
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202109_18(5).012 Vol.18(5) 2021092

OPEN ACCESS

Received: March 19, 2021

Accepted: July 1, 2021

Corresponding Author:
Sarika Chaudhary
schaudhary@ggn.amity.edu

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

Analysing a novel multi-objective prioritization
model using improved fuzzy c mean clustering

Sarika Chaudhary*, Aman Jatain

Department of Computer Science and Engineering, Amity University, Gurugram,
India

ABSTRACT

Consistent regression testing (RT) is an abstract class, that considered indispensable
for assuring the quality of software systems but it is too expensive. To minimize the
computational cost of RT, test case prioritization (TCP) is the most adopted methodology
in literature. The implementation of TCP process, performed using various hard
clustering techniques but fuzzy clustering, one of the most sought clustering technique
for selecting appropriate test cases had not been discover at a wider platform. Therefore,
the proposed work discusses a novel density based fuzzy c- mean (NDB-FCM) algorithm
with newly derived initialize membership function for prioritizing the test cases. It first,
generates optimal number of cluster (Copt) using a density based algorithm, which in
turn minimizes the search criteria to find the ‘Copt’, especially in cases where a given
data set does not follow the empirical rule. Then, creates an initial fuzzy partition matrix
based upon newly suggested initial membership method. In addition, a novel multi-
objective prioritization model (NDS-FCMPM) proposed to achieve the performance goal
of enhanced fault recognition. Initially, feature extraction carried out by exploiting the
dependencies between test cases, and then test cases are clustered using proposed fuzzy
clustering approach, which finally, prioritized using a newly developed prioritization
algorithm. To validate the performance of suggested fuzzy clustering algorithm two-
performance measure namely “Fuzzy Rand Index” and “Run Time” exercised and for
prioritization algorithm “APFD” metrics is analysed. The proposed model is assessed
using eclipse data extracted from Github Repository. Inferences generated depict that
NDB-FCM clustering provide more stable results in terms of classification accuracy, run
time and quick convergence when compared with other state-of-the-art techniques. Also,
it is verified that NDS-FCMPM observes an improved rate of fault identification at early
stage.

Keywords: APFD, Customer requirements, Fuzzy clustering, Feature extraction,
Prioritization, Regression testing.

1. INTRODUCTION

Set of actions carried out on a software, once it is deliver for use, known as software
maintenance. These activities (actions) are required to accommodate the changes that are
usually vital during this phase of SDLC. In order to validate that these continuous
changes are precise and pose no impact on the remaining functionality software systems,
re-testing of product is necessary (Yoo et al., 2009) RT is a validation process of
frequently performed activities to retest the modified versions of software, and thus owe
to 50% cost of overall maintenance cost (Chaudhary 2018). Due to restraint resources
and time, it is not advisable to attempt re-execution of all test cases. Furthermore, test
cases play a significant role to automate testing (Mani and Prasanna, 2017). Significance
of RT can be viewed by the fact that the only critical and expensive defect in past have
been uncovered by it. Various activities of RT are selection, minimization and test cases
prioritization (Yoo and Harman, 2010). First two, accounts for reducing the expense of

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 2

testing process by selecting the relevant subset and by
minimizing test suite to a subset, satisfying the prior
coverage criteria respectively. Prioritization organize and
rank test cases in a way that aims to improve code coverage
efficiency and, thus deal efficiently with early detection of
faults (Miranda et al., 2018). Besides, it provides faster
feedbacks, thereby allowing developers to debug as early as
possible. It also enhance the probability of execution of
important tests, in cases where testing ends abruptly.

Since a variety of techniques for TCP are suggested (Pang
et al., 2017; Hasan et al., 2017; Carlson et al., 2011) which
demonstrate the usefulness of increasing fault detection rate.
To a large extent, many of these techniques exploit
statement coverage and hard clustering approaches for
prioritization of test suites. Limited focus has been given to
soft/fuzzy clustering methods in prioritization in past
(Chaudhary and Jatain, 2020). Clustering is a predominant
method to optimize TCP techniques as it minimize the count
of pair wise comparison in the test cases (Garg et al., 2013).
It can divided into two categories hard clustering and fuzzy
clustering. In hard clustering a data element “x” belong
either completely to a cluster or not at all. The value of data
are crisp and can be either 0 or 1, it cannot lie in between
values of 0 and 1. In contrast , in fuzzy clustering a data
element “x” is assigned with a membership function “m”,
where “m” represents the degree to which “x” belong to
different clusters at the same time and range of “x” lies
from 0 < x < 1 (Hüllermeier and Rifqi, 2009). In real time
applications fuzzy clustering behaves more naturally than
hard clustering because the object that lie near to boundary
of clusters are not forced to belong to a single cluster
specifically and more accurate classifications results can be
drawn. The main intention of our proposed work is to
implement a multi-objective prioritization model to
prioritize test case under fuzzy clustering category. The
suggested method developed to increase the rate of average
percentage of fault identified in software systems. The
planned approach has used code coverage and customer
requirements factors for test case prioritization. The rest of
the document structured as: Section 2 described the related
work. Core contributions of the proposed methodology
explained in section 3. Section 4 described the dataset.
Section 5 presented result and discussions. Finally, section
6, explain the conclusions drawn along with the future scope
of research.

2. RELATED WORK

The prioritization of test cases during RT process
illustrated in research by different researchers. Rothermel et
al. (2001) first studied test case prioritization based upon
branch coverage. Test cases that cover maximum level of
statements executed first. The work by Badwal and Raperia
(2013) focused on code coverage and function calls based
clustering. Conclusion shows that prioritized cases perform
well in detecting faults than non-prioritized. Indumathi and

Selvamani (2015) prioritized test case by deriving
dependencies existing between the functions automatically.
The results demonstrate that fault detection rate enhanced at
early stage. Kaur and Ghai (2016) exploit functional
dependency technique to enhance the performance of
existing hill-climbing method.

Lichade and Thakur (2016) defined a novel density based
K-mean clustering technique and test cases based on
coverage information are prioritized using prim’s algorithm.
Mishra et al. (2019) considered mutant coverage to reduce
the number of test cases, statement coverage and fault
exposing potential to prioritize test cases using genetic
algorithm. Rajarathinam and Natarajan (2013) introduced
trace event based test case prioritization approach. Trace
events used to find out the most relevant test cases in a
project. Raju and Uma (2012) described agglomerative
hierarchical clustering technique to prioritize test cases
using customer and project requirements. Gokilavani and
Bharathi (2019) defined an optimized DBSCAN algorithm,
where feed forward neural networks were used to optimize
test cases for better results. Predicted faults from the test
cases prioritized with the help of bubble sort algorithm and
it proved that proposed method (NDBC-FFNN)
outperformed all other existing methodologies.

Hasan et al. (2017) introduced dissimilarity-based-
clustering framework, which integrated historical failure
information, coverage information and dissimilarity
clustering to rank test cases. The framework evaluated on
data set ‘Defects4j’ with APFD and compared with random,
similarity and original ordering prioritization approaches.
The results recorded an average 88.5% APFD and proved
that the proposed framework outperforms the other
prioritization methods. Recently, Yi et al. (2018) discussed
a ‘concrete-hyper-heuristic framework’ to prioritize test
cases. Praba and Mala (2011) suggested ‘Critical
Component Analyser framework’ for real-time systems that
used dependency of critical-modules for prioritization. In a
recent work, Ju and Zhou (2016) proposed a framework
suitable for android applications to prioritize test cases
using their memory leak(ML) capability based on a
prediction-model. Azizi and Do (2018) narrated-‘Graphite
(graph-based) framework’, which concentrated on realizing
two goals consecutively during prioritization.

Shrivathsan et al. (2019) discussed two fuzzy based
clustering techniques based on similarity coefficient and
dominancy test named FSTPM and DTCTP respectively.
Real time data from SIR (software artefact infrastructure
repository) has obtained and evaluated to measure the
strength of the proposed methods and it has proved that test
cases grouped because of similarity and dominancy
requirements managed effectively in comparison to others.
Badanahatti and Murthy (2017) proposed kernel fuzzy C
mean clustering and grey wolf optimization algorithm is
used for cloud based TCP. Gokilavani and Bharathi (2020)
described EARS algorithm for TCP using k-mediods based
fuzzy clustering. The results shows an improved ratio of RT
in object oriented software’s. After performing the

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 3

extensive literature analysis on test case prioritization, some
of the observed challenges in study are:

Prioritization techniques proposed majorly concentrate
on code coverage information. Few methods utilized
customer requirement, cost based and history-based
techniques of test case prioritization too but still in real time
application, they remain unexplored.
 Majority of frameworks have used single objective.

Therefore, in order to optimize TCP additional
objectives should utilized.

 Mostly clustering techniques adopted did not exploit
the interdependencies between test cases and faulty
function.

 Fuzzy C mean clustering proposed for test case
prioritization works on predefined number of clusters,
which in turns increases the search criteria to determine
the peak count of clusters and increases the
convergence time.

 Also, in FCM initial partition matrix is generated
randomly, which do not assure the accuracy of the
probability of association of an item to all clusters.

Featured issues addressed in the proposed research by
introducing the following contributions:
 First issue addressed by considering the different

customer requirement factors along with code
coverage factors at the beginning, so that various faults
that originate from requirements raised by customers
can handled at an early stage.

 Single objective issue is resolved by proposing a new
multi-objective model; it exploit dependencies and
fuzzy clustering logic together to optimize TCP.

 The issue related to interdependencies is resolved by
putting forward a novel dependency structure based
fuzzy clustering based TCP model.

 Last two challenges are suppressed by introducing a
novel density based FCM, in which it first calculate the
optimal cluster count and then generate a more
efficient initial partition matrix with the help of
proposed initial membership calculation function.

3. PROPOSED FRAMEWORK

Practically, to assure software quality in the field of
regression testing, TCP always plays a vital role. This
research presents a novel dependency structure based
density based fuzzy c- mean clustering- test case
prioritization model (NDS-FCMPM) to enhance the cost-
effectiveness of RT contrary to techniques proposed in
literature. The suggested model (Fig. 1) define three
integrated work stages: dependency detection, fuzzy
clustering based prioritization and metric assessment.

3.1 Pre-Processing
The model takes as input test data generated from

customer requirement and code coverage factors for a
software. Then, the data from pool1 and pool2 pre-

processed to make data concise and noise free. For this, first
XML data converted into CSV format, so that we can clearly
read our data. After that, each data separated by using the
“report id”.

3.2 Dependency Structure Formation
High coupling between the sub modules of a software

system results into more complexity. So, this step based on
the assumption that by testing highly coupled sub modules
first can improve the fault detection rate. Therefore, at first,
the dependency structures among the faulty functions
exercised and then exact number of dependent faulty
functions derived from them.

3.3 Feature Extraction
Once the structure formation based on dependency

between test cases done, the next step is feature extraction.
It helps in describing the huge set of data with relevant
accuracy even with reduced number of resources. This is
required here, to convert string features into numeric data,
making it suitable for clustering process. For example if we
are having string ‘Null’, then it will be replaced by ‘0’.
Likewise, for all the unique strings, we assign a separate
value in incremental order and that string will replaced by
the respective numeric value.

3.4 Proposed Density-Based Fuzzy C Mean (NDB-
FCM)

This step results in cluster formation using the newly
derived NDB-FCM algorithm. Dunn stated fuzzy c- mean
clustering in 1974. Later, Bezdek further developed FCM
by introducing the degree of membership (Bezdek et al.,
1984) with each weight of data element. FCM works on
dividing the given dataset X into n clusters. This algorithm
set a random membership degree m to every item i in the
data set X, which indicate the level of association of an item
to every cluster. The higher the degree of membership,
closer is the item to the centroid. Fuzzy C mean algorithm
seeks to minimize the objective function, OB (ip, Zi),
defined in Equation (1), which is made up of membership
function and distance between the data items.
OB (ip, Zi) = ∑ ∑ (𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

𝒊𝒊
𝒌𝒌=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏)𝒎𝒎 ||𝒁𝒁𝒊𝒊 − 𝑭𝑭𝒄𝒄||𝟐𝟐 (1)

The major drawback of fuzzy C mean clustering is its
prerequisite i.e randomly selected centroids and defining the
number of clusters in advance. Therefore, the proposed
NDB-FCM with newly derived initialize membership
function algorithm works on the principle of generation of
optimal number of clusters at first using a density- based
algorithm automatically. This step minimizes the search
criteria to figure out prime cluster number and enhance
convergence rate too. In addition, a novel method to assign
the initial membership value suggested here, which
increases the probability of correctness of assigned
membership value to each data item in the beginning of the
clustering process.

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 4

3.4.1 Proposed NDB-FCM
Step1: Generate number of clusters j using density-

based algorithm according to Equation (2), and
assign fuzziness index m and epsilon (m = 2,
epsilon = 0.01).

𝑙𝑙𝑙𝑙𝑖𝑖 = ∑ 𝑒𝑒−𝑑𝑑𝑖𝑖𝑖𝑖
2 /𝑑𝑑𝑑𝑑2𝑛𝑛

𝑧𝑧=1 (2)
Suggested approach is to sort the corresponding
densities in descending order and assign the dc
value according to density rate (where density
rate Ɛ [0,1]). The maximum number of clusters
can be decided based on cut-off density (dc).

Step 2: Calculate initial membership value and initialize
the initial partition (𝒊𝒊𝒊𝒊𝟎𝟎𝒊𝒊𝒊𝒊) membership matrix
according to Equation (3).

𝒊𝒊𝒊𝒊𝟎𝟎𝒊𝒊𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
∑ �𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊�
𝒊𝒊
𝒌𝒌=𝟏𝟏

 (3)

Step 3: Compute the fuzzy cluster centroid Fc, using
Equation (4)

𝑭𝑭𝒄𝒄 = (∑ �𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 �
𝒎𝒎𝒏𝒏

𝒊𝒊=𝟏𝟏 𝒁𝒁𝒊𝒊) / (∑ �𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 �
𝒎𝒎𝒏𝒏

𝒊𝒊=𝟏𝟏) (4)
Step 4: Update the fuzzy membership function matrix

according to Equation (5)
𝒊𝒊𝒊𝒊𝟏𝟏𝒊𝒊𝒊𝒊 = 𝟏𝟏

∑ �𝒖𝒖𝒍𝒍�
� 𝟐𝟐
𝒎𝒎−𝟏𝟏� 𝒄𝒄

𝒌𝒌=𝟏𝟏

 (5)

Step 5: Check convergence using Equation (6)
(fin) =(𝒊𝒊𝒊𝒊𝟏𝟏𝒊𝒊𝒊𝒊 − 𝒊𝒊𝒊𝒊𝟎𝟎𝒊𝒊𝒊𝒊)𝟐𝟐 (6)

If fin <= epsilon where epsilon is the termination
threshold (0.01), then end; else go to step3 and repeat.

3.5 Prioritization Algorithm
This algorithm rank the clusters based on sum of severity

level of each data in a cluster according to the Equation (7)
and prioritize clusters according to the equation.
∑ 𝒊𝒊𝒊𝒊𝑺𝑺𝝈𝝈𝑵𝑵
𝝈𝝈=𝟎𝟎 > 𝟏𝟏 , 𝐬𝐬𝐬𝐬𝐬𝐬 𝐏𝐏 = 𝟏𝟏, 𝒊𝒊𝒊𝒊 𝑺𝑺𝝈𝝈 < 1 then set P =

2, 𝒊𝒊𝒊𝒊 𝑺𝑺𝝈𝝈 = 0 then set P = 3 (7)

4. DATASET

To evaluate the proposed model, complete framework is
implemented on four products: Platform, PDE, JDT and
CDT of Eclipse defect tracking dataset fetched from Github
repository (Lamkanfi et al., 2013). Table 1 enumerate the
preferred products along with absolute number of
components and number of reports obtained from each
incremental modification carried out in the lifecycle of
software system. Number of reports are nothing but the bugs
extracted with respect to modifications in the products.

Each product contains ten separate XML files, in which
bug attributes are stored. The files selected for testing
motive illustrated with description in Table 2. Every file is
associated with the priority to fix the bug, severity level of
the bug, the software application and version of that
application to which bug is related, the sub modules of the
system and the operating system for which bug is found,
current state of the bug, resolution of the bug and identifier
of the bug. Also, the attributes ‘report ID’, ‘opening-time’
(time when bug reported) and ‘assigned_to’ remain
unchanged during the complete life cycle of the bug.

Table 1. Eclipse dataset products with corresponding number of components and bugs
Product type No. of components No. of bugs

Platform 22 24775
PDE 5 5655
JDT 6 10814
CDT 20 5640

Table 2. Different attributes selected for products in eclipse defect tracking dataset
Sr.No Attribute Description

1 Priority The priority denotes how soon the bug should be fixed. This attribute typically varies
between P1 to P5 where P1 denotes the highest priority.

2 Severity The impact of the bug on the software system. This attribute varies between trivial, minor,
normal, major, critical and blocker.

3 Product The particular software application the bug is related to.
4 Component The relevant subsystem of the product for the reported bug.

5 Bug_status The attribute indicates the current state of a bug. The value of this attribute varies
between unconfirmed, new, assigned, reopened, ready, resolved, verified.

6 Resolution This attribute indicates what happened to this bug. The value of this attribute varies
between fixed, invalid, won’t fix, duplicate, works for me, incomplete.

7 Assigned_to The identifier of the developer who got assigned the bug.
8 CC Users who are interested in the progress of this bug.
9 Version The version of the product the bug was found in.

10 Op_sys The operating system against which the bug is reported.

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 5

Table 3. Extracted dependencies (Sample from large output)
Report ID Assigned_to Bug_status CC OP_sys Product Severity Priority Resolution Version Component
1136246

610 Null New Null Windows
XP JDT major Null Null 3.2 Core

1136246
657 Null RESOLVED Null Null Null Null Null INVALID Null Null

1136258
575 Null New Null Windows

XP JDT normal Null Null 3.2 UI

1136262
170 Null RESOLVED Null Null Null Null Null FIXED Null Null

1136271
526

jdt-text-
inbox@eclip

se.org
New Null Windows

XP JDT normal Null Null 3.2 Text

1136273
412 Null RESOLVED Null Null Null Null Null REMIND Null Null

1136279
650 Null REOPENED Null Null Null Null Null Null Null Null

1136279
674

Olivier_Tho
mann@ca.ib

m.com
New Null Null Null Null Null Null Null Core

1136296
036 Null RESOLVED Null Null Null Null Null FIXED Null Null

1139997
327 Null VERIFIED Null Null Null Null Null Null Null Null

1136263
498

Platform-
UI-

Inbox@ecli
pse.org

New Null Windows
XP Platform normal Null Null 3.2 UI

1136283
656 Null RESOLVED Null Null Null Null Null WORKSF

ORME Null Null

5. RESULTS AND DISCUSSION

This section describes the performance evaluation of the
proposed model (NDB-FCMPM) and strengths of the NDB-
FCM clustering method with techniques discussed in past.
During pre-processing stage, all the XML files converted
into CSV format based upon ‘report ID’ and ‘when-tag’.
This tag constitutes the reporting time of a bug. After that,
dependencies generated between the bugs using the most
stable information about any bug i.e. ‘opening_time’ and
‘report ID’ as both remains unchanged throughout the whole
life cycle of a bug. Table 3, represents the output generated
after applying dependency structure formation algorithm.

For understanding, data for few report IDs are presented
below for product CDT.

The next step in proposed methodology is feature
extraction, which aims to convert unique string values form
Table 3 with respect to each attribute into numeric value in
an incremental manner starting from ‘0’. For example, for
attribute ‘assigned_to’ and ‘report ID- 1136246610’, string
‘NULL’ is replaced with ‘0’. Next three IDs also contains
‘NULL’ string for same attribute, so their values are also
replaced by ‘0’. Next ‘report ID- 1136271526’ contains
string ‘jdt-text-inbox@eclipse.org’, we will assign ‘1’ to
this string and so on. Similarly, string entries of all
columns/attributes of Table 3 replaced with numeric values.
Table 4 summarizes the results of the feature extraction step.

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 6

Table 4. Encoded data generated after feature extraction
Report ID Assigned_to Bug_status CC OP_sys Product Severity Priority Resolution Version Component

1136246610 0 0 0 0 0 0 0 0 1 0
1136246657 0 1 0 1 1 1 0 1 0 1
1136258575 0 0 0 0 0 2 0 0 1 2
1136262170 0 1 0 1 1 1 0 1 0 1
1136271526 1 0 0 0 0 2 0 0 1 3
1136273412 0 1 0 1 1 1 0 1 0 1
1136279650 0 2 0 1 1 1 0 1 0 1
1136279674 2 0 0 1 1 1 0 1 0 0
1136296036 0 1 0 1 1 1 0 1 0 1
1139997327 0 3 0 1 1 1 0 1 0 1
1136263498 3 0 0 0 2 2 0 0 1 2
1136283656 0 1 0 1 1 1 0 1 0 1

Table 5. Time taken to cluster

Time taken to cluster (in sec)

S. No. Reports count K-means FCM Proposed
1 250 0.02 0.03 0.017
2 500 0.02 0.09 0.019
3 750 0.02 0.2 0.02
4 1000 0.03 0.3 0.028
5 1250 0.01 0.44 0.011

5.1 Performance Analysis
This section discusses the performance of proposed fuzzy

clustering algorithm.

5.1.1 Metrics Evaluation
To scale the performance of the model proposed,

significant metrics needed. To evaluate the algorithm under
consideration for performing clustering and prioritization -
Fuzzy Rand Index, run time, APFD measures used
respectively.

Run time performance measure: The proposed fuzzy
clustering algorithm evaluated with respect to time required
for clustering and compared with k-means and Fuzzy C
mean for analysis. Table 5 shows the attributes of data i.e.
number of classes (5), report count and number of
dimensions (2). Results proved that proposed fuzzy
clustering algorithm outperform the clustering algorithms
K-means and FCM stated in literature.

Fig. 2, demonstrate the pivot chart showing the run time
accuracy of the proposed density based fuzzy C mean
(NDB-FCM) in comparison to K-means and FCM
algorithm. The results ascertained that finding maximum
number of clusters prior automatically instead of defining
them manually and then reaching to optimal number of
cluster at later stage in clustering, supports quick
convergence.

Classification accuracy measure
To compute the closeness between two clusters “Fuzzy

Rand Index” is used (Campello, 2007) for the fuzzy
clustering algorithms and “Rand Index” is used for K-means.
Its value lies between 0 and 1, where ‘0’ indicate utter
dissimilarity and ‘1’ indicates absolute similarity.
Performance of the clustering algorithm considered high if
the value of Rand index converges towards one. Table 6
represents the classification accuracy of the proposed
algorithm for the product CDT in comparison to K-mean
and FCM algorithms.

Fig. 2. Comparison of time taken to cluster by K-mean, FCM and NDB-FCM

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 7

Table 6. Classification accuracy measurement

S. No. Reports count Classification accuracy
K-means FCM Proposed

1 250 0.6 0.70 0.74
2 500 0.67 0.91 0.95
3 750 0.72 0.95 0.98
4 1000 0.69 0.94 0.96
5 1250 0.67 0.91 0.94

Table 7. Metrics estimation for each product with non-prioritized and prioritized test case
APFD

Products Non-prioritized Prioritized
CDT 0.39 0.55
JDT 0.13 0.22
PDE 0.54 0.67

Platform 0.53 0.71

Fig. 3. Classification accuracy with respect to K-mean, FCM and proposed algorithm

Fig. 4. APFD for prioritized and non-prioritized test cases using NDB-FCMPM

The analysis from Fig. 3, depicts that the classification
strength of the existing fuzzy C mean clustering can be
improved by adding the newly derived initialize
membership function. This initialize membership function
provides much accurate probability of membership values
of an item with all clusters in the initial partition matrix.

APFD
To quantify the aim of improving the rate of early fault

detection, here we used a metric known as average
percentage of fault detected proposed by Elbaum et al.
(2002). It is a measure that manifest how rapidly flaws can
identified for a particular test suite in a system. The formula
for calculating APFD is in Equation (8).

APFD = 𝟏𝟏 − �𝐅𝐅𝐅𝐅𝐓𝐓𝟏𝟏+𝐅𝐅𝐅𝐅𝐓𝐓𝟐𝟐+……+𝐅𝐅𝐅𝐅𝐓𝐓𝐦𝐦
𝐦𝐦𝐦𝐦

� + � 𝟏𝟏
𝟐𝟐𝐦𝐦
� (8)

Where ‘FDT’ represents the fault detected at very first
time among the test cases, ‘m’ indicates the whole test cases
and ‘n’ refers an entire number of faults. The higher the
value of APFD, faster is the rate of fault detection. With this
motive, APFD metrics estimated for all products
(summarized in Table 7) and examined for both cases (test
cases with prioritization and without prioritization).

The results ascertained that prioritized test cases always
results in improved rate of early fault detection in contrast
to non-prioritized approach. The line chart in Fig. 4,
obtained using data in Table 5 indicates the performance
analysis of prioritized and un-prioritized test cases.

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5

K-means

FCM

Proposed

0

0.2

0.4

0.6

0.8

CDT JDT PDE Platform

AP
FD

Product

Prioritized

Non-prioritized

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 8

Table 8. Total Time taken to prioritize by eclipse products
Prioritization time (Ms)

S.No Product Component No. of bugs Time
1 CDT 20 5640 390
2 JDT 6 10814 756
3 PDE 5 5655 446
4 Platform 22 24775 2078

Fig. 5. Trend of prioritization time against number of bugs and number of components for all products

Also, it is concluded that the total prioritization time
taken to prioritize test cases for different products is
proportional to the number of bugs reported and not
impacted by the number of components in a system.
Illustration of prioritization time along with number of bugs
reported and number of components is in Table 8.

Fig. 5, generated using data in Table 8 illustrate that there
is no relation between the prioritization time and the size of
the system, i.e. if the component count increases while
modifying a software, the quality of the system (in terms of
total prioritization time) is not compromised. However,
the total bugs encountered affect prioritization time. Fewer
the bugs reported, shorter is prioritization time and vice-
versa.

6. CONCLUSION

Not all bugs are of equal importance as per defined
customer’s requirements. They can classified based on the
severity impact viz. minor, major, severe and critical.
Therefore, for maintaining the quality of the software
systems, bugs need to be detect and debug in early phase of
development cycle. The proposed test case prioritization
(NDS-FCMPM) model is an effort in this direction that
examined the dependency structure of the software system
at preliminary stage using improved fuzzy C mean
clustering algorithm. The research work discusses the three
different algorithm to achieve the efficient test case
prioritization: a ‘novel dependency structure formation
algorithm’, NDB-FCM clustering with newly derived
initialize membership function and a severity based
prioritization algorithm. The experimental results for

prioritization model validated with APFD, and the
improvement of an average of 42%, observed in detecting
fault at early stage when test cases prioritized. Also,
suggested DB-FCM approach provides better classification
accuracy and rum time over fuzzy C mean and reduced the
number of iterations to find the optimal number of clusters.
This enhance the rate of convergence in spite of the various
fuzzy calculation involved in comparison to the other fuzzy
and non-fuzzy clustering algorithm discussed in literature
for test case prioritization. The present research focused on
specific ‘feature vector extraction’ method for
transformation, in future principal component analysis
method can adopted to enhance the efficacy of feature
extraction. In addition, grid based fuzzy clustering
approaches can be applied utilizing the products stated in
the work and analogy can be drawn to find out the
effectiveness.

REFERENCES

Azizi, M., Do, H. 2018. Graphite: A greedy graph-based
technique for regression test case prioritization.
Proceedings - 29th IEEE International Symposium on
Software Reliability Engineering Workshops, ISSREW,
245–51.

Badanahatti, S., Murthy, Y.S.S.R. 2017. Optimal test case
prioritization in cloud based regression testing with aid of
KFCM. International Journal of Intelligent Engineering
and Systems, 10, 96–106.

Badwal, J., Raperia, H. 2013. Test case prioritization using
requirements-based clustering. International Journal of
Current Engineering and Technology, 3, 488–92.

International Journal of Applied Science and Engineering

Chaudhary et al., International Journal of Applied Science and Engineering, 18(5), 2021092

https://doi.org/10.6703/IJASE.202109_18(5).012 9

Bezdek, J.C., Ehrlich, R., Full, W. 1984. FCM: The fuzzy c-
means clustering algorithm. Remote Sensing. Proc.
IGARSS ’88 Symposium, Edinburgh, 1988. 3, 191–203.

Campello, R.J.G.B. 2007. A fuzzy extension of the rand
index and other related indexes for clustering and
classification assessment. Pattern Recognition Letters, 28,
833–41.

Carlson, R., Do, H., Denton, A. 2011. A clustering approach
to improving test case prioritization: An industrial case
study. IEEE International Conference on Software
Maintenance, ICSM, 382–91.

Chaudhary, S. 2018. Findings and iplications of test case
prioritization techniques for regression testing.
International Journal of Technical Innovation in Modern
Engineering & Science (IJTIMES), 4, 1259–66.

Chaudhary, S., Jatain, A. 2020. A systematic review:
Software test case prioritization techniques. International
Journal of Advanced Science and Technology, 29,
12588–99.

Elbaum, S., Malishevsky, A.G., Rothermel, G. 2002. Test
case prioritization: A family of empirical studies. IEEE
Transactions on Software Engineering, 28, 159–82.

Garg, D., Datta, A., French, T. 2013. A novel bipartite graph
approach for selection and prioritisation of test cases.
ACM SIGSOFT Software Engineering Notes, 38, 1–6.

Gokilavani, N., Bharathi, B. 2019. Towards the
prioritization of test cases by using NDBC-FFNN.

Gokilavani, N., Bharathi, B. 2020. Based test case
prioritization using K-mediods based fuzzy clustering.
Proceedings of the Fourth International Conference on
Trends in Electronics and Informatics (ICOEI 2020),
Icoei: 567–72.

Hasan, A., Rahman, A., Siddik, S. 2017. Test case
prioritization based on dissimilarity clustering using
historical data analysis. Springer Nature, 269–281.

Hüllermeier, E., Rifqi, M. 2009. A fuzzy variant of the rand
index for comparing clustering structures. 2009
International Fuzzy Systems Association World Congress
and 2009 European Society for Fuzzy Logic and
Technology Conference, IFSA-EUSFLAT 2009 -
Proceedings, 1294–98.

Indumathi, C.P., Selvamani, K. 2015. Test cases
prioritization using open dependency structure algorithm.
Procedia - Procedia Computer Science 48 (Iccc), 250–55.

Ju, Q., Zhou, D. 2016. Prioritizing test cases for memory
leaks in android applications. Journal of Computer
Science and Technology, 31, 869–82.

Kaur, S., Ghai, S. 2016. Performance enhancement in Hill-
climbing approach for test case prioritization using
functional dependency technique. International Journal
of Software Engineering and Its Applications, 10, 25–38.

Lamkanfi, A., Pérez, J., Demeyer, S. 2013. The eclipse and
mozilla defect tracking dataset: A genuine dataset for
mining bug information. IEEE International Working
Conference on Mining Software Repositories, 203–6.

Lichade, S.S., Thakur, P. 2016. A hybrid tree based approach
to regression testing using clustering algorithm.

International Journal of Engineering Trends and
Technology, 37, 408–12.

Mani, P., Prasanna, M. 2017. Test case generation for real-
time system software using specification diagram.
Journal of Engineering Science and Technology, 12, 860–
74.

Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.
2018. FAST approaches to scalable similarity-based test
case prioritization. Proceedings - International
Conference on Software Engineering 2018-Janua.

Mishra, D.B., Panda, N., Mishra, R., Acharya, A.A. 2019.
Total fault exposing potential based test case
prioritization using genetic algorithm. International
Journal of Information Technology, 11, 633–37.

Pang, Y., Xue, X., Akbar, A. 2017. A clustering-based test
case classification technique for enhancing regression
testing. Journal of Software, 12, 153–64.

Praba, M.R., Mala, D.J. 2011. Critical component analyzer
- A Novel Test Prioritization framework for component
based real time systems. 2011 5th Malaysian Conference
in Software Engineering, MySEC 2011, 281–86.

Rajarathinam, K., Natarajan, S. 2013. Test suite
prioritisation using trace events technique. IET Software,
7, 85–92.

Raju, S., Uma, G.V. 2012. An efficient method to achieve
effective test case prioritization in regression testing
using prioritization factors. Asian Journal of Information
Technology, 11, 169–80.

Rothermel, G., Untcn, R.H., Chu, C., Harrold, M.J. 2001.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27, 929–48.

Shrivathsan, A.D., Ravichandran, K.S., Krishankumar, R.,
Sangeetha, V., Kar, S., Ziemba, P., Jankowski, J. 2019.
Novel fuzzy clustering methods for test case
prioritization in software projects. Symmetry, 11, 1–22.

Yi, B., Li, Z., Guo, J., Zhao, R. 2018. Concrete
Hyperheuristic Framework for Test Case Prioritization.
Journal of Software: Evolution and Process, 30, 1–24.

Yoo, S., Harman, M. 2010. Regression testing minimization,
Selection and prioritization: Asurvey S. Software Testing
Verification and Reliability, 67–120.

Yoo, S., Harman, M. Tonella, P., Susi, A. 2009. Clustering
test cases to achieve effective & scalable prioritisation
incorporating expert knowledge. Proceedings of the 18th
International Symposium on Software Testing and
Analysis, ISSTA 2009.

	Analysing a novel multi-objective prioritization model using improved fuzzy c mean clustering
	ABSTRACT
	1. INTRODUCTION

	testing process by selecting the relevant subset and by minimizing test suite to a subset, satisfying the prior coverage criteria respectively. Prioritization organize and rank test cases in a way that aims to improve code coverage efficiency and, thu...
	Since a variety of techniques for TCP are suggested (Pang et al., 2017; Hasan et al., 2017; Carlson et al., 2011) which demonstrate the usefulness of increasing fault detection rate. To a large extent, many of these techniques exploit statement covera...
	2. RELATED WORK

	The prioritization of test cases during RT process illustrated in research by different researchers. Rothermel et al. (2001) first studied test case prioritization based upon branch coverage. Test cases that cover maximum level of statements executed ...
	Lichade and Thakur (2016) defined a novel density based K-mean clustering technique and test cases based on coverage information are prioritized using prim’s algorithm. Mishra et al. (2019) considered mutant coverage to reduce the number of test cases...
	Hasan et al. (2017) introduced dissimilarity-based-clustering framework, which integrated historical failure information, coverage information and dissimilarity clustering to rank test cases. The framework evaluated on data set ‘Defects4j’ with APFD a...
	Shrivathsan et al. (2019) discussed two fuzzy based clustering techniques based on similarity coefficient and dominancy test named FSTPM and DTCTP respectively. Real time data from SIR (software artefact infrastructure repository) has obtained and eva...
	Prioritization techniques proposed majorly concentrate on code coverage information. Few methods utilized customer requirement, cost based and history-based techniques of test case prioritization too but still in real time application, they remain une...
	 Majority of frameworks have used single objective. Therefore, in order to optimize TCP additional objectives should utilized.
	 Mostly clustering techniques adopted did not exploit the interdependencies between test cases and faulty function.
	 Fuzzy C mean clustering proposed for test case prioritization works on predefined number of clusters, which in turns increases the search criteria to determine the peak count of clusters and increases the convergence time.
	 Also, in FCM initial partition matrix is generated randomly, which do not assure the accuracy of the probability of association of an item to all clusters.
	Featured issues addressed in the proposed research by introducing the following contributions:
	 First issue addressed by considering the different customer requirement factors along with code coverage factors at the beginning, so that various faults that originate from requirements raised by customers can handled at an early stage.
	 Single objective issue is resolved by proposing a new multi-objective model; it exploit dependencies and fuzzy clustering logic together to optimize TCP.
	 The issue related to interdependencies is resolved by putting forward a novel dependency structure based fuzzy clustering based TCP model.
	 Last two challenges are suppressed by introducing a novel density based FCM, in which it first calculate the optimal cluster count and then generate a more efficient initial partition matrix with the help of proposed initial membership calculation f...
	3. PROPOSED Framework

	Practically, to assure software quality in the field of regression testing, TCP always plays a vital role. This research presents a novel dependency structure based density based fuzzy c- mean clustering- test case prioritization model (NDS-FCMPM) to ...
	3.1 Pre-Processing

	The model takes as input test data generated from customer requirement and code coverage factors for a software. Then, the data from pool1 and pool2 pre-processed to make data concise and noise free. For this, first XML data converted into CSV format,...
	3.2 Dependency Structure Formation

	High coupling between the sub modules of a software system results into more complexity. So, this step based on the assumption that by testing highly coupled sub modules first can improve the fault detection rate. Therefore, at first, the dependency s...
	3.3 Feature Extraction

	Once the structure formation based on dependency between test cases done, the next step is feature extraction. It helps in describing the huge set of data with relevant accuracy even with reduced number of resources. This is required here, to convert ...
	3.4 Proposed Density-Based Fuzzy C Mean (NDB-FCM)

	This step results in cluster formation using the newly derived NDB-FCM algorithm. Dunn stated fuzzy c- mean clustering in 1974. Later, Bezdek further developed FCM by introducing the degree of membership (Bezdek et al., 1984) with each weight of data ...
	OB (ip, Zi) = ,𝒊=𝟏-𝒏-,𝒌=𝟏-𝒋-,(𝒊𝒑-𝒊𝒋...,)-𝒎. ||,𝒁-𝒊.−,𝑭-𝒄.,||-𝟐. (1)
	The major drawback of fuzzy C mean clustering is its prerequisite i.e randomly selected centroids and defining the number of clusters in advance. Therefore, the proposed NDB-FCM with newly derived initialize membership function algorithm works on the ...
	3.4.1 Proposed NDB-FCM

	Step1: Generate number of clusters j using density-based algorithm according to Equation (2), and assign fuzziness index m and epsilon (m = 2, epsilon = 0.01).
	,𝑙𝑑-𝑖.=,𝑧=1-𝑛-,𝑒-−,𝑑-𝑖𝑧-2. /,𝑑𝑐-2... (2)
	Suggested approach is to sort the corresponding densities in descending order and assign the dc value according to density rate (where density rate Ɛ [0,1]). The maximum number of clusters can be decided based on cut-off density (dc).
	Step 2: Calculate initial membership value and initialize the initial partition (,𝒊𝒑𝟎-𝒊𝒋.) membership matrix according to Equation (3).
	,𝒊𝒑𝟎-𝒊𝒋. = ,,𝒊𝒑-𝒊𝒋.-,𝒌=𝟏-𝒋-,,𝒊𝒑-𝒊𝒋.... (3)
	Step 3: Compute the fuzzy cluster centroid Fc, using Equation (4)
	𝑭𝒄=(,𝒊=𝟏-𝒏-,,,𝒊𝒑-𝒊𝒋 ..-𝒎..,𝒁-𝒊.) / (,𝒊=𝟏-𝒏-,,,𝒊𝒑-𝒊𝒋 ..-𝒎..) (4)
	Step 4: Update the fuzzy membership function matrix according to Equation (5)
	,𝒊𝒑𝟏-𝒊𝒋.=,𝟏-,𝒌=𝟏-𝒄-,,,𝒖-𝒍..-,,𝟐-𝒎−𝟏... .. (5)
	Step 5: Check convergence using Equation (6)
	(fin) =,(,𝒊𝒑𝟏-𝒊𝒋.−,𝒊𝒑𝟎-𝒊𝒋.)-𝟐. (6)
	If fin <= epsilon where epsilon is the termination threshold (0.01), then end; else go to step3 and repeat.
	3.5 Prioritization Algorithm

	This algorithm rank the clusters based on sum of severity level of each data in a cluster according to the Equation (7) and prioritize clusters according to the equation.
	,𝝈=𝟎-𝑵-𝒊𝒇,𝑺-𝝈 ..> 𝟏 , 𝐬𝐞𝐭 𝐏=𝟏,𝒊𝒇 ,𝑺-𝝈 .< 1 then set P = 2, 𝒊𝒇 ,𝑺-𝝈 . = 0 then set P = 3 (7)
	4. Dataset

	To evaluate the proposed model, complete framework is implemented on four products: Platform, PDE, JDT and CDT of Eclipse defect tracking dataset fetched from Github repository (Lamkanfi et al., 2013). Table 1 enumerate the preferred products along wi...
	Each product contains ten separate XML files, in which bug attributes are stored. The files selected for testing motive illustrated with description in Table 2. Every file is associated with the priority to fix the bug, severity level of the bug, the ...
	Table 1. Eclipse dataset products with corresponding number of components and bugs
	Table 2. Different attributes selected for products in eclipse defect tracking dataset
	Table 3. Extracted dependencies (Sample from large output)
	5. Results and Discussion

	This section describes the performance evaluation of the proposed model (NDB-FCMPM) and strengths of the NDB-FCM clustering method with techniques discussed in past. During pre-processing stage, all the XML files converted into CSV format based upon ‘...
	The next step in proposed methodology is feature extraction, which aims to convert unique string values form Table 3 with respect to each attribute into numeric value in an incremental manner starting from ‘0’. For example, for attribute ‘assigned_to’...
	Table 4. Encoded data generated after feature extraction
	Table 5. Time taken to cluster
	5.1 Performance Analysis

	This section discusses the performance of proposed fuzzy clustering algorithm.
	5.1.1 Metrics Evaluation

	To scale the performance of the model proposed, significant metrics needed. To evaluate the algorithm under consideration for performing clustering and prioritization -Fuzzy Rand Index, run time, APFD measures used respectively.
	Run time performance measure: The proposed fuzzy clustering algorithm evaluated with respect to time required for clustering and compared with k-means and Fuzzy C mean for analysis. Table 5 shows the attributes of data i.e. number of classes (5), repo...
	Fig. 2, demonstrate the pivot chart showing the run time accuracy of the proposed density based fuzzy C mean (NDB-FCM) in comparison to K-means and FCM algorithm. The results ascertained that finding maximum number of clusters prior automatically inst...
	Classification accuracy measure
	To compute the closeness between two clusters “Fuzzy Rand Index” is used (Campello, 2007) for the fuzzy clustering algorithms and “Rand Index” is used for K-means. Its value lies between 0 and 1, where ‘0’ indicate utter dissimilarity and ‘1’ indicate...
	Fig. 2. Comparison of time taken to cluster by K-mean, FCM and NDB-FCM
	Table 6. Classification accuracy measurement
	Table 7. Metrics estimation for each product with non-prioritized and prioritized test case
	Fig. 3. Classification accuracy with respect to K-mean, FCM and proposed algorithm
	Fig. 4. APFD for prioritized and non-prioritized test cases using NDB-FCMPM
	The analysis from Fig. 3, depicts that the classification strength of the existing fuzzy C mean clustering can be improved by adding the newly derived initialize membership function. This initialize membership function provides much accurate probabili...
	APFD
	To quantify the aim of improving the rate of early fault detection, here we used a metric known as average percentage of fault detected proposed by Elbaum et al. (2002). It is a measure that manifest how rapidly flaws can identified for a particular ...
	APFD = 𝟏−,,𝐅𝐃,𝐓-𝟏.+𝐅𝐃,𝐓-𝟐.,+-…….+𝐅𝐃,𝐓-𝐦.-𝐦𝐧..+,,𝟏-𝟐𝐦.. (8)
	Where ‘FDT’ represents the fault detected at very first time among the test cases, ‘m’ indicates the whole test cases and ‘n’ refers an entire number of faults. The higher the value of APFD, faster is the rate of fault detection. With this motive, APF...
	The results ascertained that prioritized test cases always results in improved rate of early fault detection in contrast to non-prioritized approach. The line chart in Fig. 4, obtained using data in Table 5 indicates the performance analysis of priori...
	Table 8. Total Time taken to prioritize by eclipse products
	Fig. 5. Trend of prioritization time against number of bugs and number of components for all products
	Also, it is concluded that the total prioritization time taken to prioritize test cases for different products is proportional to the number of bugs reported and not impacted by the number of components in a system. Illustration of prioritization time...
	Fig. 5, generated using data in Table 8 illustrate that there is no relation between the prioritization time and the size of the system, i.e. if the component count increases while modifying a software, the quality of the system (in terms of total pri...
	6. Conclusion

	Not all bugs are of equal importance as per defined customer’s requirements. They can classified based on the severity impact viz. minor, major, severe and critical. Therefore, for maintaining the quality of the software systems, bugs need to be detec...
	REFERENCES

	Azizi, M., Do, H. 2018. Graphite: A greedy graph-based technique for regression test case prioritization. Proceedings - 29th IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW, 245–51.
	Badanahatti, S., Murthy, Y.S.S.R. 2017. Optimal test case prioritization in cloud based regression testing with aid of KFCM. International Journal of Intelligent Engineering and Systems, 10, 96–106.
	Badwal, J., Raperia, H. 2013. Test case prioritization using requirements-based clustering. International Journal of Current Engineering and Technology, 3, 488–92.
	Bezdek, J.C., Ehrlich, R., Full, W. 1984. FCM: The fuzzy c-means clustering algorithm. Remote Sensing. Proc. IGARSS ’88 Symposium, Edinburgh, 1988. 3, 191–203.
	Campello, R.J.G.B. 2007. A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833–41.
	Carlson, R., Do, H., Denton, A. 2011. A clustering approach to improving test case prioritization: An industrial case study. IEEE International Conference on Software Maintenance, ICSM, 382–91.
	Chaudhary, S. 2018. Findings and iplications of test case prioritization techniques for regression testing. International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES), 4, 1259–66.
	Chaudhary, S., Jatain, A. 2020. A systematic review: Software test case prioritization techniques. International Journal of Advanced Science and Technology, 29, 12588–99.
	Elbaum, S., Malishevsky, A.G., Rothermel, G. 2002. Test case prioritization: A family of empirical studies. IEEE Transactions on Software Engineering, 28, 159–82.
	Garg, D., Datta, A., French, T. 2013. A novel bipartite graph approach for selection and prioritisation of test cases. ACM SIGSOFT Software Engineering Notes, 38, 1–6.
	Gokilavani, N., Bharathi, B. 2019. Towards the prioritization of test cases by using NDBC-FFNN.
	Gokilavani, N., Bharathi, B. 2020. Based test case prioritization using K-mediods based fuzzy clustering. Proceedings of the Fourth International Conference on Trends in Electronics and Informatics (ICOEI 2020), Icoei: 567–72.
	Hasan, A., Rahman, A., Siddik, S. 2017. Test case prioritization based on dissimilarity clustering using historical data analysis. Springer Nature, 269–281.
	Hüllermeier, E., Rifqi, M. 2009. A fuzzy variant of the rand index for comparing clustering structures. 2009 International Fuzzy Systems Association World Congress and 2009 European Society for Fuzzy Logic and Technology Conference, IFSA-EUSFLAT 2009 ...
	Indumathi, C.P., Selvamani, K. 2015. Test cases prioritization using open dependency structure algorithm. Procedia - Procedia Computer Science 48 (Iccc), 250–55.
	Ju, Q., Zhou, D. 2016. Prioritizing test cases for memory leaks in android applications. Journal of Computer Science and Technology, 31, 869–82.
	Kaur, S., Ghai, S. 2016. Performance enhancement in Hill-climbing approach for test case prioritization using functional dependency technique. International Journal of Software Engineering and Its Applications, 10, 25–38.
	Lamkanfi, A., Pérez, J., Demeyer, S. 2013. The eclipse and mozilla defect tracking dataset: A genuine dataset for mining bug information. IEEE International Working Conference on Mining Software Repositories, 203–6.
	Lichade, S.S., Thakur, P. 2016. A hybrid tree based approach to regression testing using clustering algorithm. International Journal of Engineering Trends and Technology, 37, 408–12.
	Mani, P., Prasanna, M. 2017. Test case generation for real-time system software using specification diagram. Journal of Engineering Science and Technology, 12, 860–74.
	Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A. 2018. FAST approaches to scalable similarity-based test case prioritization. Proceedings - International Conference on Software Engineering 2018-Janua.
	Mishra, D.B., Panda, N., Mishra, R., Acharya, A.A. 2019. Total fault exposing potential based test case prioritization using genetic algorithm. International Journal of Information Technology, 11, 633–37.
	Pang, Y., Xue, X., Akbar, A. 2017. A clustering-based test case classification technique for enhancing regression testing. Journal of Software, 12, 153–64.
	Praba, M.R., Mala, D.J. 2011. Critical component analyzer - A Novel Test Prioritization framework for component based real time systems. 2011 5th Malaysian Conference in Software Engineering, MySEC 2011, 281–86.
	Rajarathinam, K., Natarajan, S. 2013. Test suite prioritisation using trace events technique. IET Software, 7, 85–92.
	Raju, S., Uma, G.V. 2012. An efficient method to achieve effective test case prioritization in regression testing using prioritization factors. Asian Journal of Information Technology, 11, 169–80.
	Rothermel, G., Untcn, R.H., Chu, C., Harrold, M.J. 2001. Prioritizing test cases for regression testing. IEEE Transactions on Software Engineering, 27, 929–48.
	Shrivathsan, A.D., Ravichandran, K.S., Krishankumar, R., Sangeetha, V., Kar, S., Ziemba, P., Jankowski, J. 2019. Novel fuzzy clustering methods for test case prioritization in software projects. Symmetry, 11, 1–22.
	Yi, B., Li, Z., Guo, J., Zhao, R. 2018. Concrete Hyperheuristic Framework for Test Case Prioritization. Journal of Software: Evolution and Process, 30, 1–24.
	Yoo, S., Harman, M. 2010. Regression testing minimization, Selection and prioritization: Asurvey S. Software Testing Verification and Reliability, 67–120.
	Yoo, S., Harman, M. Tonella, P., Susi, A. 2009. Clustering test cases to achieve effective & scalable prioritisation incorporating expert knowledge. Proceedings of the 18th International Symposium on Software Testing and Analysis, ISSTA 2009.

