
2006), Conjugate Gradient and Levenberg-Marquardt 
algorithms (Castillo and Guijarro-berdi, 2006). 

In this work, an ANN which updates its layer weights 
based on analysis of its sensitivity to the inputs is proposed 
for characterizing oil palm fruitlets. Firstly, the theoretical 
basis of the analytic method for extracting the oil contents 
and dielectric properties from measured data is described, 
then the weight update procedure and structure of the 
LSB_ANN are elucidated and its performance evaluated. 
 
2. MATERIALS AND METHODS 
 

In this section, we describe the details of the procedure 
employed in the extraction of the oil contents of the oil palm 
fruitlets using microwave measuring techniques. 
 
2.1 Data Measurement and Analytic Extraction of Oil 

Content and Dielectric Properties 
Microwave energy within the frequency range of 2-4 

GHz was directed onto faintly sliced fleshy mesocarp of 
clean samples of matured oil palm fruitlets through a 
carefully calibrated microwave open-ended coaxial sensor. 
The coaxial sensor was connected to a computer coupled 
Vector Network Analyzer (VNA). As a result of the 
impedance mismatch at the interface between the fruitlet 
and the sensor, a complex reflection coefficient Γ was 
observed. The observed reflection coefficients were then 
fitted into the normalized susceptance and conductance 
equations (Equations 1 and 2) (Blackham and Pollard, 1997; 
You et al., 2012) and the dielectric mixture model (Abbas et 

al., 2005) to obtain the actual complex permittivity and the 
oil content of the fruitlets. 

where a and b are the inner and outer radius of the coaxial 
sensor respectively, 𝐽𝐽0 is the Bessel function of order zero 
and Si is the sine integral. 𝜀𝜀 is the permittivity, 𝑘𝑘0 is the 
wave number and K is a constant that is a function of the 
dimensions of the sensor and the dielectric material within 
the sensor. 
 
2.2 The LSB_ANN Framework 

For a particular neural network problem domain, the 
choice of cost function for finding optimal solution in the 
training algorithm is as important as the choice of the type 
of the entire training algorithm or neural network 
architecture. In addition to speed of convergence and 
minimal usage of processing resources, sensitivity weight 
update mechanism has been selected in this work to enhance 
the quantification of the system performance not only with 
respect to the targets but the input space as well. 

 
Table 1. The boundaries of the input and output 

parameters of the ANN 
 Parameter Min Max 

Inputs 

Frequency 
(GHz) 

2.00 4.00 

Magnitude of Γ 0.54 0.9700 
Phase of Γ -27 38.5 

Outputs 
Dielectric 
constant 

8 45 

Oil content 22.5 54.98 
 

The single-hidden-layer model framework (shown in Fig. 
1) consists of the input layer, the normalization layer, the 
LSB_ANN and the output. 
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Fig. 1. The model framework of the LSB_ANN 
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The inputs 𝑃𝑃1 , 𝑃𝑃2 , 𝑃𝑃3  of the system are the measured 
angle of the reflection coefficient, the frequency (GHz) and 
the magnitude of the reflection coefficient, respectively, and 
the maximum and minimum values of these variables are 
presented in Table 1. The aim of the network is to compute 
the oil content and dielectric constant of oil palm fruitlet 
from the information supplied as its inputs. Harnessing the 
flexibility offered by MATLAB computing environment, 
the inputs were normalized and supplied to the network for 
training, the outputs were evaluated and the error surface 
was continuously examined to avoid overfitting. The 
properties of the feedforward neural network are presented 
in Table 2. 

Table 2. Properties and parameters of the LSB_ANN 
ANN Parameters Description/ Value 

Type of transfer function 
(hidden layer) Sigmoid 

Type of transfer function 
(output layer) Linear 

Weight update 
mechanism Sensitivity/SSE 

Total number of neurons 24 
Total number of weight 
elements 164 

Maximum epochs 700 

Firstly, the LSB_ANN was initialized with random 
weights w with corresponding initial errors e and the MSE 
(Mean Squared Error) and SSE (sum of squared error) were 
evaluated. If for subsequent iterations, the magnitude of the 
difference between the network sensitivities of the current 
and previous iteration is less than the allowed value, or the 
MSE check for the current iteration is less than that of the 
previous, the network is considered to approach 
convergence. 

The network output is: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖 ��𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛𝑛𝑛

𝑁𝑁

𝑛𝑛=0

� , 𝑖𝑖 = 1,2, … , 𝐼𝐼;   𝑗𝑗 = 1,2, … , 𝐽𝐽  (3) 

Where f is the layer transfer function operator. N, J and I are 
the number of inputs, number of training data points and the 
number of outputs respectively.  

Because the transfer function is fully invertible, the 
desired network weight learning was achieved by evaluating 
and minimizing the difference between the network output 
and the target using the SSE. 

𝐸𝐸 = ����𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛𝑛𝑛
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𝑘𝑘 = 0, 1, … ,𝑁𝑁; For each and all outputs

 

As a result, the sensitivity of the network with respect to 
each input is expressed as: 

𝜕𝜕𝜕𝜕
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And for the output; 
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The weight update was finally achieved by the Taylor 
series estimation of the sensitivity of the cost function E. 

𝑦𝑦 = 𝑦𝑦 − 𝜏𝜏
𝐸𝐸(𝑦𝑦)
‖∇𝐸𝐸‖2

∇𝐸𝐸 (8) 

The training process was stopped whenever the validation 
error began to increase beyond the training error or the 
maximum epoch of 700 was reached. The training data 
consists of 604 data points and the testing data consists of 
75 data points. After the training phase, the network was 
deployed and simulated with a new set of data and the 
performance was evaluated using the VAF, RMSE and R 
indices. 

2.3 Input Data Normalization 
The input data normalization operation was carried out in 

order to eliminate the chance of input weight bias. This 
enables the network to assign equal importance to several 
values of input regardless of their magnitude. Moreover, 
input normalization enhances training speed and 
computation because it bandlimits the inputs to a boundary 
of 0 and 1, which drastically reduces the searching space to 
a unitary hypercube (Sheela and Deepa, 2013). This makes 
weight decay and Bayesian estimation significantly easier. 
For each network input 𝑃𝑃𝑖𝑖, the corresponding normalized 
value 𝑃𝑃𝚤𝚤 ���is obtained as: 

𝑃𝑃𝚤𝚤 ��� = 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

� (𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) (9) 

Where 𝑃𝑃𝑖𝑖  , 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  , and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the actual input data, the 
maximum input value and the minimum input values 
respectively, while 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  , and 𝑃𝑃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  are the maximum 
and minimum values of the target respectively. 

2.4 Performance Criteria 
The essence of performance evaluation of a 

softcomputing network is to measure the degree of 
closeness of the network’s output to the actual values as 
obtained from the physical phenomenon. In this work, the 
coefficient of multiple determination (CMD), the Variance 
Account For (VAF) and the Root Mean Square Error 
(RMSE) defined by Equations (10), (11) and (12) 
respectively, were used to determine the degree of 
correlation between the target of the softcomputing models 
and their eventual outputs. 

𝐶𝐶𝐶𝐶𝐶𝐶 = �1 −
∑ (𝑦𝑦 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦)2𝑁𝑁
𝑖𝑖=1

 (10)



International Journal of Applied Science and Engineering 
 

Adedayo et al., International Journal of Applied Science and Engineering, 18(1), 2019013 
 

 
https://doi.org/10.6703/IJASE.202103_18(1).011         4 
    

𝑉𝑉𝑉𝑉𝑉𝑉 = �1 −
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦 − 𝑦𝑦�)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) � × 100                 (11) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑦𝑦 − 𝑦𝑦�)2
𝑁𝑁

𝑖𝑖=1

                      (12) 

Where 𝑦𝑦 is the target value, 𝑦𝑦� is the output of the network 
and var denotes the statistical variance of its associated 
operand. A network is regarded as perfect if its VAF is 100% 
and its CMD is unity (Erzin et al., 2010). However, it is 
impossible to obtain those values exactly because of 
uncertainties in design and computation, a network with 
VAF, CMD and RMSE with a very high degree of closeness 
to the perfect values are generally regarded as acceptable. 

 
3. RESULTS AND DISCUSSION 
 

In this section, we present the performances of the 
considered algorithms and the proposed LSB_ANN as well 
as the convergence curve for the network under different 
conditions. 

 
3.1 LSB_ANN Network Performance 

To validate the performance of the LSB_ANN, three 
other feedforward neural network training algorithms were 

deployed in training the same network with same datasets; 
Gradient Descent with Momentum (GDM) algorithm, 
Resilient Backpropagation (RP) algorithm and Gradient 
Descent with Adaptive learning rate (GDA) algorithm. The 
training performance evaluation of the four algorithms 
shows that they all converged within the training epochs 
(Fig. 2). While all four ANN algorithms performed 
satisfactorily in intelligently characterizing the samples 
under test, the unique ability of the LSB_ANN to update its 
network weights in relatively simple procedure and 
computation speed (Table 3) makes it a ready choice. 

 
Table 3. Comparison of CPU time to best convergence 

of the algorithms 
Network type CPU time (s) 

RP_ANN 1.353 
GDA_ANN 2.066 
GDM_ANN 1.854 
LSB_ANN 1.339 

 
Additionally, the LSB_ANN network algorithm does not 

involve the storage of large Jacobian matrix data like most 
second order algorithms do (Wilamowski and Yu, 2010). 
This is of particular advantage when modeling problems of 
very large data. During the training phase, the MSE curve 

 

 
Fig. 2. Plots showing the convergence curves of the four algorithms for training the ANN for the dielectric constant (a) 

RP (b) GDA (c) GDM (d) LSB_ANN 
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Fig. 3. Different values of measured oil contents at (a) different values of dielectric constants (b) different 

values of loss factor 
 

(Fig. 2d) reveals that the LSB_ANN achieved the lowest 
training error within the number of training epochs. It was 
however observed that, even though the GDA, GDM and 
RP algorithms performed well during the training phase 
with VAF of 96.33, 97.51 and 98.64 respectively (see Table 
4), their generalization capacity fell slightly short of that of 
the LSB_ANN for the testing data in which the LSB_ANN 
had a better VAF index. 

Therefore, with respect to post-training accuracy over a 
wider range of inputs, the LSB_ANN outperformed the 
remaining three algorithms with testing VAF of 97.81 (a 
property that makes it the best choice for the 
characterization of the oil palm fruitlets in this work). It 
therefore boils down to the conclusion that the performance 
of different type of softcomputing models is application-
dependent, a very crucial factor for this difference is the 
uniqueness of the statistical distribution and range of the 
input of the application, the network architecture, the 
number of parameters, as well as the choice of the training 
algorithm. 

The excellent pattern matching and generalization 
properties of the ANNs give them the ability to accurately 
model the dielectric response of oil palm fruitlets to 
electromagnetic energy. The LSB_ANN considered both 
magnitude and phase of the reflection coefficient thereby 
elimination the need for expending much processing 
resources on input selection optimization. 

The measured oil content of the fruitlets at different 
values of dielectric constant and loss factor are shown in 
Figs 3(a) and 3(b), respectively. Basically, the mesocarp of 
oil palm fruitlets is made up of three constituents; fiber, 

water and oil. The fiber is relatively constant once maturity 
is reached; the oil content of the fruitlets is therefore mainly 
dependent on the moisture content which is a function of the 
dielectric constant. 

It was observed that the dielectric constant of the oil palm 
fruit samples increased with the amount of moisture content 
and decreased with increasing oil content as seen from Fig. 
3(a) and 3(b). Similar relationship was observed by 
(Trabelsi and Nelson, 2006) when the percentage moisture 
content was used to predict the bulk density of shelled 
peanuts. This basis for this behaviour can be obtained from 
the dielectric properties of water. Water has a relative 
permittivity as high as 80 at room temperature (Rhodes, 
2013), therefore the presence of water in samples/materials 
has a significant effect on the response of such materials to 
electromagnetic (EM) energy due to high attenuation of the 
electric component of the EM waves. Even though the 
relative permeability of water is unity and therefore has 
insignificant effect on the magnetic component of the 
electromagnetic waves, the necessary energy cycling 
between the electric and magnetic component still makes 
attenuation of EM waves high in water (Castro-Giráldez et 
al., 2010). This property accounts for varying values of the 
complex permittivity of the oil palm fruitlets at different 
moisture/oil contents. 

Also, graphical representation of the relationship between 
the phase, frequency and the magnitude of the reflection 
coefficient is shown in Fig. 4 (a) and Fig.4 (b). Table 5 
shows the outlook of the outputs as predicted by the 
networks.
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Table 4. Performance indices of the algorithms for the training, validation and testing data 

Network Training  Performance evaluation 
Training VAF Validation VAF CMD VAF RMSE 

RP_ANN 98.64 97.77  0.9841 96.26 0.9606 
GDA_ANN 96.33 96.24  0.9666 94.09 0.9824 
GDM_ANN 
LSB_ANN 

97.51 
97.82 

96.08 
97.65 

 0.9874 
0.9877 

93.57 
97.81 

0.9961 
0.9737 

 
 

Table 5. Comparison of selected samples of predicted and measured oil content 
Network inputs  

Measured oil 
content (%) 

 Network outputs for oil content  
𝑃𝑃1 

(GHz) 
𝑃𝑃2 
 

𝑃𝑃3 
(0) 

  RP_ANN 
(%) 

GDA_ANN 
(%) 

GDM_ANN 
(%) 

LSB_ANN 
(%) 

2.10 
2.22 
2.32 
2.42 
2.10 
2.22 
2.32 
2.42 
2.10 
2.22 
2.32 
2.42 
2.10 
2.22 
2.32 
2.42 

0.970 
0.980 
0.950 
0.945 
0.949 
0.949 
0.920 
0.913 
0.894 
0.888 
0.870 
0.861 
0.788 
0.733 
0.744 
0.735 

11.50 
14.00 
16.50 
18.00 
7.50 
8.50 
10.00 
12.50 
-3.00 
-1.50 
0.00 
2.00 

-27.00 
-27.50 
-26.00 
-25.00 

 54.98 
54.98 
54.98 
54.98 
44.18 
44.18 
44.18 
44.18 
33.38 
33.38 
33.38 
33.38 
22.58 
22.58 
22.58 
22.58 

 55.13 
55.12 
56.26 
55.71 
45.50 
43.40 
42.37 
43.78 
34.67 
33.04 
33.52 
33.46 
23.41 
24.91 
22.96 
23.06 

50.68 
52.99 
52.60 
53.10 
44.76 
46.97 
45.01 
47.70 
33.11 
33.93 
34.19 
35.48 
23.90 
23.43 
23.56 
23.50 

51.31 
52.87 
52.45 
52.86 
44.93 
44.72 
42.26 
43.93 
35.38 
35.80 
36.18 
36.06 
26.07 
24.13 
23.81 
23.42 

54.51 
54.67 
54.80 
54.79 
46.72 
42.22 
40.55 
44.45 
33.23 
32.16 
31.87 
33.34 
22.58 
22.58 
22.58 
22.58 

 
 

 
Fig. 4. The input-output surface for (a) the phase and frequency inputs (b) magnitude and phase inputs 
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4. CONCLUSION 
 
  A technique for quickly grading oil palm fruitlets using a 
combination of microwave measurements and 
softcomputing techniques was presented in this paper. The 
findings of this work show that conventional dielectric 
sensing methods are not suited for accurate oil palm 
characterization due to its heterogeneous nature, and that 
updating layer weights using sensitivity analysis improves 
neural network learning speed significantly. Also, it was 
shown that the need for the use of computationally intensive 
admittance equation methods can be avoided by 
implementing a well-trained layer sensitivity based neural 
network. This represents a ready tool for accurately 
characterizing oil palm fruitlets for research purposes as 
well as insitu measurements using information obtained 
from the dielectric properties and oil content, offering a 
means of accurately and rapidly extracting the dielectric 
properties and percentage oil content of oil palm fruitlet 
mesocarp for any ratio of coaxial cable sensor conductors. 
This approach eliminates the repeated use of laborious dry 
oven method for the extraction of moisture and oil content 
information. 
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