
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202103_18(1).012 Vol.18(1) 2020135

OPEN ACCESS

Received: June 5, 2020

Accepted: December 31, 2020

Corresponding Author:
Juan Miguel Mantilla Gonzalez
jmmantillag@unal.edu.co

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

Open source extensions applied to meshing
problems for KIVA 4

Carlos Alberto Barrera Soto, David Sebastian Perez Gordillo,
Carlos Felipe Forigua Rodriguez, Juan Miguel Mantilla Gonzalez*

Universidad Nacional de Colombia, Mechanical and Mechatronics Engineering,
Bogota Colombia

ABSTRACT

KIVA is a very successful software that was released around 1985. One of its
advantages is the capacity to include computer routines made by the users. That is why
it is mostly used for research and development and as a tool for simulation driven design
and optimization of internal combustion engines. As with many CFD software, mesh
generation with KIVA is time consuming when its own meshing program is used. This
can be exacerbated in the case of complex geometries with a special mesh quality, or
when unstructured meshes are needed. Commercially, there are several meshing tools
that have features and are available for a price. But this study explores mesh generation
for KIVA in four cases of difficult geometries using open source tools. This allows to
control all the meshing steps and parameters like mesh refinement, anisotropy and
directionality. The first case is a Venturi tube with diesel spray injected in the middle of
the throat. The second one an unstructured mesh for an eccentric diesel piston bowl. The
last two cases are hybrid meshing methods for an engine with two valves and a pre-
chamber, and an engine with two valves and a non-axisymmetric bowl. All the cases
were validated in KIVA. This study extends the applicability of KIVA in terms of
possibilities and ease of mesh generation. Users can use their preferred CAD/mesh
software and convert it to KIVA if the format is compatible with OpenFOAM.
Accordingly, the presented methodology would reduce the time devoted to meshing.

Keywords: KIVA-4, Engine meshing, Complex geometry, Open source meshing tools,
Open Foam, Grid generation, Engine design and optimization.

1. INTRODUCTION

Currently, there is a great concern to reduce pollutant emissions and improve the
performance of internal combustion engines (ICE) (Yu et al., 2001). The constant
advance in computer technologies and the progress of the understanding of physical
phenomena has led to the establishment of 3D simulation as a powerful tool in the study,
design and development of internal combustion engines (Yi, 2008). For this reason,
optimization and design processes had to modify the shape of these devices, which in
some cases increase its geometric complexity. (Yu et al., 2001; Park, 2010; Park and Lee,
2010; Wickman et al., 2001). However, the more complex the geometry of the engine,
the more difficult it is to generate the mesh of the computational domain. This promotes
the need for improved meshing tools which allow 3D simulation of a more diverse set of
engines (Yi, 2008). In computational studies, accuracy and user interaction time are
considered important aspects of a simulation (Yi, 2008). The precision of the results is
conditioned by the mesh quality, while the generation of the discretized domain
consumes most of the user’s time when compared to the simulation time (Yi, 2008).

KIVA is a Fortran-based software founded on the finite volume method that simulates
the thermal, chemical and fluid processes that take place inside an internal combustion
engine (Amsden, 1993; Torres, 2007; Torres, 2006). The software is open source after

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 2

paying a fee, it has more than 30 years on the market and
began with version 2. Right now, versions 3V and 4 are still
maintained by Los Alamos National Laboratory. In 2011, a
parallel version of KIVA 4 using message passing interface
(mpi) was launched (Torres et al., 2009). The main
drawback of the software is the programming methods.
Therefore, since 2016 a new strategy has been deployed
with the release of KIVA-hpFE, where the entire numerical
method was updated to finite elements. In 2018, its name
was changed to FEARCE (Fast, Easy, Accurate and Robust
Continuum Engineering) (Carrington et al., 2018).

As it is common in CFD practice, KIVA has presented
significant problems for obtaining meshes (Nishad, 2018;
Sharma et al., 2010). First, the resulting low-quality meshes
significantly degrade the accuracy of the CFD simulations
and increase computation time (Shimada, 2006; Abani and
Reitz, 2010). On the other hand, the creation of meshes for
complex geometries has historically been a task with a high
degree of difficulty using the existing mesh methods for this
software (Xue, 2008). This has caused other programs such
as Converge (Converge CFD Software, 2018), STAR-CD
(Fischer and Schmidt, 2016) and AVL FIRE (AVL FIRE
Team, 2018) to take advantage of this aspect with automatic
meshing, since with them it is possible to mesh complex
geometries in engines such as chambers, non-axisymmetric
bowls and geometries different from an engine (Bestel et al,
2020; Sharma et al, 2010; Jafarmadar and Zehni, 2014).
Nevertheless, one issue with automatic meshing is the
control of mesh quality via anisotropy and directionality
(Chawner and Taylor, 2019; Chawner et al., 2016).

The conventional KIVA-3V mesh generator, K3PREP,
defines a variety of useful block shapes for patching,
enabling the meshing of combustion chambers, conduits
and valve ports, with moderately complex geometries
(Amsden, 1993; Shi, 2016; Amsden, 1997). The results of
previous studies show that the computational mesh
generated by K3PREP accurately describes the complex
geometries of real engines (Shi et al., 2016). However, the
structured block method, used mainly for engines with
valves, does not allow the creation of meshes with an
uniform cell size (Amsden, 1997; Imamori et al., 2009). As
a result, there has been an increase in computational costs
caused by the high number of cells needed to ensure an
acceptable accuracy and precision in the simulations to
perform (Imamori et al., 2009). Another problem of
K3PREP was that when simulating one section of the engine,
only the use of polar meshes was possible (Amsden, 1993;
Amsden, 1997; Imamori et al., 2009). The size of the cell in
a polar mesh varies with the location in the radial direction,
since it decreases as it is closer to the center of the engine.
For this reason, these cells produce high computing times
and can cause inaccuracies in the prediction (Torres, 2006;
Imamori et al., 2009; Xue and Song, 2009). To avoid this
inconvenience, some improvements were implemented in
the code in KIVA-3V-release2, for enhancing the flexibility
of the mesh, always allowing the use of Cartesian meshes
and without increasing the complexity of use (Imamori et

al., 2009; Amsden, 1999). However, there are still real
applications that exceed the capabilities of the
aforementioned meshing software.

KIVA-4, launched in 2006, has been generalized to
support unstructured meshes. It encourages three types of
elements: hexagonal, pyramidal and tetrahedral (Torres,
2007). This new ability to work with unstructured meshes
facilitates the process of construction of the mesh in
complex geometries and offers greater flexibility (Torres,
2007; Torres, 2006). A combination of meshes generated in
different ways is used in order to take advantage of each of
them and avoid the problems caused by them (Torres, 2007).
For example, it is possible to use a structured mesh for the
part of the squish that would allow a proper snapping, and
an unstructured mesh to shape complex geometries, static
and moving meshes. In any case, the possibilities are
enhanced, but with K3PREP it is still not possible to
generate unstructured meshes (Amsden, 1997; Amsden,
1999).

Due to the increase in the use of KIVA, some closed
source code commercial mesh generators, capable of
creating meshes for complex geometries, have been used
more frequently for the meshing of engines in the KIVA-4
format (Torres, 2007). ICEM and TrueGrid are two of the
software programs that currently allow obtaining meshes in
this format (Torres, 2007; WERC, 2018). ICEM is a
software developed by ANSYS, Inc. and TrueGrid by XYZ
Scientific Applications, Inc. Among their possibilities, these
programs have the generation and optimization of
hexahedral, tetrahedral, structured and unstructured meshes
(Yuan et al, 2020; Rainsberger, 2018). As a guide for these
applications, Wisconsin Engine Research Consultants
published a manual for the generation of meshes focused on
simulations of internal combustion engines. The Manual is
based on the use of ICEM and KIVA (WERC, 2018). In
addition, KIVA-4 has an inhouse converter (Cubit2KIVA)
for use with Cubit, a mesh generator developed by Sandia
National Lab (Torres, 2007; Sandia National Lab, 2015).
With these external meshing tools, mesh generation time is
relatively low (WERC, 2018; Rainsberger, 2018), which
makes them reliable alternatives, or in some cases
complements, for K3PREP.

Despite their many advantages and capabilities, these
proprietary applications have some setbacks. As the code is
unknown, it lacks the necessary flexibility to be enhanced
by the users according to their needs. Likewise, the user
cannot incorporate the meshing algorithm (Chawner et al.,
2016) into KIVA’s source to enable features such as
adaptive mesh refinement (Chawner et al., 2016), new mesh
movement algorithms and others. These characteristics have
been considered crucial in high performance computing
environments that are required for complex geometries and
Large Eddy Simulations (LES) (Chawner et al., 2016). This
gives the user more freedom to generate structured and
unstructured meshes, for simple or complex geometries to
be simulated in KIVA-4.

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 3

Based on the above and considering the actual use of
several versions of KIVA for research and development, this
document presents new tools applied to specific cases for
the construction of structured or unstructured meshes,
applicable in KIVA-4. This aims to augment the utility of
the meshing software, extending its applicability to cases in
which the computational domain has a geometry with a high
degree of complexity.

As the employed tools are free and open source, long-
term robustness of the methodology is ensured and as the
file formats are known in each step, any other tool can be
used in substitution. This is a first step that enables the
following possibilities for immediate future projects:
benchmark with the same mesh against other CFD packages;
automatic mesh generation (Chawner et al., 2016) and
meshing with Computer Aided Design (CAD) kernels
(Chawner et al., 2016); valve generation by mesh tools other
than K3PREP; and benchmarking KIVA-4 against other
software with the exact same mesh. As there is no open
source meshing alternative for the KIVA software, this
paper uses on an open source free software, OpenFOAM,
seeking to take advantage of all the mesh generators
compatible with it (OpenFOAM Foundation, 2017).

For this purpose, OpenFOAM mesh needs to be
translated to the KIVA format. Therefore, a subroutine was
developed in OpenFOAM to convert its mesh to the KIVA
format. This software is called foamToKIVA4Mesh. The
OpenFOAM mesh must be created with certain
requirements to work with the converter. The edge faces and
volume groups must be declared according to a convention
to build the kiva4grid file (Torres, 2007). Likewise, it must
be guaranteed that all the elements belong to the type of
elements allowed by KIVA, in the same way as the
boundary conditions.

Taking all of this into account, the layout of this paper is
as follows. Initially, the OpenFOAM and KIVA-4 mesh
formats are described, as well the developed conversion
subroutine, foamToKIVA4Mesh. Then, different mesh
cases are presented, based on their use of K3PREP, together
with free mesh generators such as blockMesh (OpenFOAM
Foundation, 2017) and Gmsh (Geuzaine and Remacle,
2017). Study case 4 shows the use of an in-house code for
the generation of a mesh combined with K3PREP,
specifically for the case of engines with valves and non-
axisymmetric bowls. Finally, the conclusions obtained from
the development of the work are outlined.

2. MESH DESCRIPTION AND

CONVERSION

OpenFOAM is a widely used program, there are several
mesh converters that allow to translate meshes from other
formats to the OpenFOAM format. The converter
developed in this research permit to convert an OpenFOAM
mesh to the KIVA-4 format. This section briefly explains
the mesh format used in KIVA-4 and the one used in

OpenFOAM. The differences between them are presented.
Finally, a brief explanation of the algorithm for the new
converter is given.

2.1 KIVA-4 Unstructured Mesh Format

The input mesh is a file named “kiva4grid” that has the
following structure:
 1 line : It is reserved to the name of the problem.
 1 line : Number of cells (ncells), Number of vertices

(nverts).
 A block of nverts lines. With 3 columns of X, Y, Z

coordinates for each vertex.
 A block of ncells lines: With 6 columns corresponding

to the nodes of each cell. Its order is predetermined by
a convention on a hexahedron (Torres, 2007).

 A block of ncells lines: This is a list of 7 ordered
columns of integers, whose order corresponds to a code
that describes the types of cells and the types of the
faces by an ordered convention (left, front, bottom,
right, derriere, top).

 1 line: binary value that informs whether kiva4grid
connectivity information is present
(structured/unstructured).

 Other lines related to the structured mesh, periodic
vertices (Amsden, 1993; Torres, 2007).

2.2 OpenFOAM Mesh Format: PolyMesh

OpenFOAM mesh format is described by 4 files that are
dependent on each other and have the following contents:
 File of points: List of points of the mesh indexed by

vertex numbers.
 File of faces: List of indexed faces defined by the

vertex numbers in the previous file. Internal faces are
printed first, as they connect 2 cells, and boundary
faces are printed next, as they describe the boundary
condition faces (patches).

 Files of neighbour and owner cells: These are two lists
of indexed cells defined by the face numbers in the
previous file. The faces are assigned to owner and
neighbour cells. This is useful as the boundary
condition faces do not have a neighbour, therefore their
neighbour index is set to −1. This way, the connectivity
of the cells is defined by the duo neighbour-owner of
each face, thus the boundaries can be clearly
distinguished and inconsistencies easily detected.

 File of patches (boundary conditions): List of faces that
is called patches and described by the index of faces
already defined. The patches group the faces according
to boundary conditions. They are designated by a
naming word and a couple of numbers that represent
the start and end of a slice in the continuous index of
faces.

In addition to these files, there is an optional file named
cellZones, which is a list of indexed cells distinguished with
a name. This is an option in OpenFOAM to group cells
(Weller et al, 1998).

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 4

2.3 Mesh Differences
While OpenFOAM uses arbitrary cell shapes (Weller et

al, 1998), KIVA is limited to a few cell shapes. Fortunately,
OpenFOAM can represent its mesh in memory in a more
conventional form via the cellShape class. This does not
necessarily means a direct conversion, as the conventional
vertex order and faces depiction of both hexahedral cell
shapes are different for each program.

KIVA uses a numeric code for each of its faces and stores
it in 6 ordered columns (top, bottom, left, right, front and
derriere), and OpenFOAM uses the neighbor-owner
representation. These KIVA-4 columns also store the
boundary conditions of the faces and use a numeric code for
each face. In contrast, OpenFOAM uses a word in a group
of faces (patch).

A similar case occurs for the groups of cells. KIVA
distinguishes every cell via a numeric code for volumetric
contents such as valves, squish, among others. This is not a
requirement for OpenFOAM. Therefore, the definition of
such cell parameters is included in the OpenFOAM mesh
via the optional cellZones file. This translation from a
named list in OpenFOAM to a numeric array of ordered
faces is another task of implementation.

All the elements and cells are described explicitly by
kiva4mesh, in contrast to polyMesh, where less data is used
for input to generate the mesh in memory. As this is needed,
modifications to OpenFOAM were mandatory. The original
library foam2STARCD was modified to access the binary
representation of the OpenFOAM mesh and write a
conforming file in kiva4grid format.

2.4 Mesh Conversion Algorithm:

FoamToKIVA4Mesh
The mesh is read by OpenFOAM using a standard

method. When stored to memory, it is saved into the more
conventional representation of hexahedrons depicted in
simulations. As OpenFOAM uses a generalized format, the
mesh is asked to be presented in the more conventional form
that KIVA also supports (Greenshields, 2018). This form it
is then used to read the point and faces, so that can be
ordered into Kiva format. OpenFOAM is then asked to list
each discretized volume faces, position of face vectors and
the opposite faces of each hexahedron. As the faces may
present high distortion, it is of utmost importance to have a
precise and consistent metric that tells which face is at each
side, not only for each element, but for any other element in
the mesh. This is critical, as KIVA-4 mesh uses this metric
to define its mesh in terms of left-right, top-bottom and
front-derriere (Torres, 2007).

The faces of each element are ranked in the 3 local axes,
which are the furthest ones in the X, Y and Z axes. Some
highly distorted faces can have the same rank in two or more
axes (Fig. 1). In Fig. 1, the y2 coordinate of face n2 is higher
than the y1 location of face n1, thus x1 and x2 coordinates are
of equal value for both faces n1 and n2. When ranked in the
x axis, n1 and n2 faces would be in a tie. Consequently, n2 can

be accidentally selected to be a top and right face at the same
time. However, when ranked in the y axis, the y2 is the
highest rank for that axis and therefore face n2 is banned to
be in any other face. This prevents face n2 to be at the same
time a high rank face at the top and the right of the depicted
control volume. In consequence, face n1 can be selected as
the right face as it is the highest rank in the x axis, now that
n2 was already selected as a top face because it is dominant
in the y axis. Once this is completed, the 3 further faces of
each axis are selected and, the other 3 faces of the
hexahedron are their opposites. In this way, the faces of each
control volume are related from OpenFOAM format to
KIVA terminology of left-right, top-bottom and front-
derriere.

As OpenFOAM uses words to define it’s boundary
conditions and the content of its cells as cellZones, these
words are recovered to assign the numerical value to the file
of the converted mesh. Each face is written with its
boundary value and the volume type. For example,
OpenFOAM assigns a value of -1 to fluid faces when a face
is not included in a patch, while KIVA-4 assigns a value of

Fig. 1. Side view of a hypothetical distorted control

volume shaped as an hexahedra

40 to those same faces. The cellshape of OpenFOAM is
traced into the one of KIVA and then it is written into the
translated mesh with its correspondent face value. As this is
a non-structured mesh, there is no more data to write and the
file is closed. As a procedure, foamToKIVA4Mesh can be
summarized as follows:

1. Use standard methods in OpenFOAM to read the mesh.
2. Write the mesh file header.
3. Assign the cell shape hexahedron to the OpenFOAM

mesh.
4. Translate the OpenFOAM hexahedron point order

convention into KIVA hexahedron point order
convention.

5. Write the translated point list for the hexahedron in the
KIVA file.

6. List the normal vectors that correspond to each of the
faces of the hexahedron.

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 5

7. Generate a list of the faces of each cell and their
corresponding opposite face in OpenFOAM.

8. Rank all these normal vectors in descending order at
each axis.

9. Assign non-repeating faces for each maximum face
value for each of the 3 axes. i.e. The list of faces [1,2,3]
for x, y and z axis is valid, but the list of faces [1,2,2]
is not (See Fig. 1).

10. Take the most dominant face in each axis face and
assign the corresponding KIVA convention, i.e. the
highest X face [1] in OpenFOAM = Front; the highest
Y face [2] in OpenFOAM = Right; and, highest Z face
[3] in OpenFOAM = Top.

11. Assign the KIVA convention to the opposite of this
faces, i.e. the opposite of the highest Z value face (Top)
is now the bottom.

12. Write these faces in the order established in the KIVA
format.

13. Read OpenFOAM listed names assigned to each
patch and assign them the numeric value
corresponding to KIVA. For example, a face
corresponding to a patch named “moving” gets
number 10 assigned. Faces without a boundary
condition in OpenFOAM get the “40” number, which
corresponds to a fluid face in KIVA.

14. Close the mesh file.

3. STUDY CASES OVERVIEW

The following sections show different cases that were
used in the construction of meshes for KIVA-4. These
generic cases for spatial discretization increase the
versatility and applicability of KIVA-4. K3PREP is
considered the conventional and default meshing tool of
KIVA-4. However, the use of K3PREP remains
indispensable in some applications, especially those
involving the valve system and the intake and exhaust
processes in the engine. This occurs mainly due to the fact
that this software is characterized by a superior performance
in the handling of mobile meshes in areas close to the valves,
compared to the other meshing software used for KIVA-4
(Amsden, 1997; Amsden, 1999; Torres, 2007). This is a
factor to consider, since the ability to generate moving
meshes is a critical and essential component in ICE CFD
simulations. For these reasons, the exposed cases can be
divided into two groups: a standalone meshing program
different from K3PREP and K3PREP used in combination
with auxiliary software. In all of these cases,
foamToKIVA4Mesh has been used to translate all the mesh
or one of its components to the KIVA format.

The first two cases include those methodologies in which
the complete mesh is created using only a software program
different from K3PREP and then is converted by
foamToKIVA4Mesh. In the first case, a stationary device is
generated by using the meshing program blockMesh. In the
second case, the mesh is an unstructured piston-bowl engine

generated by Gmsh. These methodologies propose to create
the entire mesh without using K3PREP, thus they must
define the volume type of each element and the face type for
each boundary surface.

In the last two cases, a software program is used to
complement K3PREP and foamToKIVA4Mesh. These
methodologies propose to create an initial mesh with
K3PREP for the geometries that are possible with this
program. Then, the mesh for the remaining geometries is
created with another meshing software and then converted
to the KIVA format using foamToKIVA4Mesh. It must be
taken into account that the two meshes must share a surface
to allow the patching of the meshes. This surface must have
the same number of vertices and elements. Finally, the
meshes must be patched with a third software to obtain a
single mesh, which must be tested in KIVA-4 to verify its
functionality. It should be noted that in this group of
methodologies the use of K3PREP is done according to the
indications stipulated in the corresponding software
manuals (Amsden, 1997; Amsden, 1999).

4. STUDY CASE 1. STATIONARY

ARBITRARY MESH

Originally, KIVA was developed to simulate engines,
however, it can solve other phenomena such as reactive flow
through pipes. A Venturi pipe was taken as an example. Air
flows through the duct, and a diesel spray is placed in the
middle of the throat. The purpose of this device is to
evaporate diesel fuel.

The mesh plays an important role in the simulation of
pipes. K3PREP allows to generate two types of mesh for
this purpose: radial mesh and structured cartesian mesh.
Each of these meshes has an undesirable feature in the use
of KIVA for simulation. The radial mesh concentrates
elements of small size and high aspect ratio in its center (Fig.
2(a)). For this reason, the simulation needs a small time step,
and therefore the simulation duration is longer than the
desired. The Cartesian mesh has elements with low
orthogonal quality in the vicinity of four points of the cross-
sectional area (Fig. 2(b)). These elements generate
singularities during the simulation and add errors to results.

The concept of O-grid meshes takes the best of each of
these types of mesh and allows obtaining better results in
numerical simulations. The simplest O-grid is a grid
structured by blocks composed of 5 blocks of cartesian
mesh. This mesh does not have the mentioned problems of
the other meshes. The elements have good size uniformity,
small aspect ratio, and good orthogonal quality (Fig. 2(c)).

The program blockMesh is a basic utility of mesh
generation in OpenFOAM. The final mesh was generated
from blockMesh and converted into KIVA format by
foamToKIVA4Mesh. K3PREP was not used at any time.
The mesh is shown in Fig. 3.

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 6

5. STUDY CASE 2. ENGINE
UNSTRUCTURED MESH

In its latest version, KIVA-4 is extended to handle
unstructured meshes. However, K3PREP, the default mesh
generator of KIVA, can only generate structured meshes. In
the present section, an unstructured mesh was constructed

for a diesel engine whose piston has a non-concentric bowl
with the axis of the cylinder. The final mesh is shown in Fig.
4. The particularity of this mesh is that it is an unstructured
mesh composed only of hexahedrons.

Gmsh was used to generate such hexahedral 3D base
mesh. Gmsh is an open-source software. It has multiple
functionalities that facilitate the mesh generation. The case
in question (Fig. 4) was decomposed into two cylinders with

(a)

(b)

(c)
Fig. 2. Mesh types mentioned: (a) Radial (b) Cartesian (c) O-grid

Fig. 3. Venturi mesh obtained with blockMesh and converted to KIVA format, 88992 cells and total volume of 1803(cm3)

Fig. 4. Unstructured mesh obtained for an engine with eccentric bowl on piston. 23453 cells and displacement 406(cm3)

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 7

different mesh sizes, which are joint in a face to get a base
mesh. Fig. 5 and Fig. 6 show the top and lateral views of
this mesh. Some important characteristics of this mesh are:
 There are two different zones. One for the bowl and

one for the rest of the cylinder.
 The cell size is similar for all cells in each zone.
 It has smaller cell size for the bowl zone, which is the

most important zone inside the engine.
After obtaining the base mesh, the vertices of the bowl

must be rearranged to take the shape of the bowl (Fig. 7),
which in this case is a solid of revolution around the z-axis.
To change the coordinates of any vertex, the following
procedure must be followed:
 Read the original coordinates of the vertex (xa, ya, za),

and turn them into cylindrical coordinates (ra, θb, za).
 Define the radial proportion of the vertex with the

coordinate ra.
 Define the axial proportion of the vertex with the

coordinate za.
 Starting from segments 1-2 and 4-3 of the bowl

geometry, the vertical curve (V) corresponding to the
radial proportion is constructed.

 Starting from segments 1-4 and 2-3 of the bowl
geometry, the horizontal curve (H) corresponding to
the axial proportion is constructed.

 Calculate the coordinates (rb,zb) of the point where the
H and V curves intersect.

 The θb coordinate remains the same
 Convert the found coordinates (rb,θb,zb) to Cartesian

coordinates which are the transformed coordinates of
the vertex (xb,yb,zb).

After transforming the mesh, it is converted to the
OpenFOAM format using gmshToFoam. Finally, it is
converted to the KIVA format through the use of
foamToKIVA4Mesh.

Fig. 5. Top view of the full unstructured mesh

Fig. 6. Longitudinal split of the full unstructured mesh,

before of conversion

Fig. 7. Process of reshape of the bowl

6. STUDY CASE 3. ENGINE WITH VALVES

AND A PRE-CHAMBER

In this section, a mesh was prepared for a gasoline engine
with a pre-chamber. The mesh was built integrating two
meshing programs: blockMesh and K3PREP. This is an
example of a hybrid mesh, where a structured mesh is used
for the cylinder, valves, and inlet and exhaust ducts, while a
block structured mesh is employed for the pre-chamber.
This allows a good approximation to the complex shape of
the combustion chamber, preserving a structured mesh for
the rest of the engine.

The process followed to obtain the structured mesh (for
the cylinder, valves, and ducts) is similar to the one shown
in the KIVA manual, with the particularity that a new block
is included through the cylinder blocks. This block gives the
shape of the interface between the cylinder and the pre-
chamber. Fig. 8 shows the result of the mesh generation with
K3PREP, note the shape of the place where the pre-chamber
will be connected.

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 8

(a) Detail of the interface between the cylinder and the pre-

chamber

(b) Slice of the mesh at intake port with valve shadowed
Fig. 8. Structured mesh obtained for the cylinder, valves

and ducts. 49812 cells

Fig. 9. Sketch of blocks used in mesh generation of the

pre-chamber

The program blockMesh was used for the generation of
the grid structured by blocks for the combustion chamber.
The mesh was created from the concept of O-grid meshes.
In the process, 62 blocks were used: 22 for each hemisphere,
16 for the section between the hemispheres and 2 for the
connection duct to the rest of the engine. A sketch of the
blocks used is shown in Fig. 9. Finally, the created mesh
must be converted to the KIVA format using

foamToKIVA4Mesh. Fig. 10 shows the result of this part of
the mesh generation with blockMesh.

Then, a program was created by the research team to
merge the meshes, based on the following rules:
 The coordinates of the center of the connection face of

the pre-chamber are zero.
 The number of vertices and faces must be the same

both in the connecting face of the pre-chamber and in
the connection interface on the cylinder head.

Fig. 11 shows the complete mesh for an engine with a pre-
chamber obtained at the end of the process. This mesh is
fully functional in KIVA.

(a) (b)

(c)

Fig. 10. Block structured mesh obtained for the pre-
chamber (a) Lateral view (b) Derriere view (c) Bottom

view. 18432 cells

Fig. 11. Complete mesh obtained for a Lister engine with
valves and pre-chamber. 68244 cells and displacement

804(cm3)

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 9

7. STUDY CASE 4. ENGINE WITH VALVES
AND NON-AXISYMMETRIC BOWL

Currently, the meshing programs available for KIVA-4

can be employed to develop meshes for engines with valves
and pistons with a bowl, as long as it is obtained by
revolution. This occurs because, as explained in the manuals
of KIVA-3V (Amsden, 1997; Amsden, 1999), the geometry
of the bowls is described as a function of the radius. For this
reason, it was necessary to develop auxiliary meshing tools,
applicable to engines with valves and non-axisymmetric
bowls. To solve this problem, a new methodology is
proposed to obtain meshes for arbitrary bowls, in a
Cartesian or polar coordinates, as desired. This

Fig. 12. Lombardini LGW-523 engine mesh,

considering a flat piston. 100292 cells

methodology is based on a code to obtain the mesh of the
desired bowl in function of the mesh of the rest of the engine,
obtained with K3PREP, and on the use of free software to
patch these two meshes together.

The Lombardini LGW-523 engine is taken as a real
example (Arroyo et al., 2014; Kosmadakis et al., 2015). This
engine has two valves per cylinder and its piston has a non-
axisymmetric bowl. First, the entire computational domain
is meshed without considering the piston bowl, which is
achieved by means of K3PREP. After this process, a large
part of the engine mesh is obtained, and only the piston bowl
mesh is missed, as shown in Fig. 12.

7.1 Piston Bowl Mesh
To discretize the piston bowl, a code was developed. It

reads the kiva4grid file, obtained previously from K3PREP.
Initially, it is necessary to define the piston bowl based on
elementary geometric entities, in order to simplify the
generation of its mesh. In this case, after the analysis of the
image of the Lombardini LGW-523 engine, the
computational domain of the piston bowl is modeled in a
CAD software. It is concluded that the bowl of this engine
is a conical hole in the piston with two truncations.
Following these considerations, the code that allows to
obtain the bowl mesh is developed. Fig. 13 shows the
structure of this code.

As Fig. 13 shows, to find the vertices of the upper surface
of the bowl, a 2D mesh is necessary to define the first
geometric restrictions, and then to take only the vertices that
comply with them. In the kiva4grid file, the cells are defined
based on the indexes of their vertices (Torres, 2007). Then,
the cells that contain at least one of the vertices that comply
with the restrictions are identified. This process is done to
achieve the continuity of the 2D mesh obtained with the
bowl-less engine mesh, so that the subsequent patching
process is successful. In the previous process, although they
are not within the constraints, the vertices that were not
considered form cells with vertices that do comply with
restrictions.

Therefore, it is necessary to save these new vertices in
arrays, that is, the entire mesh of the bowl upper surface. Fig.
14 illustrates the vertices initially obtained that meet the
restrictions, and the total vertices that comprise the 2D bowl
upper surface mesh. In addition, Fig. 15 illustrates the final
2D mesh that forms the bowl upper surface.

In Fig. 13, extrusions are defined to obtain the new
vertices, which in turn define the piston bowl bottom
surface. It should be noted that these extrusions are normal
to the 2D mesh (along the z coordinate). Vertices which do
not comply with the restrictions to obtain the 2D mesh are
extruded. The minimum extrusion length is defined in the
input variables. The other vertices extrusions are defined
according to the bowl geometry. Besides, to generate all
vertices of the 3D bowl mesh each extrusion is divided into
the number of divisions in z, which is defined in the input
variables. Thus, new vertices inside the bowl domain are
obtained.

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 10

Fig. 13. Flowchart of code developed to obtain the

Lombardini LGW-523 engine bowl mesh

Then, the cells of the 3D bowl mesh are defined, based
on the vertices and the conventions of the kiva4grid file for
the formulation of hexahedral cells (Torres, 2007). These
cells will be formed according to the 2D mesh, which is
repeated for each division in z, as observed when comparing
Fig. 15 and Fig. 16. It should be noted that the similarity of
the 3D mesh obtained to the real geometry depends directly
on the refinement of the 2D mesh collected from the
kiva4grid file generated with K3PREP. Finally, the
conversion to the Gmsh ASCII 2.0 format is performed in
accordance with section 9.1 (MSH ASCII file format) of the
Gmsh 3.0 manual (Geuzaine and Remacle, 2018). The
optimization of the mesh is done using the Gmsh software
(Geuzaine and Remacle, 2017).

(a)

(b)

Fig. 14. Initial vertices (a) and definitive vertices (b) of the
2D mesh for the Lombardini LGW-523 bowl

Fig. 15. 2D mesh that forms the upper surface of the

Lombardini LGW-523 engine bowl

Fig. 16. 3D mesh of the Lombardini LGW-523 engine

bowl. 3840 cells

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 11

7.2 Boundary Conditions and Volume Type of Bowl
With the optimized bowl mesh in the Gmsh ASCII 2.0

format, its boundary conditions and the type of volume are
defined as follows.

1. As expected, all the cells in the bowl mesh have the
same volume type, because they belong to the same
engine section. Then, using the software Gmsh
(Geuzaine and Remacle, 2017) and the geometry
section, a new group of physical identities (physical
groups) is created and it is called “bowl”. This new
identity is applied to all the cells selected as members
of the bowl mesh. Therefore, the mesh of the bowl is
obtained with the volume type defined for each cell in
the Gmsh ASCII 2.0 format.

2. Then, it is necessary to transform the mesh to
OpenFOAM format (OpenFOAM Foundation, 2017),
because this software is used to assign the boundary
conditions with the gmshToFoam utility.

3. The boundary conditions of the bowl are:
 Fluid boundary for the upper surface (face to stick

with the rest of the mesh).
 Boundary in movement with the piston for the

other surfaces.

7.3 Mesh Patching

In this section, the bowl mesh is patched with the mesh
considering the flat piston, thus obtaining the final engine
mesh. After the bowl mesh is in OpenFOAM format, the
conversion to the kiva4grid format is done. To achieve this,
the subroutine foamToKIVA4Mesh is used. Thus, a new
kiva4grid file is obtained, containings the mesh of the bowl.
Finally, using the code developed to patch meshes, both
meshes are joined.

This code takes as input the files “kiva4grid.motor” and
“kiva4grid.bowl”. The output of the patching code is a
kiva4grid file that contains the engine complete mesh. Fig.
17 illustrates the final mesh of the Lombardini LGW-523
engine, obtained with the illustrated methodology.

8. MESH VERIFICATION

All meshes constructed in this article were tested to

validate their proper operation. Nohydro simulations were
used to validate the correct motion. Motored simulations
were used to check the functioning of flow subroutines.
Finally, fired simulations were used to validate the
functioning of the chemistry subroutines of KIVA-4.

Fig. 18 shows the results of cylinder pressure in KIVA-4
simulations using the constructed meshes. Engine 1 refers
to the Lombardini engine of study case 4, it uses syngas as
fuel. Engine 2 refers to the engine with the pre-chamber of
study case 3, it uses gasoline as fuel. Engine 3 refers to the
engine with a bowl on piston of study case 2, it uses diesel
as fuel. Table 1 shows the general characteristics of each
engine.

Fig. 17. Lombardini LGW-523 engine complete mesh.

104132 cells and displacement 252.5 (cm3)

Table 1. General characteristics of the mentioned engines.
Engine Bore (cm) Stroke

(cm)
Compression

ratio Fuel

1 7.2 6.2 10.7 Syngas
2 11.0 15.4 9.0 Gasoline
3 8.5 7.0 22.9 Diesel

For the venturi mesh, the airflow through the duct was

simulated. Into the middle of the throat, diesel fuel was
injected. Fig. 19 shows the air velocity and the percentage
of fuel vapor along the duct.

Fig. 18. Cylinder pressure obtained with meshes

constructed

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 12

Fig. 19. Data obtained with Venturi mesh constructed

9. CONCLUSIONS

A methodology to extend unstructured mesh generation
for KIVA-4 was presented. Validation via no-hydro,
motored and fired simulations was carried out to
corroborate the correct operation of the constructed meshes
for real engines with complex geometries that feature a pre-
chamber, a bowl and a mesh of a venturi tube. It is shown
that the generation of meshes is simplified, and that the
original mesh tool, K3PREP, can be used as a strong base
for more complex geometries. A decreased learning curve is
experienced by the user, as it is now possible to use their
known CAD/mesh program if it supports any format
compatible with OpenFOAM. As an OpenFOAM array of
converters can be employed, many mesh formats can be
imported from existing models.

It should be noted that in study case 4 it is not possible to
accommodate the vertices in the mesh, initially generated
with K3PREP, to match the contour of the bowl and have a
smooth transition between both domains. This occurs
because, unlike the pre-chamber and cylinder head in study
case 3, the interface between the piston bowl and the flat
piston in study case 4 is large enough to involve the mesh
blocks belonging to the system of valves.

For this reason, in study case 4, modifying the position of
the vertices is an unfeasible practice, since altering the axial
direction of the cells with respect to the engine cylinder
causes problems in the movement algorithm of the valves
and the piston (Amsden, 1997; Torres, 2007). This leads to
engine CFD simulations fail due to the presence of
nonconvex and/or inverted cells (Amsden, 1997; Torres,
2007). As the vertices in the study case 4 cannot be
accommodated, the results accuracy is critically dependent
on the study of the mesh independence. This is mainly due
to the fact that the precision with which the mesh describes
the bowl geometry is directly proportional to the cell size of
the base mesh developed in K3PREP, in the plane of
interface with the bowl. However, as observed in the

validation of the meshes section (more specifically in Fig.
18) and based on an adequate convergence study, it is
possible to obtain consistent and real results from the
methodology developed in study case 4, for both the
motored operation and the fired operation of the engine
(Pérez Gordillo, 2019).

As an extension of this tool it is recommended to include
other cell shapes supported by KIVA-4 (Pyramid and
tetrahedron). Furthermore, structured meshes could be
supported even at low-level integration with KIVA-4, in
order to change the mesh during execution, for adaptive
mesh refinement, testing of different snapping algorithms,
among others.

REFERENCES

Abani, N., Reitz, R. 2010. Diesel engine emissions and

combustion predictions using advanced mixing models
applicable to fuel sprays. Combustion Theory and
Modelling, 14, 715–746.

Amsden, A. 1993. KIVA-3: A KIVA program with
blockstructured mesh for complex geometries. Report,
Los Alamos National Laboratory, USA.

Amsden, A. 1997. KIVA-3V: A block-structured kiva
program for engines with vertical or canted valves.
Report, Los Alamos National Laboratory, USA.

Amsden, A. 1999. KIVA-3V, release 2, improvements to
KIVA-3V. Report, Los Alamos National Laboratory,
USA.

Arroyo, J., Moreno, F., Muñoz, M., Monné, C., Bernal, N.
2014. Combustion behavior of a spark ignition engine
fueled with synthetic gases derived from biogas. Fuel;
117, Part A, 50–58.

Bestel, D, Bayliff, S, Marchese, A, Olsen, D, Windom, B,
Xu, H. 2020. Multi-dimensional modeling of the CFR
engine for the investigation of SI natural gas combustion
and controlled End-gas autoignition. Proceedings of the
ASME 2020 Internal Combustion Engine Division Fall
Technical Conference. ASME 2020 Internal Combustion
Engine Division Fall Technical Conference. Virtual,
Online. V001T06A012. ASME. https://doi.org/10.1115/
ICEF2020-2992

Carrington, D., Waters, J., Weismiller, M. 2018. FEARCE
development: A robust and accurate engine modeling
software. FY2018 Annual progress report. Los Alamos
National Laboratory. Available at shorturl.at/glswY
Accessed: February 20 2020

Chawner, J., Taylor, N. 2019. Progress in geometry
modeling and mesh generation toward the CFD vision
2030. AIAA aviation forum. 1–13. https://doi.org/
10.2514/6.2019-2945

Chawner, J.R., Dannenhoffer, J., Taylor, N. 2016. Geometry,
mesh generation, and the CFD 2030 vision. In 46th AIAA
Fluid Dynamics Conference. 1–16. https://doi.org/
10.2514/6.2016-3485

International Journal of Applied Science and Engineering

Soto et al., International Journal of Applied Science and Engineering, 18(1), 2020135

https://doi.org/10.6703/IJASE.202103_18(1).012 13

Geuzaine, C., Remacle, J. 2009. Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and post-
processing facilities. International Journal for Numerical
Methods in Engineering 79, 1309–1331.

Imamori, Y., Hiraoka, K., Murakami, S. et al. 2009. Effect
of mesh structure in the KIVA-4 code with a less mesh
dependent spray model for DI diesel engine simulations.
SAE Int. J. Engines, 2, 1764–1776. https://doi.org/
10.4271/2009-01-1937.

Jafarmadar, S., Zehni, A. 2014. Numerical investigation of
the effects of dwell time duration in a two-stage injection
scheme on exergy terms in an IDI diesel engine by three-
dimensional modeling. Energy Science & Engineering, 2,
1–13.

Kim, H., Lee, S., Kim, H.J., Chun, J. 2020. Numerical study
on the effects of tumble and swirl on combustion and
emission characteristics of an LPG direct injection engine.
International Journal of Automotive Technology. 21,
623–632.

Kosmadakis, G.M., Rakopoulos, D.C., Rakopoulos, C.D.
2015. Investigation of nitric oxide emission mechanisms
in a SI engine fueled with methane/hydrogen blends
using a research CFD code. Int J of hydrogen energy; 40,
15088–15104.

Lee, S., Park, S. 2010. Optimization of the piston bowl
geometry and the operating conditions of a gasoline-
diesel dual-fuel engine based on a compression ignition
engine. Energy 121, 423–448.

Nishad, K. 2018. Analysis of spray dynamics of urea-water-
solution jets in a SCR-DeNOxsystem: An LES based
study. International Journal of Heat and Fluid Flow 70,
247–258.

Park, S. 2010. Optimization of combustion chamber
geometry for stoichiometric diesel combustion using a
micro genetic algorithm. Fuel Processing, 91, 17421752.

Park, S., Shin, H. 2012. Efficient generation of adaptive
Cartesian mesh for computational fluid dynamics using
GPU. International journal for numerical methods in
fluids. 70, 1393–404.

Pérez Gordillo D. 2019. Estudio computacional de la
combustión premezclada de un gas producto de la
gasificación de biomasa en un motor de combustión
interna (MCI). Tesis de Maestría en Ingenieria Mecánica,
Universidad Nacional de Colombia, sede Bogotá.

Rainsberger, R., Fong, J., Marcal, P. 2018. Application of an
a priori Jacobian-Based Error Estimation Metric to the
Accuracy Assessment of 3D Finite Element Simulations.
Proceedings of the ASME 2018 Pressure Vessels and
Piping Conference. Volume 6B: Materials and
Fabrication. Prague, Czech Republic. V06BT06A076.
ASME. https://doi.org/10.1115/PVP2018-84784.

Sharma, C., Anand, T., Ravikrishna, R. 2010. A
methodology for analysis of diesel engine in-cylinder
flow and combustion. Progress in Computational Fluid
Dynamics, 10, 157–167.

Shi, Y., Liu, Y.F., Qiu, Z.H. 2016. Mesh generation of engine
combustion chamber based on KIVA-3V. Mechanics and
Mechanical Engineering, 446–450.

Shimada, K. 2006. Current trends and issues in automatic
mesh generation. Computer-Aided Design and
Applications, 3, 741–750.

Torres, D., Li, Y., Kong, S. 2009. Partitioning strategies for
parallel KIVA-4 engine simulations. Computers and
Fluids, 39, 301–309.

Torres, D.J. 2007. KIVA-4 manual. Report, Los Alamos
National Laboratory, USA.

Torres, D.J., Trujillo, M.F. 2006. An unstructured ALE code
for compressible gas flow with sprays. J of
Computational Physics 219, 943–975.

Weller, H., Tabor, G., Jasak, H., Fureby, C. 1998. A tensorial
approach to computational continuum mechanics using
object-oriented techniques. Computers in physics, 12,
nov/dec.

Wickman, D., Senecal, K., Reitz, R. 2001. Diesel engine
combustion chamber geometry optimization using
genetic algorithms, multi-dimensional spray, and
combustion modeling. SAE paper 2001–01–0547.

Wisconsin Engine Research Consultants (WERC). 2018.
Mesh generation manual. Manual, Wisconsin Engine
Research Consultants, USA.

Xue, Q., Kong, S., Torres, D., Xu, Z. Yi, J. 2008. DISI Spray
Modeling Using Local Mesh Refinement. SAE Technical
Paper 2008-01-0967, https://doi.org/10.4271/2008-01-
0967.

Xue, Q., Song, C. 2009. Development of adaptive mesh
refinement scheme for engine spray simulations.
Computers & Fluids; 38, 939–949.

XYZ Scientific Applications, Inc. 2002. TrueGrid. Software.
Yi, J. 2008. Rapid mesh generation and dynamic mesh

management for KIVA-3V. Report, Ford Research
Laboratories, USA.

Yu, S., Hai-Wen, G., Reitz, R. 2011. Computational
optimization of internal combustion engines. 1st ed.
Springer-Verlag London.

Yuan, H., Yildiz, M., Merzari, E., Yu, Y., Obabko, A., Botha,
G., Busco, G., Hassan, Y., Nguyen, D. 2020. Spectral
element applications in complex nuclear reactor
geometries: Tet-to-hex meshing. Nuclear Engineering
and design, 357, 1–14.

	Open source extensions applied to meshing problems for KIVA 4
	ABSTRACT
	1. INTRODUCTION

	paying a fee, it has more than 30 years on the market and began with version 2. Right now, versions 3V and 4 are still maintained by Los Alamos National Laboratory. In 2011, a parallel version of KIVA 4 using message passing interface (mpi) was launch...
	As it is common in CFD practice, KIVA has presented significant problems for obtaining meshes (Nishad, 2018; Sharma et al., 2010). First, the resulting low-quality meshes significantly degrade the accuracy of the CFD simulations and increase computati...
	The conventional KIVA-3V mesh generator, K3PREP, defines a variety of useful block shapes for patching, enabling the meshing of combustion chambers, conduits and valve ports, with moderately complex geometries (Amsden, 1993; Shi, 2016; Amsden, 1997). ...
	KIVA-4, launched in 2006, has been generalized to support unstructured meshes. It encourages three types of elements: hexagonal, pyramidal and tetrahedral (Torres, 2007). This new ability to work with unstructured meshes facilitates the process of con...
	Due to the increase in the use of KIVA, some closed source code commercial mesh generators, capable of creating meshes for complex geometries, have been used more frequently for the meshing of engines in the KIVA-4 format (Torres, 2007). ICEM and True...
	Despite their many advantages and capabilities, these proprietary applications have some setbacks. As the code is unknown, it lacks the necessary flexibility to be enhanced by the users according to their needs. Likewise, the user cannot incorporate t...
	Based on the above and considering the actual use of several versions of KIVA for research and development, this document presents new tools applied to specific cases for the construction of structured or unstructured meshes, applicable in KIVA-4. Thi...
	As the employed tools are free and open source, long-term robustness of the methodology is ensured and as the file formats are known in each step, any other tool can be used in substitution. This is a first step that enables the following possibilitie...
	For this purpose, OpenFOAM mesh needs to be translated to the KIVA format. Therefore, a subroutine was developed in OpenFOAM to convert its mesh to the KIVA format. This software is called foamToKIVA4Mesh. The OpenFOAM mesh must be created with certai...
	Taking all of this into account, the layout of this paper is as follows. Initially, the OpenFOAM and KIVA-4 mesh formats are described, as well the developed conversion subroutine, foamToKIVA4Mesh. Then, different mesh cases are presented, based on th...
	2. Mesh description and conversion

	OpenFOAM is a widely used program, there are several mesh converters that allow to translate meshes from other formats to the OpenFOAM format. The converter developed in this research permit to convert an OpenFOAM mesh to the KIVA-4 format. This secti...
	2.1 KIVA-4 Unstructured Mesh Format

	The input mesh is a file named “kiva4grid” that has the following structure:
	 1 line : It is reserved to the name of the problem.
	 1 line : Number of cells (ncells), Number of vertices (nverts).
	 A block of nverts lines. With 3 columns of X, Y, Z coordinates for each vertex.
	 A block of ncells lines: With 6 columns corresponding to the nodes of each cell. Its order is predetermined by a convention on a hexahedron (Torres, 2007).
	 A block of ncells lines: This is a list of 7 ordered columns of integers, whose order corresponds to a code that describes the types of cells and the types of the faces by an ordered convention (left, front, bottom, right, derriere, top).
	 1 line: binary value that informs whether kiva4grid connectivity information is present (structured/unstructured).
	 Other lines related to the structured mesh, periodic vertices (Amsden, 1993; Torres, 2007).
	2.2 OpenFOAM Mesh Format: PolyMesh

	OpenFOAM mesh format is described by 4 files that are dependent on each other and have the following contents:
	 File of points: List of points of the mesh indexed by vertex numbers.
	 File of faces: List of indexed faces defined by the vertex numbers in the previous file. Internal faces are printed first, as they connect 2 cells, and boundary faces are printed next, as they describe the boundary condition faces (patches).
	 Files of neighbour and owner cells: These are two lists of indexed cells defined by the face numbers in the previous file. The faces are assigned to owner and neighbour cells. This is useful as the boundary condition faces do not have a neighbour, t...
	 File of patches (boundary conditions): List of faces that is called patches and described by the index of faces already defined. The patches group the faces according to boundary conditions. They are designated by a naming word and a couple of numbe...
	In addition to these files, there is an optional file named cellZones, which is a list of indexed cells distinguished with a name. This is an option in OpenFOAM to group cells (Weller et al, 1998).
	2.3 Mesh Differences

	While OpenFOAM uses arbitrary cell shapes (Weller et al, 1998), KIVA is limited to a few cell shapes. Fortunately, OpenFOAM can represent its mesh in memory in a more conventional form via the cellShape class. This does not necessarily means a direct ...
	KIVA uses a numeric code for each of its faces and stores it in 6 ordered columns (top, bottom, left, right, front and derriere), and OpenFOAM uses the neighbor-owner representation. These KIVA-4 columns also store the boundary conditions of the faces...
	A similar case occurs for the groups of cells. KIVA distinguishes every cell via a numeric code for volumetric contents such as valves, squish, among others. This is not a requirement for OpenFOAM. Therefore, the definition of such cell parameters is ...
	All the elements and cells are described explicitly by kiva4mesh, in contrast to polyMesh, where less data is used for input to generate the mesh in memory. As this is needed, modifications to OpenFOAM were mandatory. The original library foam2STARCD ...
	2.4 Mesh Conversion Algorithm: FoamToKIVA4Mesh

	The mesh is read by OpenFOAM using a standard method. When stored to memory, it is saved into the more conventional representation of hexahedrons depicted in simulations. As OpenFOAM uses a generalized format, the mesh is asked to be presented in the ...
	The faces of each element are ranked in the 3 local axes, which are the furthest ones in the X, Y and Z axes. Some highly distorted faces can have the same rank in two or more axes (Fig. 1). In Fig. 1, the y2 coordinate of face n2 is higher than the y...
	As OpenFOAM uses words to define it’s boundary conditions and the content of its cells as cellZones, these words are recovered to assign the numerical value to the file of the converted mesh. Each face is written with its boundary value and the volume...
	Fig. 1. Side view of a hypothetical distorted control volume shaped as an hexahedra
	40 to those same faces. The cellshape of OpenFOAM is traced into the one of KIVA and then it is written into the translated mesh with its correspondent face value. As this is a non-structured mesh, there is no more data to write and the file is closed...
	1. Use standard methods in OpenFOAM to read the mesh.
	2. Write the mesh file header.
	3. Assign the cell shape hexahedron to the OpenFOAM mesh.
	4. Translate the OpenFOAM hexahedron point order convention into KIVA hexahedron point order convention.
	5. Write the translated point list for the hexahedron in the KIVA file.
	6. List the normal vectors that correspond to each of the faces of the hexahedron.
	7. Generate a list of the faces of each cell and their corresponding opposite face in OpenFOAM.
	8. Rank all these normal vectors in descending order at each axis.
	9. Assign non-repeating faces for each maximum face value for each of the 3 axes. i.e. The list of faces [1,2,3] for x, y and z axis is valid, but the list of faces [1,2,2] is not (See Fig. 1).
	10. Take the most dominant face in each axis face and assign the corresponding KIVA convention, i.e. the highest X face [1] in OpenFOAM = Front; the highest Y face [2] in OpenFOAM = Right; and, highest Z face [3] in OpenFOAM = Top.
	11. Assign the KIVA convention to the opposite of this faces, i.e. the opposite of the highest Z value face (Top) is now the bottom.
	12. Write these faces in the order established in the KIVA format.
	13. Read OpenFOAM listed names assigned to each patch and assign them the numeric value corresponding to KIVA. For example, a face corresponding to a patch named “moving” gets number 10 assigned. Faces without a boundary condition in OpenFOAM get the ...
	14. Close the mesh file.
	3. Study cases overview

	The following sections show different cases that were used in the construction of meshes for KIVA-4. These generic cases for spatial discretization increase the versatility and applicability of KIVA-4. K3PREP is considered the conventional and default...
	The first two cases include those methodologies in which the complete mesh is created using only a software program different from K3PREP and then is converted by foamToKIVA4Mesh. In the first case, a stationary device is generated by using the meshin...
	In the last two cases, a software program is used to complement K3PREP and foamToKIVA4Mesh. These methodologies propose to create an initial mesh with K3PREP for the geometries that are possible with this program. Then, the mesh for the remaining geom...
	4. Study case 1. Stationary arbitrary mesh

	Originally, KIVA was developed to simulate engines, however, it can solve other phenomena such as reactive flow through pipes. A Venturi pipe was taken as an example. Air flows through the duct, and a diesel spray is placed in the middle of the throat...
	The mesh plays an important role in the simulation of pipes. K3PREP allows to generate two types of mesh for this purpose: radial mesh and structured cartesian mesh. Each of these meshes has an undesirable feature in the use of KIVA for simulation. Th...
	The concept of O-grid meshes takes the best of each of these types of mesh and allows obtaining better results in numerical simulations. The simplest O-grid is a grid structured by blocks composed of 5 blocks of cartesian mesh. This mesh does not have...
	The program blockMesh is a basic utility of mesh generation in OpenFOAM. The final mesh was generated from blockMesh and converted into KIVA format by foamToKIVA4Mesh. K3PREP was not used at any time. The mesh is shown in Fig. 3.
	5. Study case 2. Engine unstructured mesh

	In its latest version, KIVA-4 is extended to handle unstructured meshes. However, K3PREP, the default mesh generator of KIVA, can only generate structured meshes. In the present section, an unstructured mesh was constructed for a diesel engine whose p...
	Gmsh was used to generate such hexahedral 3D base mesh. Gmsh is an open-source software. It has multiple functionalities that facilitate the mesh generation. The case in question (Fig. 4) was decomposed into two cylinders with
	Fig. 2. Mesh types mentioned: (a) Radial (b) Cartesian (c) O-grid
	Fig. 3. Venturi mesh obtained with blockMesh and converted to KIVA format, 88992 cells and total volume of 1803(cm3)
	Fig. 4. Unstructured mesh obtained for an engine with eccentric bowl on piston. 23453 cells and displacement 406(cm3)
	different mesh sizes, which are joint in a face to get a base mesh. Fig. 5 and Fig. 6 show the top and lateral views of this mesh. Some important characteristics of this mesh are:
	 There are two different zones. One for the bowl and one for the rest of the cylinder.
	 The cell size is similar for all cells in each zone.
	 It has smaller cell size for the bowl zone, which is the most important zone inside the engine.
	After obtaining the base mesh, the vertices of the bowl must be rearranged to take the shape of the bowl (Fig. 7), which in this case is a solid of revolution around the z-axis. To change the coordinates of any vertex, the following procedure must be ...
	 Read the original coordinates of the vertex (xa, ya, za), and turn them into cylindrical coordinates (ra, θb, za).
	 Define the radial proportion of the vertex with the coordinate ra.
	 Define the axial proportion of the vertex with the coordinate za.
	 Starting from segments 1-2 and 4-3 of the bowl geometry, the vertical curve (V) corresponding to the radial proportion is constructed.
	 Starting from segments 1-4 and 2-3 of the bowl geometry, the horizontal curve (H) corresponding to the axial proportion is constructed.
	 Calculate the coordinates (rb,zb) of the point where the H and V curves intersect.
	 The θb coordinate remains the same
	 Convert the found coordinates (rb,θb,zb) to Cartesian coordinates which are the transformed coordinates of the vertex (xb,yb,zb).
	After transforming the mesh, it is converted to the OpenFOAM format using gmshToFoam. Finally, it is converted to the KIVA format through the use of foamToKIVA4Mesh.
	Fig. 5. Top view of the full unstructured mesh
	Fig. 6. Longitudinal split of the full unstructured mesh, before of conversion
	Fig. 7. Process of reshape of the bowl
	6. Study case 3. Engine with valves and a pre-chamber

	In this section, a mesh was prepared for a gasoline engine with a pre-chamber. The mesh was built integrating two meshing programs: blockMesh and K3PREP. This is an example of a hybrid mesh, where a structured mesh is used for the cylinder, valves, an...
	The process followed to obtain the structured mesh (for the cylinder, valves, and ducts) is similar to the one shown in the KIVA manual, with the particularity that a new block is included through the cylinder blocks. This block gives the shape of the...
	(a) Detail of the interface between the cylinder and the pre-chamber
	(b) Slice of the mesh at intake port with valve shadowed
	Fig. 8. Structured mesh obtained for the cylinder, valves and ducts. 49812 cells
	Fig. 9. Sketch of blocks used in mesh generation of the pre-chamber
	The program blockMesh was used for the generation of the grid structured by blocks for the combustion chamber. The mesh was created from the concept of O-grid meshes. In the process, 62 blocks were used: 22 for each hemisphere, 16 for the section betw...
	Then, a program was created by the research team to merge the meshes, based on the following rules:
	 The coordinates of the center of the connection face of the pre-chamber are zero.
	 The number of vertices and faces must be the same both in the connecting face of the pre-chamber and in the connection interface on the cylinder head.
	Fig. 11 shows the complete mesh for an engine with a pre-chamber obtained at the end of the process. This mesh is fully functional in KIVA.
	(a) (b)
	(c)
	Fig. 10. Block structured mesh obtained for the pre-chamber (a) Lateral view (b) Derriere view (c) Bottom view. 18432 cells
	Fig. 11. Complete mesh obtained for a Lister engine with valves and pre-chamber. 68244 cells and displacement 804(cm3)
	7. Study case 4. Engine with valves and non-axisymmetric bowl

	Currently, the meshing programs available for KIVA-4 can be employed to develop meshes for engines with valves and pistons with a bowl, as long as it is obtained by revolution. This occurs because, as explained in the manuals of KIVA-3V (Amsden, 1997;...
	Fig. 12. Lombardini LGW-523 engine mesh, considering a flat piston. 100292 cells
	methodology is based on a code to obtain the mesh of the desired bowl in function of the mesh of the rest of the engine, obtained with K3PREP, and on the use of free software to patch these two meshes together.
	The Lombardini LGW-523 engine is taken as a real example (Arroyo et al., 2014; Kosmadakis et al., 2015). This engine has two valves per cylinder and its piston has a non-axisymmetric bowl. First, the entire computational domain is meshed without consi...
	7.1 Piston Bowl Mesh

	To discretize the piston bowl, a code was developed. It reads the kiva4grid file, obtained previously from K3PREP. Initially, it is necessary to define the piston bowl based on elementary geometric entities, in order to simplify the generation of its ...
	As Fig. 13 shows, to find the vertices of the upper surface of the bowl, a 2D mesh is necessary to define the first geometric restrictions, and then to take only the vertices that comply with them. In the kiva4grid file, the cells are defined based on...
	Therefore, it is necessary to save these new vertices in arrays, that is, the entire mesh of the bowl upper surface. Fig. 14 illustrates the vertices initially obtained that meet the restrictions, and the total vertices that comprise the 2D bowl upper...
	In Fig. 13, extrusions are defined to obtain the new vertices, which in turn define the piston bowl bottom surface. It should be noted that these extrusions are normal to the 2D mesh (along the z coordinate). Vertices which do not comply with the rest...
	Fig. 13. Flowchart of code developed to obtain the Lombardini LGW-523 engine bowl mesh
	Then, the cells of the 3D bowl mesh are defined, based on the vertices and the conventions of the kiva4grid file for the formulation of hexahedral cells (Torres, 2007). These cells will be formed according to the 2D mesh, which is repeated for each di...
	(a)
	(b)
	Fig. 14. Initial vertices (a) and definitive vertices (b) of the 2D mesh for the Lombardini LGW-523 bowl
	Fig. 15. 2D mesh that forms the upper surface of the Lombardini LGW-523 engine bowl
	Fig. 16. 3D mesh of the Lombardini LGW-523 engine bowl. 3840 cells
	7.2 Boundary Conditions and Volume Type of Bowl

	With the optimized bowl mesh in the Gmsh ASCII 2.0 format, its boundary conditions and the type of volume are defined as follows.
	1. As expected, all the cells in the bowl mesh have the same volume type, because they belong to the same engine section. Then, using the software Gmsh (Geuzaine and Remacle, 2017) and the geometry section, a new group of physical identities (physical...
	2. Then, it is necessary to transform the mesh to OpenFOAM format (OpenFOAM Foundation, 2017), because this software is used to assign the boundary conditions with the gmshToFoam utility.
	3. The boundary conditions of the bowl are:
	 Fluid boundary for the upper surface (face to stick with the rest of the mesh).
	 Boundary in movement with the piston for the other surfaces.
	7.3 Mesh Patching

	In this section, the bowl mesh is patched with the mesh considering the flat piston, thus obtaining the final engine mesh. After the bowl mesh is in OpenFOAM format, the conversion to the kiva4grid format is done. To achieve this, the subroutine foamT...
	This code takes as input the files “kiva4grid.motor” and “kiva4grid.bowl”. The output of the patching code is a kiva4grid file that contains the engine complete mesh. Fig. 17 illustrates the final mesh of the Lombardini LGW-523 engine, obtained with t...
	8. Mesh verification

	All meshes constructed in this article were tested to validate their proper operation. Nohydro simulations were used to validate the correct motion. Motored simulations were used to check the functioning of flow subroutines. Finally, fired simulations...
	Fig. 18 shows the results of cylinder pressure in KIVA-4 simulations using the constructed meshes. Engine 1 refers to the Lombardini engine of study case 4, it uses syngas as fuel. Engine 2 refers to the engine with the pre-chamber of study case 3, it...
	Fig. 17. Lombardini LGW-523 engine complete mesh. 104132 cells and displacement 252.5 (cm3)
	Table 1. General characteristics of the mentioned engines.
	For the venturi mesh, the airflow through the duct was simulated. Into the middle of the throat, diesel fuel was injected. Fig. 19 shows the air velocity and the percentage of fuel vapor along the duct.
	Fig. 18. Cylinder pressure obtained with meshes constructed
	Fig. 19. Data obtained with Venturi mesh constructed
	9. Conclusions

	A methodology to extend unstructured mesh generation for KIVA-4 was presented. Validation via no-hydro, motored and fired simulations was carried out to corroborate the correct operation of the constructed meshes for real engines with complex geometri...
	It should be noted that in study case 4 it is not possible to accommodate the vertices in the mesh, initially generated with K3PREP, to match the contour of the bowl and have a smooth transition between both domains. This occurs because, unlike the pr...
	For this reason, in study case 4, modifying the position of the vertices is an unfeasible practice, since altering the axial direction of the cells with respect to the engine cylinder causes problems in the movement algorithm of the valves and the pis...
	As an extension of this tool it is recommended to include other cell shapes supported by KIVA-4 (Pyramid and tetrahedron). Furthermore, structured meshes could be supported even at low-level integration with KIVA-4, in order to change the mesh during ...
	REFERENCES

	Abani, N., Reitz, R. 2010. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays. Combustion Theory and Modelling, 14, 715–746.
	Amsden, A. 1993. KIVA-3: A KIVA program with blockstructured mesh for complex geometries. Report, Los Alamos National Laboratory, USA.
	Amsden, A. 1997. KIVA-3V: A block-structured kiva program for engines with vertical or canted valves. Report, Los Alamos National Laboratory, USA.
	Amsden, A. 1999. KIVA-3V, release 2, improvements to KIVA-3V. Report, Los Alamos National Laboratory, USA.
	Arroyo, J., Moreno, F., Muñoz, M., Monné, C., Bernal, N. 2014. Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas. Fuel; 117, Part A, 50–58.
	Bestel, D, Bayliff, S, Marchese, A, Olsen, D, Windom, B, Xu, H. 2020. Multi-dimensional modeling of the CFR engine for the investigation of SI natural gas combustion and controlled End-gas autoignition. Proceedings of the ASME 2020 Internal Combustion...
	Carrington, D., Waters, J., Weismiller, M. 2018. FEARCE development: A robust and accurate engine modeling software. FY2018 Annual progress report. Los Alamos National Laboratory. Available at shorturl.at/glswY Accessed: February 20 2020
	Chawner, J., Taylor, N. 2019. Progress in geometry modeling and mesh generation toward the CFD vision 2030. AIAA aviation forum. 1–13. https://doi.org/ 10.2514/6.2019-2945
	Chawner, J.R., Dannenhoffer, J., Taylor, N. 2016. Geometry, mesh generation, and the CFD 2030 vision. In 46th AIAA Fluid Dynamics Conference. 1–16. https://doi.org/ 10.2514/6.2016-3485
	Geuzaine, C., Remacle, J. 2009. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79, 1309–1331.
	Imamori, Y., Hiraoka, K., Murakami, S. et al. 2009. Effect of mesh structure in the KIVA-4 code with a less mesh dependent spray model for DI diesel engine simulations. SAE Int. J. Engines, 2, 1764–1776. https://doi.org/ 10.4271/2009-01-1937.
	Jafarmadar, S., Zehni, A. 2014. Numerical investigation of the effects of dwell time duration in a two-stage injection scheme on exergy terms in an IDI diesel engine by three-dimensional modeling. Energy Science & Engineering, 2, 1–13.
	Kim, H., Lee, S., Kim, H.J., Chun, J. 2020. Numerical study on the effects of tumble and swirl on combustion and emission characteristics of an LPG direct injection engine. International Journal of Automotive Technology. 21, 623–632.
	Kosmadakis, G.M., Rakopoulos, D.C., Rakopoulos, C.D. 2015. Investigation of nitric oxide emission mechanisms in a SI engine fueled with methane/hydrogen blends using a research CFD code. Int J of hydrogen energy; 40, 15088–15104.
	Lee, S., Park, S. 2010. Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine. Energy 121, 423–448.
	Nishad, K. 2018. Analysis of spray dynamics of urea-water-solution jets in a SCR-DeNOxsystem: An LES based study. International Journal of Heat and Fluid Flow 70, 247–258.
	Park, S. 2010. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm. Fuel Processing, 91, 17421752.
	Park, S., Shin, H. 2012. Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU. International journal for numerical methods in fluids. 70, 1393–404.
	Pérez Gordillo D. 2019. Estudio computacional de la combustión premezclada de un gas producto de la gasificación de biomasa en un motor de combustión interna (MCI). Tesis de Maestría en Ingenieria Mecánica, Universidad Nacional de Colombia, sede Bogotá.
	Rainsberger, R., Fong, J., Marcal, P. 2018. Application of an a priori Jacobian-Based Error Estimation Metric to the Accuracy Assessment of 3D Finite Element Simulations. Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Volume 6B: ...
	Sharma, C., Anand, T., Ravikrishna, R. 2010. A methodology for analysis of diesel engine in-cylinder flow and combustion. Progress in Computational Fluid Dynamics, 10, 157–167.
	Shi, Y., Liu, Y.F., Qiu, Z.H. 2016. Mesh generation of engine combustion chamber based on KIVA-3V. Mechanics and Mechanical Engineering, 446–450.
	Shimada, K. 2006. Current trends and issues in automatic mesh generation. Computer-Aided Design and Applications, 3, 741–750.
	Torres, D., Li, Y., Kong, S. 2009. Partitioning strategies for parallel KIVA-4 engine simulations. Computers and Fluids, 39, 301–309.
	Torres, D.J. 2007. KIVA-4 manual. Report, Los Alamos National Laboratory, USA.
	Torres, D.J., Trujillo, M.F. 2006. An unstructured ALE code for compressible gas flow with sprays. J of Computational Physics 219, 943–975.
	Weller, H., Tabor, G., Jasak, H., Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics, 12, nov/dec.
	Wickman, D., Senecal, K., Reitz, R. 2001. Diesel engine combustion chamber geometry optimization using genetic algorithms, multi-dimensional spray, and combustion modeling. SAE paper 2001–01–0547.
	Wisconsin Engine Research Consultants (WERC). 2018. Mesh generation manual. Manual, Wisconsin Engine Research Consultants, USA.
	Xue, Q., Kong, S., Torres, D., Xu, Z. Yi, J. 2008. DISI Spray Modeling Using Local Mesh Refinement. SAE Technical Paper 2008-01-0967, https://doi.org/10.4271/2008-01-0967.
	Xue, Q., Song, C. 2009. Development of adaptive mesh refinement scheme for engine spray simulations. Computers & Fluids; 38, 939–949.
	XYZ Scientific Applications, Inc. 2002. TrueGrid. Software.
	Yi, J. 2008. Rapid mesh generation and dynamic mesh management for KIVA-3V. Report, Ford Research Laboratories, USA.
	Yu, S., Hai-Wen, G., Reitz, R. 2011. Computational optimization of internal combustion engines. 1st ed. Springer-Verlag London.
	Yuan, H., Yildiz, M., Merzari, E., Yu, Y., Obabko, A., Botha, G., Busco, G., Hassan, Y., Nguyen, D. 2020. Spectral element applications in complex nuclear reactor geometries: Tet-to-hex meshing. Nuclear Engineering and design, 357, 1–14.

