
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202109_18(5).013 Vol.18(5) 2021158

OPEN ACCESS

Received: May 24, 2021
Revised: June 23, 2021
Accepted: July 5, 2021

Corresponding Author:
Pooja Batra
poojabatra9@gmail.com

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

Hybrid model for evaluation of quality aware
DevOps

Pooja Batra*, Aman Jatain

Department of Computer Science, Amity University, Haryana, India

ABSTRACT

Today most of the organizations are switching to DevOps for faster and reliable
delivery. It promotes the collaboration between developers and IT teams. In ancient
development practices, development and operation teams were working in silos and
when DevOps introduced, it combines both teams to integrate and automate the
processes. A single team with cross functioning members provides not only technical
advantages but also cultural benefits. Faster delivery of software, less complex designs,
stable operating environments, customer satisfaction is some of the outcomes of DevOps.
Although it proved to be a responsive environment for software delivery yet lacks in
quantifiable perspective. There is no metric defined to measure performance and that can
be estimated by using key attributes of software. In this research hybrid framework is
proposed to improve the software reliability and productivity. Proposed framework for
DevOps is named TDMBD (Test Driven Measurement Based DevOps) which provides
solutions to challenges in DevOps like performance issues, poorly defined
methodologies, and unstandardized processes. Paper focuses on defining and measuring
metrics that are derived from measurement-based system of software and TDMBD is
evaluated based on metrics analysis. To validate results of proposed approach a
comparison is shown in between existing approach and proposed approach. Finally,
through proposed method better quality of product is retrieved.

Keywords: DevOps, Development and operations, Agile, CI/CD, Software development,
Framework.

1. INTRODUCTION

DevOps is a collection of practices that is supposed to deliver faster and reliable
software. This speed and reliability supports software industry to perform effectively in
competitive market (Erich et al., 2014). DevOps is a combination of two processes:
development and operation tasks. Two different teams are collaborated to work across
the lifecycle of project from planning, development and test to deployment and
operations (Hüttermann, 2012). DevOps has gone through a long journey from waterfall
to agile approach. To manage deployment environment and configure automation, agile
principles are used (Huttermann, 2012). Different departments have different goal that
may leads to in collaboration and inefficiency. DevOps resolves these issues by
introducing cross functional teams that are collaborative too. These teams’ takes the
responsibility of development process from scratch to reliable product delivery ensuring
the quality in automation process also. Fig. 1 presents the generalized framework of
DevOps.

Every organisation is taking benefits from DevOps process but cannot neglect the
challenges in adopting and implementing DevOps. Software industry has its own purpose
of using DevOps as it provides so many benefits but the overall motive is to get quality
software. So it is necessary to clarify the purpose of DevOps implementation
(Elberzhager et al., 2017; Floris et al., 2014). Performance can be measured through
metrics calculation. So far developed frameworks of DevOps fulfilling the needs of

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 2

Fig. 1. Generalized framework of DevOps

organisation conceptually. There is no method to measure
the success of these frameworks. For this purpose, metrics
should be defined and evaluated which will be justified by
a framework along with all drivers. The proposed research
work is an effort to resolve these concerns and in this
context. Test driven Measurement Based DevOps
framework is proposed which is also an integrated
framework (TDMBD) for assessment of quality of service
(Qos). Existing frameworks discussed in literature mainly
fiction based qualitative studies and do not support metrics
evaluation. In the discussed methodology, the proposed
framework is validated using quantitative measures and new
metrics are defined to analyze and evaluate the framework.

Research paper is organized as: Section 1- introduces
DevOps process along with the need of the framework.
Section 2- describes the related study performed in the field
of DevOps along with challenges. Evolution of test-driven
approach is discussed here. In next section, metrics are
defined and discusses the proposed framework and
validating it by evaluation quality metrics. Last section
consists of the conclusion remarks and future aspects of the
research work.

2. RELATED WORK

DevOps evolves from agile methodology. The term
DevOps is a combination of two terms that is Dev and Ops.
Dev stands for development while Ops stands for operations.
As it organization was looking for approach that is better
than traditional approaches and can bridge the gap between
development and operations departments. So DevOps is the
system which fills the communicational and technological
gap between developer and operations. It automats the
processes like continuous development (CD), continuous
testing and continuous integration (CI) (Shahin et al., 2017).
In 2012 Michael Huttermann has given the concepts of
DevOps in his book title “DevOps for developers”
(Hüttermann, 2012). In the literature work DevOps process
and underlying concepts were described in structural
manner. Software delivery process is streamlined by the
activities defined in DevOps and those activities starts from
collecting requirement to taking feedback from customer
after delivery. Nicolau de França et al. (2016) characterised
DevOps. DevOps was characterized while collecting

multiple views from every type of literature. Many benefits
and challenges of DevOps were discussed in their work.
DevOps not only provides faster delivery of software but
also provide better quality.

DevOps is suffering from many challenges like no proper
defined methodology or framework, no procedure to
evaluate quality, performance issues and many more.
According to Floris et al. (2014), DevOps was suffering
from poor and low quality research. No process or
methodology was not defined for DevOps. A conceptual
framework was introduced to overcome this challenge. In
Gotteshiem (2015) discussed performance issues in DevOps
in his research work. According to research work DevOps
lacks for performance metrics which are necessary to
resolve performance issues. Various challenges related to
DevOps were discussed in detail by Liu and Zhou (2017).
Authors elaborated many issues of DevOps in detail.
Quality standards are not defined properly in DevOps,
quality metrics are not defined anywhere to validate quality
process. There is need of effective risk management in
DevOps approaches. As there are no quality standards so
performance cannot be measured. Everyday practice of
every software evolving process is to enhance quality and
performance (Batra and Jatain, 2020a).

The proposed framework combines test driven and
DevOps approach. Beck et al. (2001) has introduced the
concept of test driven development in software development
life cycle (Beck, 2001) Test-driven development is an
evolutionary approach which provides test-first
development where a test case is written before writing a
code to fulfill that test case and after refactoring process
occurs. Test driven development techniques has several
benefits like reduced development time, increased
productivity and many more (Madeyski and Szała, 2007).

Mäkinen and Münch (2014) found the impact of test
driven development (TDD) on software quality. As per
author’s research test driven development has less number
of defects as compared to traditional software development.
Even code was more simper, smaller and less complex and
easy to maintain. These benefits of TDD approach and
addressed issues in DevOps drove us to research on present
topic and we came up with new framework which is
validated through various performance metrics and
resolving performance and other issues too.

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 3

3. PROPOSED METHODOLOGY

In this paper three layered architecture is presented to
extend the DevOps process by applying various quality
observations. As shown in Fig. 2 the proposed framework
has combined the three major aspects of DevOps process at
three different layers. Uppermost layer consists of
approaches used in our DevOps framework. First approach
is test driven which yields less number of defects and tighter
collaboration of team members. It also performs well in the
ever changing environment. Next approach is agile based
approach resulting continuous and faster delivery of product
(Nagarajan and Overbeek, 2018). Last used approach refers
to continuous integration and continuous delivery. It not
only supports automation process but results into quality
product with faster delivery. Second layer refers to practices
involved in proposed framework of DevOps process.
Initiating from planning, test driven environment takes
charge by writing executing test cases first and further build

is prepared. Build is automatically tested and deployed.
Operations procedures further takes ahead. Third layer
specifies the production environment performance in terms
of defect density, reliability, risk coverage, productivity and
deployment frequency. A perfect combination of
approaches and practices will yield a measure quality
product and that can be delivered to customer.

3.1 TDMBD in Action
This system is combining two approaches as shown in

following flowchart. Initially requirement gathering and
planning of process is done. After planning process as per
test driven development test cases are written and executed.
Now it depends upon the success of that test case whether
further process move ahead, or code will be refactored. As
soon as test succeeds DevOps process takes the lead. Fig. 3
shows the process flow of proposed framework where entire
process of proposed approach is elaborated.

Fig. 2. Proposed framework (TDMBD)

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 4

Fig. 3. Process flow of TDMBD approach

To implement TDMBD Jenkins tool is chosen. As
Jenkins is an open-source tool and allows continuous
integration and continuous delivery of projects. Some plug-
ins are installed for smooth delivery of software. GitHub is
used for code management; Build would be done by Maven.
JUnit is used for test writing and execution. Deployment
would be done by AWS and CHEF would take care of
operational procedure. As shown in figure of process flow
graph TDMBD approach start with test driven environment
by writing and executing in JUnit plug-in. Further code is
written in local repository and uploaded in GitHub which is
already connected to Jenkins. In next step Maven will create
build which contains a detailed description of our project,
including information about dependencies, versioning and
configuration management, application resources, team
structure. Now again JUnit takes the charge to perform unit
and integration testing. Further continuous integration,
release tasks are handled by Jenkins itself and continuous
deployment is done through AWS, chef plug-in take care of

operation procedure. Chef plug-in easily setup, deploy and
configure our project in AWS environment. Whole process
is automated through Jenkins as no human intervention is
required.

3.2 Selection of Metrics to Analyse the Quality of
Software

Software systems quality is always judged by essential
feature that is quality. Software quality feature not only
proves excellence of just software system but also software
process and components too. Level of accuracy and timely
completion of task can be measure of quality but qualifiable
viewpoint can be different so as software metric. Software
metrics can be categorized into three ways, product based,
project based and process based software quality metrics are
a subset of software metrics that focus on the quality aspects
of the product, process, and project (Kan, 2002). Product
based metrics involves reliability, risk calculation, customer
satisfaction, customer issues, performance measures etc.
(Kumar and Yadav, 2013). Project level metrics relates to
issues regarding projects like number of defects, time taken
in overall development etc. (Futong and Tingting, 2013).
Process metrics includes productivity, cycle time and many
more (Dissanayake, 2018). We have chosen some of the
software quality metrics from above mentioned literature
for validation purpose. Desirable values of selected metrics
are shown in Table1.

4. IMPLEMENTATION & METRICS
EVALUATION

Entire frameworks process flow is implemented to
elaborate scaling of TDD approach to DevOps development
tasks. All test cases were written in JUnit inserted as plug-
in to Jenkins tool.

In this work numerous component-based metrics are
defined and evaluated. Most of the metrics discussed so far
relies on estimating various quality attributes of source code.
Such metrics are defined without considering how
underlying concepts are determined and their relationships
are identified to develop metrics. Therefore, considering
these issues a suite of five metrics is defined in this work for
assessing the performance of individual component as well
as the whole system. Metrics mentioned in Table 1 are
defined in following manner.

Component reliability measure (CRM)
A software component can be a quality component if it

maintains the relationship between the methods and
properties. Theproposed metric CRM is based on the
reliability metric defined by Musa and Okumoto (1984).
Software reliability can be defined as probability that
software will not fail and will work as per requirement of
customer in a specified environment and for a particular
time. The probability of failure is calculated by testing a

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 5

Table 1. Metrics analysis
Type of metric Subcategory of metric Assigned value

Product based Reliability
Risk coverage

High
High

Project based Defect density
Deployment frequency

Low
High

Process based Productivity (Efficiency) High

sample of all available input states. Above mentioned model
is used to derive our metric CRM. Jelinski Miranda
reliability model describes the process reliability. But in
case of proposed metric reliability of each component is
evaluated and sum up to produce average reliability
measure of whole process.

Expression for component reliability measure as below,
CRMx(t) = e-σt

x (1)
Where

σ (tx) = ϕ [N-(x-1)] (2)
ϕ = a constant shows the failure rate of each fault per unit
time
N = number of errors in the software
tx = the time between (x-1)th and (x)th failure
Mean time failure function (σ) = 1/ ϕ [N-(x-1)] (3)

And
σ = 1/ σ1 + 1/ σ2 + 1/ σ3 +……. + 1/ σN (4)

Mean time failure function will be reciprocal sum of
failure rates of each system component. Using Equation(1),
Equation(2), Equation(3) and Equation(4)
ORM (t) = 𝟏𝟏 − ∑ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒕𝒕)𝒏𝒏

𝒙𝒙=𝟏𝟏
DevOps process components are running parallel.

According to metrics analysis table, reliability should be
high. So as CRM value should be high in proposed
framework approach.

Component Risk Coverage Measure (CRCM)
Risk Coverage provides fast and accurate assessment of

risk associated to latest release that is ready to go in
production (Platz, 2020). It will be helpful in aligning test
activities with customer’s risk objectives. Risk coverage
artifact would drive the percentage of business risk that is
covered by test cases. According to test case prioritization,
test that has high priority will get more weightage for
associated risks.

Expression for component risk coverage measure as
below,
CRCM= ∑ 𝑊𝑊𝑊𝑊𝑛𝑛

𝑥𝑥=1
Where n = no. of requirements
For overall risk coverage measure (ORCM) =, M > 0

Where M = total no. of components
Component Defect Density Measure (CDDM)
Defects are inevitable in any software. Some defects are

not much considerable, but developer needs to keep an eye
on every spike as it may ruin the overall performance of
software. So defect density decides whether a software

component is ready to deploy or not (Rahmani and
Khazanchi, 2010). It also affects the overall quality of
software. Defects may be of many types like issues in code
after deployment, productions issues like database
connectivity and many more.
CDDM = 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐𝒐𝒐 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝑫𝑫)

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒐𝒐𝒐𝒐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒊𝒊𝒊𝒊 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲(𝑺𝑺)
Overall Defect Density (ODDM) = ∑ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒏𝒏

𝒊𝒊=𝟏𝟏 , n > 0
where n = no. of components.

Component Deployment frequency measure (CDFM)
Fast iteration and continuous delivery are the reasons

behind the success of DevOps. Continuous deployment is
next key measurement (Duvall, 2018). After how much time
and for how long deployment process continues includes in
mentioned process. Component deployment metric is
associated with deployment stage of DevOps process.
Smaller size deployments make it easy to test and deploy as
well. Therefore, more releases with small updation is
always better than less releases with high amount of
updation. Further adding benefits of frequent deployment
are early discovery of errors and repairing the same in
earlier stages. Component deployment frequency is
deployment of every component per unit time as shown in
following equation.
CDFM = 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐𝒐𝒐 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝑫𝑫𝑫𝑫)

𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒐𝒐𝒐𝒐 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝑻𝑻)

CDFM = 𝐃𝐃𝐃𝐃
𝐓𝐓

For Overall Deployment Frequency Measure (ODFM) =

∑ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑛𝑛
𝑖𝑖=1 , n > 0

where n = no. of components.
High deployment frequency is a good sign that overall

functioning of software is smooth. Higher deployment
frequency is directly proportional to higher efficiency. As
per metric discussion component deployment frequency
measure is equal to deployment per unit time. Time unit
depends upon the size of project. If size of project is large
or line of code (LOC) is high, then we can take unit time in
number of weeks. But as size of data set is low, unit of time
is considered in hours.

Component Productivity Measure (CPM)
Productivity is measured by throughput of process. For

our process throughput is defined as units of work done
within a set period of time (Batra and Jatain, 2020b). It is a
measurement of developer’s activity. By measuring
throughput, we can track not only the details of delivery but
also rate of success. That is why it yields into productivity.

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 6

Table 2. Data set with various measures
Sr. No. Project name Size (in LOC) Components Domain

1 Website of school 2031 15 Web application
2 Dome 1785 13 Graphics
3 She safe 1625 10 Application
4 Dhoondho 1680 10 Search application
5 Abridge 1983 13 Tool

Table 3. Component reliability analysis for existing approach
Project No. No. of components Input for x Input for N CRM

1 15 15 15 2.718
2 13 11 13 0.100
3 10 6 10 0.04
4 10 6 10 0.04
5 13 11 13 0.100

Table 4. Component reliability analysis for TDMBD approach
Project No. No. of components Input for x Input for N CRM

1 15 9 12 7.389
2 13 10 10 2.718
3 10 8 9 1.000
4 10 8 9 1.000
5 13 10 10 2.718

Efficiency (E) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑈𝑈𝑈𝑈)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇)

Unit of work done can be measured in user stories. User
stories completed by developer in given time will give us
efficiency rate.

Overall productivity measure (OPM) = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑥𝑥=1

where n = no. of components
Overall quality of software (OQS) = ORM + ORCM + (-

ODDM) + ODFM + OPM
As defect density should be low so we shall reduce it from

overall quality calculation.
Data Set
As we had to demonstrate comparative analysis of

DevOps to evaluate metrics so it was not possible to work
on existing case studies. We have created five applications
of different domains and different attributes to evaluate our
framework. Table 2 shows the descriptive measures of
various applications. Development environment for all of
the applications is Java.

5. RESULTS AND DISCUSSION

Metric analysis of each component of software and
overall software is done before and after migration.
Experimental results of various artifacts are shown for all
projects that were mentioned in datasets for different

environment. Various projects have different number of
components on which our artifacts are validated.

Feature analysis of existing and TDMBD approach using
CRM. Table 3 shows the component reliability measure of
existing approach where failure rate constant’s value is
fixed in each component.

Table 4 shows the component reliability analysis for
proposed approach. Reliability is generally measure of
accuracy. As data calculated from method mentioned in
above section, reliability is high in our approach as
compared to existing approach.

Results are clearly shown in Fig. 4 where our approach
provides better reliability than the existing one. High
reliability results into better performance that is system can
perform correct for defined period as reliability follows law
of exponential failure.

Fig. 4 elaborated more precisely the better reliability of
our approach to existing approach in graphical presentation.
Reliability of all projects mentioned in our data set is shown
in following bar graph.

Feature Analysis of existing and TDMBD approach using
CRCM

Table 5 shows the component risk measure for existing
approach that consist total risk test amount. There are
various tests that are broken, not tested, not even executed.
As we can see that risk test those are positively executed is
much in amount in Table 5.

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 7

Fig. 4. Comparative analysis of CRM of existing and TDMBD approach

Fig. 5. Comparative analysis of CRCM of existing and TDMBD approach

Table 5. Component risk measure for existing approach

Project No. Risks not tested Risk broken Risk tests not
executed

Risk tests executed
positively

Total risk
test

Percentage of
risk coverage

1 18 35 20 157 230 68.26%
2 15 28 14 118 175 51.30%
3 13 26 12 99 150 43.04%
4 8 17 16 119 160 51.73%
5 9 12 14 95 130 41.30%

Table 6. Component risk measure for TDMBD approach

Project No. Risks not tested Risk broken Risk tests not
executed

Risk tests executed
positively

Total risk
test

Percentage of
risk coverage

1 20 19 20 169 230 73.47%
2 14 16 14 131 175 56.95%
3 7 17 12 114 150 49.56%
4 7 13 16 124 160 53.91%
5 8 10 14 98 130 42.60%

Table 6 shows the details of risk coverage analysis of
proposed approach. Amount of positively executed risks test
are higher in comparison to existing approach. But defined
artefact relates to percentage coverage which will provide
better instinct to risk.

Fig. 5 shows the percentage coverage of both approaches
for overall risk coverage measure. TBMBD approach
ensures better risk coverage tends to increase customer
satisfaction. Risk coverage not only ensures faster delivery
but also provides timely delivery of product.

0 2 4 6 8

Project1

Project2

Project3

Project4

Project5

TDMBD Approach

Existing Approach

0 20 40 60 80

Project1

Project2

Project3

Project4

Project5

TDMBD Approach

Existing Approach

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 8

Table 7. Component defect density analysis of existing framework
Project Components Size (LOC) No. of defects Defect density (defect/KLOC)

1 15 2031 30 14.77
2 13 1785 17 9.52
3 10 1625 13 8.00
4 10 1680 14 8.33
5 13 1983 20 10.08

KLOC = Kilo Line of Code

Table 8. Component defect density analysis of TDMBD approach
Project Components Size (LOC) No. of defects Defect density (defect/KLOC)

1 15 2031 15 7.38
2 13 1785 10 5.60
3 10 1625 7 4.30
4 10 1680 8 4.76
5 13 1983 10 5.04

Table 9. Deployment frequency of existing process

Project No. Size of project (LOC count) Number of deployments Time taken in hr. Deployment frequency
per hour

1 2031 15 1.5 10.00
2 1785 12 1.2 10.00
3 1625 11 1 11.00
4 1680 11 1 11.00
5 1983 12 1.3 9.23

Fig. 6. Comparative analysis of CDDM of existing and TDMBD approach

Feature Analysis of existing and TDMBD approach using
CDDM

Table 7 presents component defect density analysis of
existing approach. Defect density metric gives the results by
dividing the defects by size of component as defined in
above section.

Table 8 shows component defect density analysis of new
approach. After calculating defect density comparison
clearly shows that in TDMBD approach defect density is
lower than existing one.

Fig. 6 shows the comparative analysis of defect densities
of both approaches. CDDM of TDMBD approach is less

than existing approach which yields good quality of
software.

Feature analysis of existing and TDMBD approach using
CDFM

Table 9 consists of data related to deployment frequency
of each component of existing framework. Clearly it is
shown that much time is taken every deployment that results
into less deployment frequency.

While Table 10 shows deployment frequency data details
of TDMBD approach. Here time taken to deploy
components is less and no. of deployments are even higher
resulting high deployment frequencies.

0 5 10 15

Project1

Project2

Project3

Project4

Project5

TDMBD Approach

Existing Approach

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 9

Table 10. Deployment frequency of TDMBD approach

Project No. Size of project (LOC count) Number of
deployments Time taken in hr. Deployment

frequency per hour
1 2031 17 1.1 15.45
2 1785 14 0.9 15.55
3 1625 14 0.7 20.00
4 1680 13 0.8 16.25
5 1983 15 0.9 16.66

Table 11. Component productivity measure of existing process
Project No. LOC Number of user story (total) Time (in weeks) Throughput

1 2031 150 20 7.5
2 1785 135 17 7.94
3 1625 120 15 8
4 1680 125 16 7.81
5 1983 140 18 7.77

Table 12. Deployment frequency of TDMBD approach
Project No. LOC Number of user story (total) Time (in weeks) Throughput

1 2031 150 15 15
2 1785 135 13 13.5
3 1625 120 12 12
4 1680 125 12 12.5
5 1983 140 14 14

Fig. 7. Comparative analysis of CDFM of existing and TDMBD approach

Fig. 7 shows the graphical presentation of validation of
defined artifact to the existing approach. Results clearly
show that CDFM of proposed approach is better than the
existing one. In TDMBD approach deployments are more
frequent after regular intervals in comparison to traditional
approach where frequency of deploying components after
long interval of time.

Feature Analysis of existing and TDMBD approach using
CPM

Table 11 shows the component productivity measure of
existing framework. As discussed in above section

productivity is measured by throughput and throughput is
derived by user stories divided by time consumed to
accomplish those user stories.

As clearly shown in Table 12 which contains data
analysis of productivity measure of TDMBD approach that
throughput is increased in our approach whereas decreased
up to the level of almost half in existing approach.

Fig. 8 shows the clear comparative analysis of CDFM of
both approaches. It can be concluded that new approach
presents better productivity in terms of efficiency.

Table 13 presents the conclusive results for all defined

0 5 10 15 20 25

Project1

Project2

Project3

Project4

Project5

TDMBD Approach

Existing Approach

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 10

Fig. 8. Comparative analysis of CDFM of existing and TDMBD approach

Fig. 9. Overall quality metrics comparison of both approaches

Table 13. Metric level analysis of both approaches
Metrics Existing system TDMBD system
ORM 2.98 14.7

ORCM 68.26 73.47
ODDM 14.77 7.38
ODFM 10 15.45
OPM 7.5 15
OQS 73.97 111.24

metrics of new and traditional approach. It provides the
comparative analysis between the metrics generated for
each component of individual product. As described in
dataset 5 projects have different number of components and
artifacts are calculated for different components. Finally
overall quality measures of all components are calculated.

TDMBD system gives better results as shown in above
table for every metrics. Overall measure of quality also
provides better results. Graphical visualization is done in
Fig. 9 to demonstrate enhanced quality of our approach to
existing one.

As Fig. 9 depicts overall quality of software when
TDMBD approach is applied is better than the existing
approach. Defect density metric should be low as can be
mapped through Table 1 for its desirable value that is why it
kept negative in visual presentation, and it will be reduced
in overall quality calculation.

6. CONCLUSION & FUTURE WORK

This research focuses on test driven DevOps framework
which is used to transit the existing system to new software.
The presented research work is the combination of two
popular approaches of software development. This
composite framework consists of test-driven development
approach along with DevOps approach. The proposed
TDMBD model has taken the test-driven development
system as input and applied a series of DevOps process. To
confirm the validity of the methodology, a suite of metrics
is introduced as artifacts and those artifacts are identified at
process, project, and product level. To achieve this stage,
software components are evaluated, and qualitative
observations are received. As committed by proposed
approach quality standards got increased and performance
issue are resolved as all metrics defined produced better
results as compared to existing approach. In future we can

0 5 10 15

Project1

Project2

Project3

Project4

Project5

TDMBD Approach

Existing Approach

-40
-20

0
20
40
60
80

100
120

ORM ORCM ODDM ODFM OPM OQS

Existing System

TDMBD System

International Journal of Applied Science and Engineering

Batra et al., International Journal of Applied Science and Engineering, 18(5), 2021158

https://doi.org/10.6703/IJASE.202109_18(5).013 11

work on real time large industry level project where our own
artifacts can be challenged and also an automated tool can
be designed to ease the process of transition. We can also
work on monitoring and security features of software.

REFERENCES

Astel, D. 2003. Test driven development: A practical guide
(A. D. Library (ed.)). Prentice Hall Professional
Technical Reference.

Batra, P., Jatain, A. 2020a. DevOps: Current practices,
challenges and implications. International Journal of
Advanced Sciences and Technology, 29, 11991–12001.
http://sersc.org/journals/index.php/IJAST/article/view/2
7879

Batra, P., Jatain, A. 2020b. Measurement based
performmace evaluation of DevOps. Lecture Series on
Computational Performance Evaluation.

Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A.
2001. Manifesto for agile software development.
https://pdfs.semanticscholar.org/2dc5/d5a781ab55d3bba
09d2fdb05ebf87bde7a2f.pdf

Dissanayake, S. 2018. Measurable metrics for software
process improvement. European Journal of Computer
Science and Information Technology, 6, 33–43.

Duvall, P. 2018. Measuring DevOps success with four key
metrics. https://stelligent.com/2018/12/21/measuring-
devops-success-with-four-key-metrics/

Elberzhager, F., Arif, T., Naab, M., Süß, I., Koban, S. 2017.
From agile development to devops: Going towards faster
releases at high quality - Experiences from an industrial
context. Lecture Notes in Business Information
Processing, 269, 33–44. https://doi.org/10.1007/978-3-
319-49421-0_3

Erich, F., Amrit, C., Daneva, M. 2014. A mapping study on
cooperation between information system development
and operations. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8892,
277–280. https://doi.org/10.1007/978-3-319-13835-0_21

Floris, E., Amrit, C., Daneva, M. 2014. DevOps litterature
review. Product-Focused Software Process Improvement,
8892. https://doi.org/10.1007/978-3-319-13835-0

Futong, H., Tingting, S. 2013. Software project metrics and
quality management. Proceedings - 2013 9th
International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, IIH-MSP
2013. https://doi.org/10.1109/IIH-MSP.2013.158

Gottesheim, W. 2015. Challenges, benefits and best
practices of performance focused DevOps. LT 2015 -
Proceedings of the 4th ACM/SPEC International
Workshop on Large-Scale Testing, in Conjunction with
ICPE 2015, 3. https://doi.org/10.1145/2693182.2693187

Huttermann, M. 2012. Beginning DevOps fpr devlopers. In
DevOps for Developers (2012th ed., 4–13). Apress.

Hüttermann, M. 2012. Introducing DevOps. In DevOps for
Developers, 15–32. https://doi.org/10.1007/978-1-4302-
4570-4_2

Khan, S.H. 2002. Software quality metrics overview.
Metrics and Models in Software Quality Engineering.
Boston,2nd edition, Addison-Wesley.

Kumar, C., Yadav, D.K. 2013. Software quality modeling
using metrics of early artifacts. IET Conference
Publications. https://doi.org/10.1049/cp.2013.2285

Liu, Y., Zhou, Y. 2017. The challenges and mitigation
strategies of using DevOps during software development.
Blekinge Institute of Technology.

Madeyski, L., Szała, Ł. 2007. The impact of test-driven
development on software development productivity - An
empirical study. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).
https://doi.org/10.1007/978-3-540-75381-0_18

Mäkinen, S., Münch, J. 2014. Effects of test-driven
development: A comparative analysis of empirical studies.
Lecture Notes in Business Information Processing.
https://doi.org/10.1007/978-3-319-03602-1_10

Musa, J.D., Okumoto, K. 1984. A logarithmic poisson
execution time model for software reliability
measurement. In Citeseer.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.111.2201&rep=rep1&type=pdf

Nagarajan, A.D., Overbeek, S.J. 2018. A DevOps
implementation framework for large agile-based
financial organizations. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11229
LNCS, 172–188. https://doi.org/10.1007/978-3-030-
02610-3_10

Nicolau de França, B.B., Jeronimo, H., Travassos, G.H.
2016. Characterizing DevOps by hearing multiple voices.
ACM International Conference Proceeding Series, 53–62.
https://doi.org/10.1145/2973839.2973845

Platz, W. 2020. Risk coverage: A new currency for testing.
https://www.stickyminds.com/article/risk-coverage-
new-currency-testing

Rahmani, C., Khazanchi, D. 2010. A study on defect density
of open source software. Proceedings - 9th IEEE/ACIS
International Conference on Computer and Information
Science, ICIS 2010.
https://doi.org/10.1109/ICIS.2010.11

Shahin, M., Ali Babar, M., Zhu, L. 2017. Continuous
integration, delivery and deployment: A systematic
review on approaches, tools, challenges and practices.
IEEE Access, 5, 3909–3943.
https://doi.org/10.1109/ACCESS.2017.2685629

	Hybrid model for evaluation of quality aware DevOps
	ABSTRACT
	1. INTRODUCTION

	Fig. 1. Generalized framework of DevOps
	organisation conceptually. There is no method to measure the success of these frameworks. For this purpose, metrics should be defined and evaluated which will be justified by a framework along with all drivers. The proposed research work is an effort ...
	Research paper is organized as: Section 1- introduces DevOps process along with the need of the framework. Section 2- describes the related study performed in the field of DevOps along with challenges. Evolution of test-driven approach is discussed he...
	2. RELATED WORK

	DevOps evolves from agile methodology. The term DevOps is a combination of two terms that is Dev and Ops. Dev stands for development while Ops stands for operations. As it organization was looking for approach that is better than traditional approache...
	DevOps is suffering from many challenges like no proper defined methodology or framework, no procedure to evaluate quality, performance issues and many more. According to Floris et al. (2014), DevOps was suffering from poor and low quality research. N...
	The proposed framework combines test driven and DevOps approach. Beck et al. (2001) has introduced the concept of test driven development in software development life cycle (Beck, 2001) Test-driven development is an evolutionary approach which provide...
	Mäkinen and Münch (2014) found the impact of test driven development (TDD) on software quality. As per author’s research test driven development has less number of defects as compared to traditional software development. Even code was more simper, sma...
	3. PROPOSED METHODOLOGY

	In this paper three layered architecture is presented to extend the DevOps process by applying various quality observations. As shown in Fig. 2 the proposed framework has combined the three major aspects of DevOps process at three different layers. Up...
	3.1 TDMBD in Action

	This system is combining two approaches as shown in following flowchart. Initially requirement gathering and planning of process is done. After planning process as per test driven development test cases are written and executed. Now it depends upon th...
	Fig. 2. Proposed framework (TDMBD)
	Fig. 3. Process flow of TDMBD approach
	To implement TDMBD Jenkins tool is chosen. As Jenkins is an open-source tool and allows continuous integration and continuous delivery of projects. Some plug-ins are installed for smooth delivery of software. GitHub is used for code management; Build ...
	operation procedure. Chef plug-in easily setup, deploy and configure our project in AWS environment. Whole process is automated through Jenkins as no human intervention is required.
	3.2 Selection of Metrics to Analyse the Quality of Software

	Software systems quality is always judged by essential feature that is quality. Software quality feature not only proves excellence of just software system but also software process and components too. Level of accuracy and timely completion of task c...
	4. Implementation & Metrics Evaluation

	Entire frameworks process flow is implemented to elaborate scaling of TDD approach to DevOps development tasks. All test cases were written in JUnit inserted as plug-in to Jenkins tool.
	In this work numerous component-based metrics are defined and evaluated. Most of the metrics discussed so far relies on estimating various quality attributes of source code. Such metrics are defined without considering how underlying concepts are dete...
	Component reliability measure (CRM)
	A software component can be a quality component if it maintains the relationship between the methods and properties. Theproposed metric CRM is based on the reliability metric defined by Musa and Okumoto (1984). Software reliability can be defined as ...
	Table 1. Metrics analysis
	sample of all available input states. Above mentioned model is used to derive our metric CRM. Jelinski Miranda reliability model describes the process reliability. But in case of proposed metric reliability of each component is evaluated and sum up to...
	Expression for component reliability measure as below,
	CRMx(t) = e-σtx (1)
	Where
	σ (tx) = ϕ [N-(x-1)] (2)
	ϕ = a constant shows the failure rate of each fault per unit time
	N = number of errors in the software
	tx = the time between (x-1)th and (x)th failure
	Mean time failure function (σ) = 1/ ϕ [N-(x-1)] (3)
	And
	σ = 1/ σ1 + 1/ σ2 + 1/ σ3 +……. + 1/ σN (4)
	Mean time failure function will be reciprocal sum of failure rates of each system component. Using Equation(1), Equation(2), Equation(3) and Equation(4)
	ORM (t) = 𝟏−,𝒙=𝟏-𝒏-𝑪𝑹𝑴𝒙(𝒕).
	DevOps process components are running parallel. According to metrics analysis table, reliability should be high. So as CRM value should be high in proposed framework approach.
	Component Risk Coverage Measure (CRCM)
	Risk Coverage provides fast and accurate assessment of risk associated to latest release that is ready to go in production (Platz, 2020). It will be helpful in aligning test activities with customer’s risk objectives. Risk coverage artifact would driv...
	Expression for component risk coverage measure as below,
	CRCM= ,𝑥=1-𝑛-𝑊𝑥.
	Where n = no. of requirements
	For overall risk coverage measure (ORCM) =, M > 0 Where M = total no. of components
	Component Defect Density Measure (CDDM)
	Defects are inevitable in any software. Some defects are not much considerable, but developer needs to keep an eye on every spike as it may ruin the overall performance of software. So defect density decides whether a software component is ready to de...
	CDDM = ,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒆𝒇𝒆𝒄𝒕𝒔(𝑫)-𝑺𝒊𝒛𝒆 𝒐𝒇 𝑹𝒆𝒍𝒆𝒂𝒔𝒆 𝒊𝒏 𝑲𝑳𝑶𝑪(𝑺).
	Overall Defect Density (ODDM) = ,𝒊=𝟏-𝒏-𝑪𝑫𝑫𝑴𝒏., n > 0 where n = no. of components.
	Component Deployment frequency measure (CDFM)
	Fast iteration and continuous delivery are the reasons behind the success of DevOps. Continuous deployment is next key measurement (Duvall, 2018). After how much time and for how long deployment process continues includes in mentioned process. Compone...
	CDFM = ,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒆𝒑𝒍𝒐𝒚𝒎𝒆𝒏𝒕(𝑫𝒆)-𝑼𝒏𝒊𝒕 𝒐𝒇 𝑻𝒊𝒎𝒆(𝑻).
	CDFM = ,𝐃𝐞-𝐓.
	For Overall Deployment Frequency Measure (ODFM) = ,𝑖=1-𝑛-𝑪𝑫𝑭𝑴𝒊., n > 0
	where n = no. of components.
	High deployment frequency is a good sign that overall functioning of software is smooth. Higher deployment frequency is directly proportional to higher efficiency. As per metric discussion component deployment frequency measure is equal to deployment ...
	Component Productivity Measure (CPM)
	Productivity is measured by throughput of process. For our process throughput is defined as units of work done within a set period of time (Batra and Jatain, 2020b). It is a measurement of developer’s activity. By measuring throughput, we can track no...
	Table 2. Data set with various measures
	Table 3. Component reliability analysis for existing approach
	Table 4. Component reliability analysis for TDMBD approach
	Efficiency (E) = ,𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑠𝑒𝑟 𝑆𝑡𝑜𝑟𝑖𝑒𝑠 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑈𝑠)-𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒 𝑡𝑜 𝑓𝑢𝑙𝑓𝑖𝑙(𝑇).
	Unit of work done can be measured in user stories. User stories completed by developer in given time will give us efficiency rate.
	Overall productivity measure (OPM) = ,𝑥=1-𝑛-𝐶𝑃𝑀𝑥. where n = no. of components
	Overall quality of software (OQS) = ORM + ORCM + (-ODDM) + ODFM + OPM
	As defect density should be low so we shall reduce it from overall quality calculation.
	Data Set
	As we had to demonstrate comparative analysis of DevOps to evaluate metrics so it was not possible to work on existing case studies. We have created five applications of different domains and different attributes to evaluate our framework. Table 2 sho...
	5. Results and Discussion

	Metric analysis of each component of software and overall software is done before and after migration. Experimental results of various artifacts are shown for all projects that were mentioned in datasets for different environment. Various projects hav...
	Feature analysis of existing and TDMBD approach using CRM. Table 3 shows the component reliability measure of existing approach where failure rate constant’s value is fixed in each component.
	Table 4 shows the component reliability analysis for proposed approach. Reliability is generally measure of accuracy. As data calculated from method mentioned in above section, reliability is high in our approach as compared to existing approach.
	Results are clearly shown in Fig. 4 where our approach provides better reliability than the existing one. High reliability results into better performance that is system can perform correct for defined period as reliability follows law of exponential ...
	Fig. 4 elaborated more precisely the better reliability of our approach to existing approach in graphical presentation. Reliability of all projects mentioned in our data set is shown in following bar graph.
	Feature Analysis of existing and TDMBD approach using CRCM
	Table 5 shows the component risk measure for existing approach that consist total risk test amount. There are various tests that are broken, not tested, not even executed. As we can see that risk test those are positively executed is much in amount in...
	Fig. 4. Comparative analysis of CRM of existing and TDMBD approach
	Fig. 5. Comparative analysis of CRCM of existing and TDMBD approach
	Table 5. Component risk measure for existing approach
	Table 6. Component risk measure for TDMBD approach
	Table 6 shows the details of risk coverage analysis of proposed approach. Amount of positively executed risks test are higher in comparison to existing approach. But defined artefact relates to percentage coverage which will provide better instinct to...
	Fig. 5 shows the percentage coverage of both approaches for overall risk coverage measure. TBMBD approach ensures better risk coverage tends to increase customer satisfaction. Risk coverage not only ensures faster delivery but also provides timely del...
	Table 7. Component defect density analysis of existing framework
	KLOC = Kilo Line of Code
	Table 8. Component defect density analysis of TDMBD approach
	Table 9. Deployment frequency of existing process
	Fig. 6. Comparative analysis of CDDM of existing and TDMBD approach
	Feature Analysis of existing and TDMBD approach using CDDM
	Table 7 presents component defect density analysis of existing approach. Defect density metric gives the results by dividing the defects by size of component as defined in above section.
	Table 8 shows component defect density analysis of new approach. After calculating defect density comparison clearly shows that in TDMBD approach defect density is lower than existing one.
	Fig. 6 shows the comparative analysis of defect densities of both approaches. CDDM of TDMBD approach is less than existing approach which yields good quality of software.
	Feature analysis of existing and TDMBD approach using CDFM
	Table 9 consists of data related to deployment frequency of each component of existing framework. Clearly it is shown that much time is taken every deployment that results into less deployment frequency.
	While Table 10 shows deployment frequency data details of TDMBD approach. Here time taken to deploy components is less and no. of deployments are even higher resulting high deployment frequencies.
	Table 10. Deployment frequency of TDMBD approach
	Table 11. Component productivity measure of existing process
	Table 12. Deployment frequency of TDMBD approach
	Fig. 7. Comparative analysis of CDFM of existing and TDMBD approach
	Fig. 7 shows the graphical presentation of validation of defined artifact to the existing approach. Results clearly show that CDFM of proposed approach is better than the existing one. In TDMBD approach deployments are more frequent after regular inte...
	Feature Analysis of existing and TDMBD approach using CPM
	Table 11 shows the component productivity measure of existing framework. As discussed in above section productivity is measured by throughput and throughput is derived by user stories divided by time consumed to accomplish those user stories.
	As clearly shown in Table 12 which contains data analysis of productivity measure of TDMBD approach that throughput is increased in our approach whereas decreased up to the level of almost half in existing approach.
	Fig. 8 shows the clear comparative analysis of CDFM of both approaches. It can be concluded that new approach presents better productivity in terms of efficiency.
	Table 13 presents the conclusive results for all defined
	Fig. 8. Comparative analysis of CDFM of existing and TDMBD approach
	Fig. 9. Overall quality metrics comparison of both approaches
	Table 13. Metric level analysis of both approaches
	metrics of new and traditional approach. It provides the comparative analysis between the metrics generated for each component of individual product. As described in dataset 5 projects have different number of components and artifacts are calculated f...
	TDMBD system gives better results as shown in above table for every metrics. Overall measure of quality also provides better results. Graphical visualization is done in Fig. 9 to demonstrate enhanced quality of our approach to existing one.
	As Fig. 9 depicts overall quality of software when TDMBD approach is applied is better than the existing approach. Defect density metric should be low as can be mapped through Table 1 for its desirable value that is why it kept negative in visual pres...
	6. Conclusion & Future Work

	This research focuses on test driven DevOps framework which is used to transit the existing system to new software. The presented research work is the combination of two popular approaches of software development. This composite framework consists of ...
	REFERENCES

	Astel, D. 2003. Test driven development: A practical guide (A. D. Library (ed.)). Prentice Hall Professional Technical Reference.
	Batra, P., Jatain, A. 2020a. DevOps: Current practices, challenges and implications. International Journal of Advanced Sciences and Technology, 29, 11991–12001. http://sersc.org/journals/index.php/IJAST/article/view/27879
	Batra, P., Jatain, A. 2020b. Measurement based performmace evaluation of DevOps. Lecture Series on Computational Performance Evaluation.
	Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A. 2001. Manifesto for agile software development. https://pdfs.semanticscholar.org/2dc5/d5a781ab55d3bba09d2fdb05ebf87bde7a2f.pdf
	Dissanayake, S. 2018. Measurable metrics for software process improvement. European Journal of Computer Science and Information Technology, 6, 33–43.
	Duvall, P. 2018. Measuring DevOps success with four key metrics. https://stelligent.com/2018/12/21/measuring-devops-success-with-four-key-metrics/
	Elberzhager, F., Arif, T., Naab, M., Süß, I., Koban, S. 2017. From agile development to devops: Going towards faster releases at high quality - Experiences from an industrial context. Lecture Notes in Business Information Processing, 269, 33–44. https...
	Erich, F., Amrit, C., Daneva, M. 2014. A mapping study on cooperation between information system development and operations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinform...
	Floris, E., Amrit, C., Daneva, M. 2014. DevOps litterature review. Product-Focused Software Process Improvement, 8892. https://doi.org/10.1007/978-3-319-13835-0
	Futong, H., Tingting, S. 2013. Software project metrics and quality management. Proceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013. https://doi.org/10.1109/IIH-MSP.2013.158
	Gottesheim, W. 2015. Challenges, benefits and best practices of performance focused DevOps. LT 2015 - Proceedings of the 4th ACM/SPEC International Workshop on Large-Scale Testing, in Conjunction with ICPE 2015, 3. https://doi.org/10.1145/2693182.2693187
	Huttermann, M. 2012. Beginning DevOps fpr devlopers. In DevOps for Developers (2012th ed., 4–13). Apress.
	Hüttermann, M. 2012. Introducing DevOps. In DevOps for Developers, 15–32. https://doi.org/10.1007/978-1-4302-4570-4_2
	Khan, S.H. 2002. Software quality metrics overview. Metrics and Models in Software Quality Engineering. Boston,2nd edition, Addison-Wesley.
	Kumar, C., Yadav, D.K. 2013. Software quality modeling using metrics of early artifacts. IET Conference Publications. https://doi.org/10.1049/cp.2013.2285
	Liu, Y., Zhou, Y. 2017. The challenges and mitigation strategies of using DevOps during software development. Blekinge Institute of Technology.
	Madeyski, L., Szała, Ł. 2007. The impact of test-driven development on software development productivity - An empirical study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfo...
	Mäkinen, S., Münch, J. 2014. Effects of test-driven development: A comparative analysis of empirical studies. Lecture Notes in Business Information Processing. https://doi.org/10.1007/978-3-319-03602-1_10
	Musa, J.D., Okumoto, K. 1984. A logarithmic poisson execution time model for software reliability measurement. In Citeseer. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.2201&rep=rep1&type=pdf
	Nagarajan, A.D., Overbeek, S.J. 2018. A DevOps implementation framework for large agile-based financial organizations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)...
	Nicolau de França, B.B., Jeronimo, H., Travassos, G.H. 2016. Characterizing DevOps by hearing multiple voices. ACM International Conference Proceeding Series, 53–62. https://doi.org/10.1145/2973839.2973845
	Platz, W. 2020. Risk coverage: A new currency for testing. https://www.stickyminds.com/article/risk-coverage-new-currency-testing
	Rahmani, C., Khazanchi, D. 2010. A study on defect density of open source software. Proceedings - 9th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2010. https://doi.org/10.1109/ICIS.2010.11
	Shahin, M., Ali Babar, M., Zhu, L. 2017. Continuous integration, delivery and deployment: A systematic review on approaches, tools, challenges and practices. IEEE Access, 5, 3909–3943. https://doi.org/10.1109/ACCESS.2017.2685629

