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ABSTRACT 

Plants are a source of food, medicines, fiber, fuel, etc. and are therefore crucial for our 
survival. Due to this, intensive care of plants should be done and it requires monitoring 
of their growth, size, yield, etc. However, manually monitoring such factors is often time-
consuming and necessitates one to have in-depth knowledge of agriculture and plants. 
Thus, automatic systems for plant image analysis would be beneficial for practical and 
productive agriculture. Therefore, an automatic method is proposed for monitoring the 
growth of plants by first performing the segmentation of leaves in plant images and then 
calculating the segmented area. A deep learning-based architecture “U-Net” was used for 
the segmentation task. A benchmark dataset of 810 images was used to train and test the 
proposed deep learning network. The proposed model was trained within 3 hours and 
achieved a dice accuracy of 94.91% on the training set, 94.93% on the validation set, and 
95.05% on the testing set. The proposed architecture was found very lightweight with 
fewer computations but achieved promising results as compared to other methods in the 
literature. 
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1. INTRODUCTION

Plants are extremely essential as they are a source of food, medicines, fibre, fuel, etc.
(Gupta et al., 2020). So, it becomes important to monitor various factors of a plant such 
as its growth, its yield, its size, etc. To be able to manually monitor such factors, one 
requires in-depth knowledge of agriculture and plants. In addition to this, it’s very time 
consuming if plants are grown on a large scale. Therefore, it is considered to evolve 
automatic systems that can assist agriculturists, scientists, gardeners, etc. to monitor 
various factors of plants (Gupta et al., 2020). Such a system would be beneficial to help 
in understanding what measures and actions should be taken for improving the 
productivity of plants and crops. As a result, in the area of computer vision, there has 
been an increase in the number of researches on image-based plant phenotyping. 
Researchers are working on various plant datasets to devise methods with minimal 
human interaction to ease the study of visual phenotypes of plants. These researches are 
crucial as in the future, they can play a huge role in increasing the crop yields and meeting 
the food requirements of billions of people. 

In recent years, numerous researchers have focused a lot on the area of plant 
phenotyping and performed various researches to solve a variety of problems such as 
plant disease detection, leaf segmentation, counting leaves, etc. A brief description of 
literature based on such researches and image segmentation is given in Table 1. Kumar 
et al. (2012) have made “Leafsnap” app that can provide assistance to amateur botanists, 
scientists, foresters, etc. The “leafsnap” app can categorize the tree species from an image 
of its leaf. To recognize a tree species, four steps were performed, namely classification,
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segmentation, extraction and comparison. Minervini et al. 
(2013) proposed an algorithm to automatically segment and 
analyse the plant images from phenotyping experiments of 
species Arabidopsis rosettes. They acquired the data by 
setting a static camera in a general laboratory that captures 
a number of plants at the same time. Their algorithm is 
based on a new vector valued active contour model that can 
incorporate prior knowledge which reflects the likelihood of 
a pixel to belong to a plant. Barbedo (2016) proposed a 
semi-automatic method that can detect plant diseases from 
asymptomatic tissues in plant leaves. Their algorithm is 
based on the manipulation of histograms of H and a in HSV 
and L*a*b respectively. The algorithm is semi-automatic as 
it needs to have human interaction to decide which among 
the H or a channel provides better differentiation. Ozturk et 
al. (2017) proposed a method to segment leaves using gray 
wolf optimizer based neural network. Yin et al. (2018) 
proposed a method to perform segmentation, alignment and 
tracking on a fluorescence plant video. They conducted their 
experiments on Arabidopsis thaliana and evaluated the 
method on the Leaf Segmentation Challenge (LSC) dataset 
(Minervini et al., 2015; Scharr et al. 2015; Dee et al., 2016). 
Kumar et al. (2019) proposed a method to extract the 
regions of leaves and count the number of leaves present in 
a plant image. They have divided the proposed method into 
three steps. In the first step, the image is enhanced by a 
statistical-based method. In the second step, the leaf regions 
are extracted from the plant using a graph-based image. In 
the third step, the Circular Hough Transform is applied to 
count the number of leaves in the plant image. 

The objective of this study is to segment leaves from plant 
images having different backgrounds and illumination 
conditions with precise accuracy and less computational 
power requirements for training purposes and then monitor 
the growth of plants by computing the segmented area. The 
time taken to process an image by the methods proposed in 
some related articles that focus on segmenting leaves, 
increases with the size of the image. Thus, to overcome this 
limitation, we have trained the “U-Net” architecture 
(Ronneberger et al., 2015) for the segmentation task which 
is very lightweight, fast, and computationally less expensive. 
Also, every image is resized to 512 × 512 before feeding 
into the model and hence, the original size of the image does 
not affect the speed. 

2. MATERIALS AND METHODS

2.1 Materials 
The dataset used in this project was downloaded from the 

dataset page of Leaf Segmentation Challenge (Minervini et 
al., 2015; Scharr et al. 2015; Dee et al., 2016). It consists of 
four datasets, namely A1, A2, A3, and A4. Datasets A1, A2, 
and A4 consist of time-lapse images of the Arabidopsis 
plant, whereas, A3 dataset consists of images of the tobacco 
plant. A1 and A2 datasets were shot using a 7-megapixel 
Canon power-shot camera, whereas, A3 dataset was shot 
using Grasshopper cameras (Minervini et al., 2015). The A4 
dataset’s images were taken using the Photon Systems 
Instrument (PSI) platform's built-in camera (Dee et al., 
2016). All the images were stored as lossless PNG files. 

Each dataset has a different background and illumination 
condition. The A1 dataset consists of 128 images of 500 ×
530 pixels with a complex background. In some images, 
moss is present in the soil which makes this dataset highly 
challenging as moss is of the same colour as the leaves. The 
A2 dataset consists of 31 images of 530 × 565 pixels. In 
some images, it contains extremely small-sized leaves 
which are difficult to detect. There are 27 images of 2448 ×
2048 pixels in the A3 dataset. The low illumination 
conditions in a few images make this dataset complex. The 
A4 dataset consists of 624 images of 441 × 441 pixels. This 
dataset is highly varying as its images contain leaves of 
various sizes. 

The data was split into training, validation, and testing 
sets such that 60% of images of each dataset were in the 
training set, 10% in the validation set and the rest 30% 
images in the testing set. So, there were a total of 486 images 
in the training set, 81 images in the validation set and 243 
images in the test set. 

2.2 Methods 
This section deals with a detailed description of the 

applied methodology. The flow diagram of the applied 
methodology is shown in Fig. 1. Table 2 demonstrates a list 
of all layers used in the proposed architecture. 

Fig. 1. Flow diagram of applied methodology 
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Table 1. Literature focusing on image segmentation and areas of plant phenotyping 
Sr. No. Reference Objective Dataset Method Result Remarks 

1. Chen et
al. (2002)

To propose 
an image 

segmentation 
algorithm. 

Photographic 
images 

Based on 
spatially 

adaptive colour 
and texture 

features 

Images were 
segmented for
an unlimited 

range of topics 
(people, nature

etc.) 

Colour segmentation is 
based on the adaptive 

clustering algorithm and 
texture analysis is based 

on an estimate of the 
energy of the coefficients 

of a wavelet 
decomposition 

2. Kumar et
al. (2012)

To describe 
the Leafsnap 

app 

Contains 
coverage of 

184 tree 
species of 

North-eastern 
United States 

Classifying, 
segmenting, 

extracting and 
comparing 

Performs well 
on the real-

world images 
from Leafsnap 

dataset 

Leafsnap is a mobile app 
that can automatically 
identify plant species

using visual recognition 

3. 
Minervini 

et al. 
(2013) 

To propose 
an algorithm 

for the 
automated 

segmentation 
and analysis 

of plant 
images 

Data acquired 
by them in a 

general 
laboratory 

Combination of 
level set and 

learning- based 
segmentation 

Accuracy (dice 
similarity 

coefficient) = 
96.7% 

The proposed method is 
able to properly segment 

images even with 
complicated and 

changing background 

4. Barbedo
(2016)

To segment 
plant leaf 
disease 

symptoms 

Images of 19 
species 

containing 82 
different 

diseases or 
examples 

of pest 
damage 

Manipulation 
of 

histograms of 
the H and a 

from HSV and 
L*a*b color 

spaces 
respectively 

r = 0.95 

The algorithm is robust 
as it allows variation in 

symptom color, leaf 
color, etc. 

5. Ozturk et
al. (2017)

To segment 
leaf images 26 leaf images 

Gray wolf 
optimizer based 
neural network 

Accuracy= 
99.31% 

Components from four 
different color spaces 
were used to train the 

neural network 

6. Yin et al.
(2018)

To process 
fluorescence 
plant video 

41 
Arabidopsis 

Thaliana 
videos and

LSC dataset 
(Minervini et 

al., 2015;
Scharr et al., 

2014) 

Segmentation, 
alignment and 

tracking 

Leaf 
Segmentation 
SBD accuracy 

on LSC 
dataset= 78.0% 

(±7.8) 

When the overlap ratio 
between the leaves is 
greater than 23%, the 

algorithm recognizes two 
leaves as a single leaf 

7. Kumar et
al. (2019)

To extract 
the regions 

of leaves and 
count the 
number of 

leaves 
present in a 
plant image 

LSC dataset 
(Minervini et 

al., 2015;
Scharr et al., 

2014) 

Statistical 
based, graph- 

based and 
Circular Hough 

Transform 
(CHT) 

Accuracy (dice 
coefficient) = 

95.4%,
Counting 
accuracy=    
-0.7 (DiC)

The proposed method 
can process each image 

of A1 dataset or A2 
dataset in approximately 
2s, while it takes about 
10s to process an image 

of A3 dataset 
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A. The Pre-Processing Stage
The images of A1 and A2 datasets were 4 channel RGBA 

images, while those of A3 and A4 datasets were 3 channel 
RGB images. Also, the size of the images was different for 
each dataset. Since the deep learning models expect all the 
input images to have the same dimensions, the four-channel 
RGBA images were converted to 3 channel RGB images 
and all the images were resized to 512 × 512 using the 
“skimage” python package. The original RGB images 
contained shadows and illumination effects which may have 
affected the performance of the deep learning model. Thus, 
contrast limited adaptive histogram equalization (CLAHE) 
was performed on all the images in order to enhance the 
local details even in the regions that were darker or lighter 
than most of the image. For an RGB image, the image is 
first converted into HSV colour space. Then CLAHE is 
performed on the V channel. The image is then returned 
after being converted back to RGB colour space (scikit-
image). We did not apply an ordinary adaptive histogram 
equalization (AHE) on our dataset because it tended to 
overamplify noise in relatively homogenous regions (Yang 
et al., 2017). This happens due to the fact that in such 
regions, the histogram is highly concentrated. CLAHE uses 
clip-limit in order to reduce the noise amplification problem 
(Yang et al., 2017). Block size (or kernel size) and clip limit 
are the two important parameters of CLAHE as the quality 
of the enhanced image is mainly controlled by them (Yang 
et al., 2017). We performed CLAHE on our dataset using 
the “skimage” python package. We experimented with 
different settings for the clip limit, kernel-size, and nbins 
(number of gray bins for histogram) and after 
hyperparameter tuning, we set the kernel-size to 1/8 of 

image height by 1/8 of image width, nbins to 256, and the 
clip limit to 0.5 (scikit-image). The slope of the 
transformation function provides the contrast amplification 
in the given pixel value’s area (Magudeeswaran et al., 2017). 
This is proportional to the slope of the neighbourhood CDF 
(Gabbiani et al., 2010) and consequently to that histogram’s 
value which is present at that pixel value (Magudeeswaran 
et al., 2017). CDF can be defined as in Equation (1): 
𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)            (1) 
where 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)  represents the probability of a random 
variable 𝑋𝑋  being less than or equal to a given value 𝑥𝑥 
(Gabbiani et al., 2010). CLAHE clips the histogram at 0.5 
(clip limit) before computing the CDF (scikit-image). Due 
to this, the CDF’s slope and therefore the transformation 
function’s slope is limited. As a result, noise amplification 
is reduced (scikit-image). A comparison of an image along 
with its histogram before and after applying CLAHE is 
shown in Fig. 2. 

B. The Training of Deep Learning Model
The U-Net architecture was used to train the model as it

can be trained end to end on very few images and still 
perform well. Moreover, the network is quite fast as it 
requires less than a second to segment a 512 × 512 image 
on a GPU. The U-Net architecture was first proposed by 
Ronneberger et al. (2015). 

The final model used is defined in Table 2. The first 
element of the output shape, i.e., the batch size was set to 1. 
The network has a U-shaped architecture and consists of a 
contracting path and an expansive path. Each convolutional 

(a) 

(b) 
Fig. 2. Image along with its histogram (a) Before applying CLAHE and (b) After applying CLAHE 
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layer in the contracting path is followed by a ReLU 
activation function and a MaxPooling2D layer 
(Ronneberger et al., 2015; Kızrak, 2020). After the 
contraction, we get reduced spatial information and 
increased feature information. On the contrary, during the 
expansion, the feature and spatial information are combined 
through a sequence of Conv2D, UpSampling2D and skip 
connections (Add layers) with high resolution features from 
the contracting path (Ronneberger et al., 2015; Kızrak, 
2020). In the last convolutional layer, we used the sigmoid 
activation function that can be defined as (TensorFlow) in 
Equation (2): 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
            (2) 

This activation function was used in the last layer as we 
had only two classes in the output- one belonging to the leaf 
region (positive) and another belonging to the non-leaf 
region (negative), which is a binary classification problem. 
Here, the sigmoid activation function predicts the 
probability for a pixel to belong to a leaf region. If the 
predicted probability is greater than or equal to the threshold, 
i.e., 0.5, the pixel is assigned the positive class, else, the
pixel is assigned the negative class. A label of 0 corresponds
to the non-leaf region, whereas a label of 1 corresponds to
the leaf region. The pixels which are assigned the positive
class (label-1) look white coloured and the ones which are
assigned the negative class (label-0) look black coloured in
the output (segmented) image.

The number of epochs was set to 50 and 
ModelCheckpoint callback was used to save the model’s 
weights for which the dice coefficient for the validation set 

was maximum. The model was trained with Adam as the 
optimizer with learning rate set to 0.001. Adam optimizer 
was first introduced by Kingma et al. (2014). We used this 
optimizer as it is computationally efficient and has little 
memory requirements (Kingma et al., 2014). Binary cross-
entropy loss which was used as the loss function can be 
defined as in Equation (3): 
𝐽𝐽(𝑤𝑤) = − 1

𝑁𝑁
∑ [𝑦𝑦𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦�𝑛𝑛 + (1 − 𝑦𝑦𝑛𝑛)log (1 − 𝑦𝑦�𝑛𝑛)]𝑁𝑁
𝑛𝑛=1    (3) 

where N is the number of examples, 𝑦𝑦𝑛𝑛 is the actual label 
(0 or 1), and 𝑦𝑦�𝑛𝑛 is the probability predicted by the model 
for a particular pixel to have a label of 1 (Nielsen, 2020). 
The model was implemented using the TensorFlow 
framework. We trained it using a GPU on Google Colab for 
less than 3 hours and got a training pixel accuracy of 98.81%, 
a validation pixel accuracy of 98.82% and a testing pixel 
accuracy of 98.69%. 

C. Calculating Growth Index
The growth index is directly proportional to the area

occupied by the leaves in a plant image, for which, the 
minimum and maximum values can be 0 and 1 respectively. 
The growth index of a plant is calculated from its segmented 
image using Equation (4). Since the output of our model is 
an image of 512 × 512 pixels, the total number of pixels in 
a segmented image is 2,62,144 Equation (5). A plant image 
having a higher growth index signifies more growth as 
compared to the one having a lower growth index. 

𝐺𝐺. 𝐼𝐼. = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

(4) 

Table 2. Different layers of the proposed architecture for the automatic segmentation of leaves 
S. No. Layer (type) Stride Params Output shape 

1. Input layer - 0 (Batch_size, 512, 512, 3) 
2. Conv2D 1 1792 (Batch_size, 512, 512, 64) 
3. Conv2D 1 36928 (Batch_size, 512, 512, 64) 
4. MaxPooling2D 1 0 (Batch_size, 256, 256, 64) 
5. Dropout 1 0 (Batch_size, 256, 256, 64) 
6. Conv2D 1 73856 (Batch_size, 256, 256, 128) 
7. Conv2D 1 147584 (Batch_size, 256, 256, 128) 
8. MaxPooling2D 1 0 (Batch_size, 128, 128, 128) 
9. Conv2D 1 295168 (Batch_size, 128, 128, 256) 
10. UpSampling2D 1 0 (Batch_size, 256, 256, 256) 
11. Conv2D 1 295040 (Batch_size, 256, 256, 128) 
12. Conv2D 1 147584 (Batch_size, 256, 256, 128) 
13. Add 1 0 (Batch_size, 256, 256, 128) 
14. UpSampling2D 1 0 (Batch_size, 512, 512, 128) 
15. Conv2D 1 73792 (Batch_size, 512, 512, 64) 
16. Conv2D 1 36928 (Batch_size, 512, 512, 64) 
17. Add 1 0 (Batch_size, 512, 512, 64) 
18. Conv2D 1 577 (Batch_size, 512, 512, 1) 

Total params: 1,109,249 
Trainable params: 1,109,249 

Non-trainable params: 0 
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𝐺𝐺. 𝐼𝐼. =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
262144

(5) 

3. RESULTS

To evaluate a segmentation model’s performance, we
cannot totally depend on the pixel accuracy as it is the 
percent of the correctly classified pixels in an image, and in 
our dataset, we have a lot of images in which there is a 
problem of class imbalance. Therefore, we also calculated 
the intersection over union and dice coefficient metrics. The 
formulae to compute these metrics are shown in Equation 
(6)-(8). For evaluating the task of monitoring the growth 
(calculating growth index), we calculated the mean absolute 
error (MAE), the formula for which is shown in Equation 
(9). 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (%)  =  (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 +
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) (6) 
𝐼𝐼𝐼𝐼𝐼𝐼 (%)  =  (𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)) × 100 (7) 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (%)  =  ( 2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
) × 100 (8) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖|𝑛𝑛
𝑖𝑖=1 (9) 

where TP, TN, FP, and FN are the number of true positives, 
true negatives, false positives, and false negatives 
respectively. 𝑌𝑌𝑖𝑖, 𝑌𝑌�𝑖𝑖, and n are growth index calculated from 
ground truth, growth index calculated from predicted image, 
and the total number of examples respectively. 

The pixel accuracy, intersection over union (also known 
as Jaccard Index), dice coefficient and MAE were 
separately computed for training, validation and test 
datasets and are shown in Table 3. Examples of images 
predicted by our model on A1, A2, A3 and A4 datasets of 
the test set along with their respective original RGB images 
and ground truths are shown in Fig. 3. Also, the calculated 
growth index is mentioned below the ground truths and the 
predicted images. The time taken by our model is less than 
a second to segment an image on a GPU. 

4. DISCUSSION

Numerous studies have been published that focus on
automatic leaf segmentation. Ozturk et al. (2017) used a 
neural network with “gray wolf” as the optimizer to segment 
leaves. Their objective was to segment leaf images with 
different illumination conditions. They achieved a pixel 
accuracy of 99.31% which is slightly higher than that 
achieved by our model (training = 98.81%, testing = 
98.69%). However, the dataset they used was different from 
ours and consisted of only 26 images. So, we can’t compare 
the performance of our model with theirs. 

The state of the art SLIC_Seg (Simple Linear Iterative 
Clustering superpixels segmentation) method (Minervini et 
al., 2016) uses SLIC superpixel to segment the leaf region. 
There is no need for training in this method. The SLIC_Seg 
method achieved a dice score of 94.6% on the A1 dataset, 
87.5% on the A2 dataset and 79.4% on the A3 dataset. Our 
method performs better than the SLIC_seg method on every 
dataset as we achieved a dice score of 95.63% on the A1 
dataset, 91.21% on the A2 dataset and 79.90% on the A3 
dataset. Furthermore, their method is quite fast as it takes 
less than a second for each image in A1 and A2 datasets. 
However, the time taken on an image of the A3 dataset is 1-
5 seconds, which may be due to the fact that an image of A3 
dataset is of larger size as compared to an image of A1 and 
A2 dataset. Whereas, the time taken by our model on every 
image is always the same (< 1 second). 

The objective of the study by Kumar et al. (2019) was to 
extract the regions of leaves and count the number of leaves 
present in a plant image. They have first enhanced the plant 
images using a statistical-based approach and then applied 
a graph-based technique to extract the leaf region. The 
dataset they used was the same as ours except for the fact 
that the A4 dataset was not included in it. They achieved a 
dice score of 95.4% on the leaf region extraction task which 

Table 3. Performance of our model on various datasets for segmentation task 
Datasets Pixel accuracy (%) IoU (Jaccard Index) (%) Dice coefficient (%) MAE 

Train 

A1 98.37 91.87 95.76 0.0028 
A2 99.42 84.90 91.56 0.0007 
A3 99.31 82.23 88.79 0.0010 
A4 98.85 90.90 95.13 0.0013 

Total 98.81 90.56 94.91 0.0015 

Validation 

A1 98.39 92.12 95.90 0.0032 
A2 99.64 80.62 88.89 0.0009 
A3 98.27 83.24 90.69 0.0045 
A4 98.89 91.02 95.23 0.0014 

Total 98.82 90.53 94.93 0.0018 

Test 

A1 98.16 91.63 95.63 0.0031 
A2 99.26 84.34 91.21 0.0013 
A3 98.64 72.36 79.90 0.0045 
A4 98.77 91.87 95.69 0.0016 

Total 98.69 90.98 95.05 0.0019 
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Fig. 3. (a) RGB images, (b) Ground truths with growth index and, (c) Predicted images with growth index of 
A1, A2, A3 and A4 datasets 

is slightly higher than that achieved by our model (training 
= 94.91%, testing = 95.05%). However, to fully process an 
image, their method takes 2 seconds on A1 and A2 datasets 
and 10 seconds on an A3 dataset image. Whereas, our model 
takes less than a second to segment any image, irrespective 
of which dataset it belongs to or what its original size is as 
every image is resized to 512 × 512 before giving as an input 
to our model. 

We have proposed a model which is able to segment 
leaves from plant images with high pixel accuracy. 
Furthermore, our model performs well on other metrics 
(dice score and Jaccard index) too. We have also calculated 
the growth index from the segmented image, which can be 

used to monitor the growth. Since we have used a dataset 
that consists of images of four plants, each having different 
lightning and background, our model is quite robust. 
Additionally, since we have used the “U-Net” architecture, 
our model is pretty fast too. Also, unlike other methods, the 
speed of the model does not vary with the original size of an 
image. This is due to the resizing of the images before 
feeding to the model. 

The deep learning model was trained using images in 
which there was only a single plant present. Also, the 
images were of Arabidopsis and tobacco plants only and 
they both have green leaves. The proposed model is not 
validated on the images where there are multiple plants in 

(a) 

(b) 

(c) 

𝐺𝐺. 𝐼𝐼. = 0.1136 𝐺𝐺. 𝐼𝐼. = 0.0038 𝐺𝐺. 𝐼𝐼. = 0.0013 𝐺𝐺. 𝐼𝐼. = 0.0677 

𝐺𝐺. 𝐼𝐼. = 0.1169 𝐺𝐺. 𝐼𝐼. = 0.0031 𝐺𝐺. 𝐼𝐼. = 0.0014 𝐺𝐺. 𝐼𝐼. = 0.0703 
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an image or where the leaves of a plant are not green. To use 
the model in such cases, the model will require training on 
a similar dataset. Thus, a limitation of the proposed method 
is that the U-Net architecture will require retraining 
(keeping all the hyperparameters same) if the images from 
which the growth has to be monitored is different (in terms 
of the number of plants present in an image and colour of 
leaves) from the ones the model is trained on. However, 
retraining the proposed model is not a tedious task as the U-
Net architecture is quite fast and performs well even if 
trained on a small dataset. Future research work may focus 
on overcoming this limitation up to an extent by training the 
model using a much diverse dataset of plant images with 
different coloured leaves and multiple plants present in an 
image. 

5. CONCLUSION

We have proposed a deep learning U-Net architecture for
automatic leaf segmentation using plant images and then 
also calculated the growth index to monitor the growth of 
plants. This “U-Net” architecture was found very 
lightweight with less computational power requirements but 
achieved a promising pixel accuracy. The other metrics 
(Dice coefficient and Jaccard Index) judging the proposed 
method were found satisfactory considering the method of 
automatic segmentation of leaves. The mean absolute error 
which was used to measure the error in the growth index 
made it evident that the proposed method can be used to 
monitor the growth of plants with precise accuracy. The 
proposed method can be used where there is a need to 
perform automatic monitoring of the growth of plants. In the 
future, the proposed method can be further extended to 
monitor the growth of multiple plants at once which can be 
very useful in large-scale farms. 
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