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ABSTRACT 

The transient heat transfer within a layered structure can be modeled efficiently using 
the thermal quadrupole methods. Such numerical simulations would contribute to 
effective experimental design for thermography inspection applications of composite 
materials. Current research is part of such effort that focuses on the parametric study on 
both a two-layer model and a four-layer model. The variation of amplitude curves agrees 
with the lateral position of the interfacial discontinuity in general. The sudden increase 
in the phase value distinctively indicates the end point of the same discontinuity. Hence 
the lateral location of an embedded interfacial discontinuity can be readily identified 
from the Laplace surface temperature. The layer thickness does not have significant 
effect on the general trend observed in the parametric analysis presented in this work. 
The advantage of the numerical modeling of layered structures using thermal 
quadrupoles lies in that thermal quadrupoles can be easily extended to multiple layers 
containing internal anomaly between different layers. 

Keywords: Passive thermography, Thermal quadrupoles, Layered media, Fiber 
reinforced polymer composites. 

1. INTRODUCTION

Fiber reinforced polymer composite materials (GFRP or CFRP) have widespread use
in both fabrication of light-weight components and repair of damaged engineering 
structures. However new applications also present new challenges to structural integrity 
assessment and nondestructive evaluation (NDE). A visual examination in which no 
recordable indications of flaws are detected does not mean that no structurally significant 
flaws exist within the structure. More advanced nondestructive inspection (NDI) 
techniques such as ultrasonic scanning and X-ray computed tomography thus are 
sometimes applied to the damage assessment of CFRP components. The demand of 
continuous monitoring of progressive damage, however, presents some challenges to the 
applications of advanced NDI methods. 

Composite structural elements under variable loading could produce heat due to 
thermal expansion effect and change of stress state. The former heating effect is likely 
caused by the irreversible thermoelastic plastic deformation. The latter is often resulted 
from the material discontinuity or embedded defects (Zalameda and Winfree, 2018). 
Friction caused by two partially dis-bonded surfaces would also generate heat. The 
subsequent re-distribution of thermal stress field would act as internal heat sources that 
dissipate energy to the surface. Such inhomogeneous surface temperature may be 
detected by passive thermography. The recorded thermal images have gained some 
success on revealing embedded voids, de-bonding interface, or even progressive 
damages (Harizi et al., 2014; Zalameda and Jackson, 2020). Thermal analysis plays an 
important part in the effectiveness of thermography testing because of the nature of 
internal heat sources in a lot of cases. The detection of non-repetitive transient thermal 
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signals can be quite difficult for passive thermography due 
to unwanted heat transfer and small temperature contrast 
and other issues. 

The transient heat transfer within a layered structure can 
be modeled using a variety of numerical techniques, such as 
finite difference methods, finite element analysis and 
thermal quadrupole methods. The flexibility of thermal 
quadrupoles has been well documented, for example 
Winfree et al. (2018). In brief, such a technique allows the 
construction of an exact and direct model that is suitable for 
experimental design and inversion of thermal properties 
(Maillet et al., 2000). The solutions to the heat equations are 
expressed as linear matrices that allow numerical results be 
obtained more efficiently than finite element analysis. This 
is very appealing when experimental design requires 
simulations of the multi-layered structures such as CFRP 
components (Winfree et al., 2018). Furthermore, the need 
for improving the quantitative analysis of internal defects 
based on the results of passive thermography also requires 
more efficient thermal modeling and simulations than those 
in the literature (Shiozawa et al., 2017; Palumbo et al., 2017). 

The current research starts with the introduction to 
thermal quadrupoles. A two-layer model is analyzed that 
results in solution to the surface temperature in the Laplace 
domain. The effect of an interfacial defect is explored 
according to the number of layers and the locations of 
discontinuity at the interface between two adjacent layers. 
The simulated results for both the two-layer and four-layer 
models will be presented, followed by discussions and 
concluding remarks. 

2. QUADRUPOLES FOR THERMAL
ANALYSIS

The concept of quadrupoles was first introduced to
thermal analysis by Maillet and co-workers in 1993. The 
temperature at any given time of a lumped body model can 
be expressed as the difference between input and output heat 
fluxes as, 
𝜌𝜌𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= Φ1(𝑡𝑡) −Φ2(𝑡𝑡)  with  𝑇𝑇(0) = 0 (1) 

The time derivative is removed after Laplace transform is 
applied to temperature T and heat flux Ф in Equation (1). 
The simplest case for such a model can then be written in a 
matrix formulation as, 

�𝜃𝜃1𝜙𝜙1
� = � 1 0

𝐶𝐶𝑡𝑡𝑠𝑠 1� �
𝜃𝜃2
𝜙𝜙2
�    (2) 

Where 𝜃𝜃𝑖𝑖(𝑠𝑠) = 𝐿𝐿[𝑇𝑇𝑖𝑖(𝑡𝑡)] 
= ∫ 𝑇𝑇𝑖𝑖(𝑡𝑡) exp(−𝑠𝑠𝑠𝑠) 𝑑𝑑𝑑𝑑∞

0 ;  𝜙𝜙𝑖𝑖(𝑠𝑠) = 𝐿𝐿[Φ𝑖𝑖(𝑡𝑡)] , and Ct is the 
heat capacity. 

As an analogy to a discretized electrical network, 
Equation (2) is represented by the diagram shown as Fig. 1. 

The capital letters inside the square indicate elements of the 
transfer matrix. 

Fig. 1. Thermal quadrupole representation of a simplified 
lumped body model 

The temperature variation along the z direction of the 
layer thickness is written as, 
𝑑𝑑2𝜃𝜃
𝑑𝑑𝓏𝓏2

= 𝑠𝑠
𝑎𝑎
𝜃𝜃 (3a) 

𝜃𝜃( z, s ) = K1cosh( αz ) + K2sinh( αz )  (3b) 
Where the diffusion coefficient a is replaced by α. λ is 

the heat conduction coefficient and S is the surface area 
perpendicular to the z direction. The heat flux can be 
determined as, 

𝜙𝜙(z, s) = −λS
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −λSα(K1cosh( αz ) + K2sinh( αz )) 

(4) 
Let the heat transfer from z = 0 to z = e, the corresponding 

heat equation is written in the matrix form as, 

�𝜃𝜃in𝜙𝜙in
� = �  cosh( 𝛼𝛼𝛼𝛼 ) 1

λSα
sinh( 𝛼𝛼𝛼𝛼 )

λSα sinh( 𝛼𝛼𝛼𝛼 ) cosh( 𝛼𝛼𝛼𝛼 )
� �𝜃𝜃out𝜙𝜙out

� (5) 

3. MODELLING OF HEAT TRANSFER IN
LAYERED MEDIA

To construct a thermal quadrupole model for a layered
media, the electrical circuit analogy is again applied to 
describing the relation between temperature and flux that go 
through two contacting layers and the interface between 
them, as shown in Fig. 2. 

Given that the surface temperature is the key feature for 
most experimental study using infrared thermography, we 
will only focus on the thermal modeling in the z direction of 
a layered media. The temperature θ (0, s) and heat flux ϕ (0, 
s) at the surface are determined by inverting the transfer
matrix of thermal quadrupoles as shown in Equation (6),

�
cosh(𝑧𝑧𝑧𝑧) − sinh(𝑧𝑧𝑧𝑧)

λ𝑞𝑞

−λ𝑞𝑞 sinh(𝑧𝑧𝑧𝑧) cosh(𝑧𝑧𝑧𝑧)
� � 𝜃𝜃

(0, 𝑠𝑠)
𝜙𝜙(0, 𝑠𝑠) � = � 𝜃𝜃

(𝑧𝑧, 𝑠𝑠)
𝜙𝜙(𝑧𝑧, 𝑠𝑠) �   (6)

Similarly, the equations for a two-layer system are 

�
cosh(𝑞𝑞𝑑𝑑1) − sinh(𝑞𝑞𝑑𝑑1)

λ𝑞𝑞

−λ𝑞𝑞 sinh(𝑞𝑞𝑑𝑑1) cosh(𝑞𝑞𝑑𝑑1)
� � 𝜃𝜃(0, 𝑠𝑠)
−ℎ 𝜙𝜙(0, 𝑠𝑠) � = � 𝜃𝜃(𝑑𝑑1, 𝑠𝑠)

𝜙𝜙1 − 𝜙𝜙𝑠𝑠(𝑠𝑠) �

(7a) 
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Fig. 2. Equivalent diagram for a two-layer system (after Maillet et al., 2000) 

Fig. 3. Schematics of a two-layer system containing an interfacial discontinuity, shown in red 

�
cosh(𝑞𝑞𝑑𝑑2) − sinh(𝑞𝑞𝑑𝑑2)

λ𝑞𝑞

−λ𝑞𝑞 sinh(𝑞𝑞𝑑𝑑2) cosh(𝑞𝑞𝑑𝑑2)
� � 𝜃𝜃(𝑑𝑑1, 𝑠𝑠)
𝜙𝜙1 + 𝜙𝜙𝑠𝑠(𝑠𝑠) � =

� 𝜃𝜃
(𝐿𝐿𝑧𝑧 , 𝑠𝑠)

ℎ 𝜙𝜙(𝐿𝐿𝑧𝑧, 𝑠𝑠) �  (7b) 

The surface temperature θ (0, s) is obtained as, 
𝜃𝜃(0, 𝑠𝑠)

= 2
𝜙𝜙𝑠𝑠(𝑠𝑠)
λ

𝛼𝛼 �𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑑𝑑2𝑞𝑞) + ℎ
λ  sinh(𝑑𝑑2𝑞𝑞)�

𝛼𝛼 �2 ℎλ 𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝐿𝐿𝑧𝑧𝑞𝑞)� + �𝑠𝑠 + �ℎλ�
2
𝛼𝛼� sinh(𝐿𝐿𝑧𝑧𝑞𝑞)

(8) 
The advantage of thermal quadrupoles is now clear that a 

more complicated system can be readily analyzed by 
extending Equation (7) to model multiple layers. The added 
complexity of solutions in the Laplace domain is certainly 
worth the effort. Furthermore, the applications to numerical 
simulation are relatively straightforward, as can be seen in 
the following section. 

The symbols used and their units are listed in the 
Appendix as Table A1. 

4. MODELLING RESULTS OF TWO-
LAYER AND FOUR-LAYER SYSTEMS

The aforementioned analysis forms the basis of numerical
simulation that has been successfully implemented using a 
computer code developed by the authors. The Laplace 
surface temperature 𝜃𝜃(0, 𝑠𝑠)  can be inverted to the time 
domain using the Stehfest numerical algorithm (Maillet et 
al., 2000). We now present the results for various 
configurations in a two-layer system (Fig. 3). The exact 
dimensions of each configuration are listed in Table 1. L is 
2 mm in the lateral direction of the model. 

The data shown in Fig. 4 to Fig. 6 are computed based on 
a thermal conductivity of 6𝜇𝜇W/mK  and the thermal 
diffusivity in z direction 𝛼𝛼𝑧𝑧 = 6.493X10-7 m2/s and that in 
x direction 𝛼𝛼𝑥𝑥 = 3.250X10-6 m2/s, respectively. The time 
history of the simulated thermal response to the periodical 
load at the interface is shown in Fig. 4(a) to Fig. 7(a) for 
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Table 1. Dimensions of all configurations analyzed as a two-layer model 

Designation d1, mm d2, mm Position of interfacial discontinuity in lateral 
direction, mm 

D1 
0.15 0.05 

0~0.6 
D2 0.6~1.4 
D3 1.4~2.0 
D4 

0.10 0.10 
0~0.6 

D5 0.6~1.4 
D6 1.4~2.0 
D7 

0.05 0.15 
0~0.6 

D8 0.6~1.4 
D9 1.4~2.0 

configurations D1 through D9, respectively. The amplitudes 
of Laplace temperature for D1, D2, and D3, are plotted 
separately as the blue curves in Fig. 4(b). The amplitude of 
the Laplace surface temperature at various positions along 
the x direction on the surface corresponding to the peak 
values are indicated by the blue dots in Fig. 4(a). The time 

difference of the blue dots with respect to the maximum 
peak is the phase change with respect to the maximum peak. 
The normalized phase change is plotted as the red curves in 
Fig. 4(b). The area in brown indicates the position of 
interface discontinuity along the x direction. 

Fig. 4. Numerical results of two-layer configurations D-1, D-2, and D-3 (a) The time history of the simulated thermal 
response (b) Laplace temperature of the thermal response 

(a) 

(b)
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Fig. 5. Numerical results of two-layer configurations D-4, D-5, and D-6 (a) The time history of the simulated thermal 
response (b) Laplace temperature of the thermal response 

Fig. 6. Numerical results of two-layer configurations D-7, D-8, and D-9 (a) The time history of the simulated thermal 
response (b) Laplace temperature of the thermal response 

The variation of amplitude curves agrees with the lateral 
location of the interfacial discontinuity in general. On the 
other hand, the sudden increase in the phase value 
distinctively indicates the end point of the same 
discontinuity. Hence the lateral location of the discontinuity 
can be identified in such a way. The drawback of the phase 

variation approach is that the farther away from the 
discontinuity in the lateral direction the smaller the Laplace 
amplitude. This makes it more difficult to determine the 
accurate phase value. Further, the results obtained from a 
thinner upper layer appear to be less stable as shown in Fig. 
6. 

(a) 

(b) 

(a) 

(b)
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The results of six configurations are presented in Fig. 7 
and Fig. 8 for a four-layer model. A thickness of 0.05 mm is 
selected for all four layers. The exact dimensions for the 
configurations analyzed are listed in Table 2. In general, the 
results are in agreement with those in the same 
configuration of a two-layer model. Difference in the phase 
variation does exist between F-1 and D-1. Such deviation 
can be expected since the farther away from the 
discontinuity in the lateral direction the smaller the Laplace 
amplitude. Same rationale applies to the difference between 
F-6 and D-9. Such deviations are of no concern to the
objective of finding the lateral location of the discontinuity.

5. CONCLUDING REMARKS

The thermal analysis based on thermal quadrupoles has
been successfully applied to both a two-layer model and a 

four-layer model. The variation of Laplace temperature 
amplitude curves agrees with the lateral position of the 
interfacial discontinuity in general. The sudden increase in 
the phase value distinctively indicates the end point of the 
same discontinuity. Hence the lateral location of the 
discontinuity can be readily identified from the surface. The 
layer thickness does not have significant effect on the 
general trend observed in the parametric analysis presented 
in this work. The advantage of the numerical modeling of 
layered structures using thermal quadrupoles lies in that 
thermal quadrupoles can be easily extended to multiple 
layers containing internal anomaly between different layers. 

The proposed analysis would be valuable in applying 
passive infrared thermography to CFRP components under 
loading conditions. We will report in a separate study about 
the outcome of the experimental results and detailed 
analysis. 

Table 2. Dimensions of all configurations analyzed as a four-layer model 

Designation 
Thickness of the layer or 

layers above the 
discontinuity, mm 

Thickness of the layer or 
layers below the 

discontinuity, mm 

Position of interfacial 
discontinuity in lateral 

direction, mm 
F1 

0.15 0.05 
0~0.6 

F2 0.6~1.4 
F3 1.4~2.0 
F4 

0.05 0.15 
0~0.6 

F5 0.6~1.4 
F6 1.4~2.0 

Fig. 7. Numerical results of four-layer configurations F-1, F-2, and F-3 (a) The time history of the simulated thermal 
response (b) Laplace temperature of the thermal response 

(a) 

(b)
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Fig. 8. Numerical results of four-layer configurations F-4, F-5, and F-6 (a) The time history of the simulated thermal 
response (b) Laplace temperature of the thermal response 
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Table A1. List of symbols in a two-layer system 
Symbols Description units 

𝑑𝑑1 Upper layer thickness cm 
𝑑𝑑2 Lower layer thickness cm 
θ Temperature K 
𝜙𝜙 Heat flux W/m2 
λ Thermal conductivity W/(mK) 
𝛼𝛼 Thermal diffusivity m2/s 
𝑞𝑞 𝑞𝑞 =  �𝑠𝑠/𝛼𝛼 √s/m2

ℎ Heat convection 
coefficient W/(m2K)

(a) 

(b)
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	The surface temperature θ (0, s) is obtained as,
	𝜃,0,𝑠.=2,,𝜙-𝑠.,𝑠.-λ.,𝛼,𝑞 𝑐𝑜𝑠ℎ,,𝑑-2.𝑞.+,ℎ-λ. sinh,,𝑑-2.𝑞..-𝛼,2,ℎ-λ.𝑞 𝑐𝑜𝑠ℎ,,𝐿-𝑧.𝑞..+,𝑠+,,,ℎ-λ..-2.𝛼.sinh,,𝐿-𝑧.𝑞..
	(8)
	The advantage of thermal quadrupoles is now clear that a more complicated system can be readily analyzed by extending Equation (7) to model multiple layers. The added complexity of solutions in the Laplace domain is certainly worth the effort. Further...
	The symbols used and their units are listed in the Appendix as Table A1.
	4. Modelling results of two-layer and four-layer systems

	The aforementioned analysis forms the basis of numerical simulation that has been successfully implemented using a computer code developed by the authors. The Laplace surface temperature 𝜃,0,𝑠. can be inverted to the time domain using the Stehfest n...
	The data shown in Fig. 4 to Fig. 6 are computed based on a thermal conductivity of 6𝜇W/mK and the thermal diffusivity in z direction ,𝛼-𝑧. = 6.493X10-7 m2/s and that in x direction ,𝛼-𝑥. = 3.250X10-6 m2/s, respectively. The time history of the si...
	Table 1. Dimensions of all configurations analyzed as a two-layer model
	configurations D1 through D9, respectively. The amplitudes of Laplace temperature for D1, D2, and D3, are plotted separately as the blue curves in Fig. 4(b). The amplitude of the Laplace surface temperature at various positions along the x direction o...
	Fig. 4. Numerical results of two-layer configurations D-1, D-2, and D-3 (a) The time history of the simulated thermal response (b) Laplace temperature of the thermal response
	Fig. 5. Numerical results of two-layer configurations D-4, D-5, and D-6 (a) The time history of the simulated thermal response (b) Laplace temperature of the thermal response
	Fig. 6. Numerical results of two-layer configurations D-7, D-8, and D-9 (a) The time history of the simulated thermal response (b) Laplace temperature of the thermal response
	The variation of amplitude curves agrees with the lateral location of the interfacial discontinuity in general. On the other hand, the sudden increase in the phase value distinctively indicates the end point of the same discontinuity. Hence the latera...
	variation approach is that the farther away from the discontinuity in the lateral direction the smaller the Laplace amplitude. This makes it more difficult to determine the accurate phase value. Further, the results obtained from a thinner upper layer...
	The results of six configurations are presented in Fig. 7 and Fig. 8 for a four-layer model. A thickness of 0.05 mm is selected for all four layers. The exact dimensions for the configurations analyzed are listed in Table 2. In general, the results ar...
	5. Concluding Remarks

	The thermal analysis based on thermal quadrupoles has been successfully applied to both a two-layer model and a four-layer model. The variation of Laplace temperature amplitude curves agrees with the lateral position of the interfacial discontinuity i...
	The proposed analysis would be valuable in applying passive infrared thermography to CFRP components under loading conditions. We will report in a separate study about the outcome of the experimental results and detailed analysis.
	Table 2. Dimensions of all configurations analyzed as a four-layer model
	Fig. 7. Numerical results of four-layer configurations F-1, F-2, and F-3 (a) The time history of the simulated thermal response (b) Laplace temperature of the thermal response
	Fig. 8. Numerical results of four-layer configurations F-4, F-5, and F-6 (a) The time history of the simulated thermal response (b) Laplace temperature of the thermal response
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