
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202112_18(6).001 Vol.18(6) 2021114

OPEN ACCESS

Received: May 6, 2021

Accepted: July 1, 2021

Corresponding Author:
Asmita Poojari
asmitapoojari@nitte.edu.in

Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

FPGA implementation of random number
generator using LFSR and scrambling algorithm
for lightweight cryptography

Asmita Poojari1*, Nagesh H R2

1 Department of Computer Science and Engineering, NMAMIT Nitte Karkala,
Karnataka

2 Head of the Department, Department of Information Science and Engineering, A J
Institute of Engineering and Technology Kottara, Mangalore

ABSTRACT

The IoT (Internet of Things) is a network of devices that are interconnected and are
uniquely addressable, based on common communication protocols and links to perform
certain tasks. The recent developments in the wireless communications have increased
the need for the IoT-connected devices. The sensors and the sensor nodes used in these
networks are low-resource devices, thus increasing the vulnerability and hence becoming
a possible target for hackers. The development and deployment of lightweight protection
schemes for such low resource devices have also increased. The random number
generation or the key generation used in the encryption process is the most important
element in protecting these resource-constrained devices, as the security of the entire
data depends on the key used. In this paper a novel random number generation using
LFSR (Linear Feedback Shift Register) and Scrambling Algorithm for lightweight
encryption algorithms is proposed using which the keys for the encryption process can
be generated, thus improving the security of data transmitted in the IoT environment.
The randomness of the numbers generated by this Random number generator algorithm
is tested using pertinent set of statistical tests. These statistical tests analyze the
cryptographic properties of the sub keys generated by the key scheduling algorithm, such
as confusion, diffusion, independence, and randomness. For the purpose of simulation,
the code is written in Verilog and simulated using Xilinx Vivado and the implementation
is carried out using Artix-7 FPGA family for analyzing the parameters like Area, power
and timing.

Keywords: Internet of things, FPGA, LFSR, Lightweight cryptography, NIST.

1. INTRODUCTION

In the era of Internet of Things where the data is exchanged between any two tiny
devices the power, energy and time are the major parameters the older techniques may
become infeasible and cannot be engineered to fit into such resource constrained devices,
thus motivating the researchers to design and implement new techniques in generation
of such efficient random numbers which can be used as sub keys in the encryption
process. The design of a strong key generation scheme decides the strength of the security
of any encryption algorithm. The sub keys generated by the key scheduling algorithm
should be so strong that the attacker should not be able to acquire any relationship
between any sub keys as well as the secret key by Blumenthal and Bellovin (1996). The
key scheduling algorithms mainly use linear and nonlinear operations to generate sub
keys from the initial secret key and should possess good confusion and diffusion
properties. A strong key scheduling algorithm makes the overall encryption process
resistant against several threats like the linear-attack, differential-attack, side-channel-
a t t a c k a n d ma n y s u c h a t t a c k s b y K n u d se n a nd M a t h i a s s e n (2 0 0 4) ;

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 2

Suzaki et al. (2013); Biryukov and Nikoli´c (2011) and have
proposed different key schedules that perform different
operations such as low diffusion. Some key schedules apply
simple operations such as permutation or linear operations
on master keys Wu and Zhang (2011). Some use master key
directly without any key schedule as proposed in Hong et al.
(2006); Guo et al. (2011); May et al. (2002) explained the
various desirable properties for the KSA and explained how
these properties can be used to strengthen the key schedule
of AES. Afzal et al. (2015) explained, statistical analysis of
the sub keys generated by the KSA and showed that the
avalanche effect is one of the important cryptographic
property to ensure security of the entire encryption
algorithm. The strength of any key schedule depends on the
type of function used i.e. linear or nonlinear function and
the operations used. Many key schedules have been
designed in various encryption algorithm such as linear
circular shift is implemented for key scheduling in the block
cipher IDEA by Daemen et al. (1993). This paper presents
the problem of large classes weak keys that are been
identified and eliminated by slight modification of the key
schedule of the IDEA algorithm. The keys are weak in the
sense that their use is detected with minimum effort,
whereas key schedule of PRESENT proposed by Bogdanov
et al. (2007) uses linear permutation. A 64-bit plaintext
block was encrypted using 80-bit key. The code was written
in VHDL and synthesized using Virtual Silicon (VST) and
standard cell library based on UMCL180, 18µ1P6M Logic.
The design phase of the algorithm comprises of an S-BOX
that can be used 16 times instead of having 16 different S-
BOXes which eases the serialization of the design. The
proposed algorithm encrypts a 64-bit plaintext block using
80-bit key in 32 clock cycles and needs an area of 1570 and
consumes a power of 5µW. The authors Harmouch and El
Kouch (2019) used the concept of chaos in the key schedule
algorithm and thus a new key scheduling algorithm called
CKSA based on the logic maps has been developed. The
proposed algorithm is a one-way function and ensures a
good diffusion and confusion and also provides a good
avalanche effect. The size of the sub-keys is variable and
thus can be used by many ciphers. It also has a good
resistance against differential and linear attacks. A strong
linear correlation between the sub-keys ensures a
randomization of high degree. The authors Paje et al. (2019)
used a multidimensional key algorithm for RC6. The
authors proposed a modified RC6 algorithm and key sizes
of different lengths like 1024/1280/1792/2048/2861 bits are
used so as to provide a high degree of security. The longer
key length implies that the time required to break the key
would result in a longer time. Thus increasing in the length
of register, resulted in improved throughput and speed.
Avanzi et al. (2016) proposed some general strategies to

construct a key schedule is introduced. However, in all of
these studies, the cryptographic strength of the key schedule
algorithms was not evaluated using any statistical method.
Any key scheduling algorithm should be tested on
properties such as confusion, diffusion, randomness of the
sub keys to prove the security strength of KSA and the
encryption algorithm. In this paper a novel key scheduling
algorithm is proposed and also its strength is evaluated
based on the above properties using a required set of
statistical tests using the NIST test suite. From the studies,
it has been seen that the statistical tests may not be sufficient
to assert the cryptographic strength of the cipher algorithms,
they provide essential requirements for a strong
cryptographic algorithm. The algorithm that passes all the
statistical tests may not thwart the possible attacks, but the
algorithm that fails the required statistical tests would not
even thwart the basic attacks on the ciphers by Simion
(2015). Ukrop et al. (2016) in his research paper analyzed
the randomness of multiple-authenticated encryption
schemes. The outputs were assessed using 168 different
schemes and 3 different settings and implemented in four
different tools. EACirc was defeated by all the statistical
batteries of tests hence was the least suitable for given task,
while the tests like NIST STS (2010) , Dieharder by Robert
G. Brown (2004) and TestU01 by Pierre L’Ecuyer et al.
(2007) produced better results while Raviyoyla test in
EACirc performed better than all other tests.

2. THE PROPOSED RANDOM NUMBER
GENERATION USING LFSR AND
SCRAMBLING ALGORITHM

The security of any cryptographic method depends
mainly on the keys used in the encryption process and hence
in turn depends on on the key generation algorithm.

The proposed novel random number generation
algorithm is a fusion of three different implementations, the
random number generation used for SIT algorithm
developed n by Usman et al. (2017) inspired from Khazad
block cipher proposed by Barreto and Rijmen (2000).The
key generation scheme is based on Modified Fibonacci and
Scrambling Factor Amiruddin et al. (2019) and the LFSR,
so as to provide more randomness, quality and lesser area.
The Khazad cipher is based on wide trail strategy that
comprises of linear and non-linear transformations ensuring
the complexity in the dependence of output bits and input
bits Daemen et al. (1995). The algorithm is said to have a
linear algorithmic complexity of O(n) , the algorithm has a
lightweight operation and hence can save the computing
time making it useful in key generation function for a
lightweight scheme.

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 3

In the proposed Random number generation using LFSR
and Scrambling Algorithm, the round keys to be used in the
various rounds of the encryption phase of the lightweight
cryptographic system are generated using a novel method as
shown in Fig. 1. The key length defined by the initial user
is made large enough so as to provide security for an
exhaustive search attack, thus it may be infeasible for an
adversary to perform an exhaustive key searching attack.
For this the input is 64 bits input key and output is
generation of 5 keys (round keys) which will be used in each
of the rounds of the encryption scheme.

The steps are as follows:
1. A 64-bit user defined initial-seed is the input to the

proposed RNG scheme (key scheduling scheme).
2. The 64-bit input key is partitioned into blocks of 4-bits

each. (p1, p2, p3,.,.,p16) .
3. The four 4-bits block are concatenated into four blocks

of 16-bits each.
(say pp1 = [p1||p5||p9||p13], pp2 = [p2||p6||p10||p14],
pp3 = [p3||p7||p11||p15], pp4 = = [p4||p8||p12||p16]).

4. Next the 16-bit data generated from the above step is
given as the input to the LFSR which outputs a 16-bit
random number.

5. Next the 16- bit data generated from 3rd step and the
pseudorandom number generated from the linear
feedback shift register are XORed which outputs, QI,
Q2, Q3, Q4 which are fed to the Fibonacci scrambling
algorithm [19]., to derive the keys for the encryption
process, the steps are

a. The key K (1) = mod (Q1 + Q2, n)
b. Similarly, the key K (2) = mod (Q3 + Q4, n)
c. The remaining keys are determined as (n = 4)

for 𝑖𝑖 = 3 𝑡𝑡𝑡𝑡 𝑟𝑟 do

𝐾𝐾 (𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐾𝐾 (𝑖𝑖 − 1) + 𝐾𝐾 (𝑖𝑖 − 2) ,𝑛𝑛)
end for

d. end
thus keys K(1), … K(5) are obtained which may be used as
round keys for the encryption process of a cryptographic
algorithm.

3. RESULTS AND DISCUSSION

The proposed FPGA based random number generator is
simulated using Xilinx Vivado Design Suite and
implemented in Nexys-4 DDR Artix-7 FPGA family. The
randomness and statistical test was evaluated using the
NIST800-22 statistical tests by Andrew Rukhin et al.(2010),
Giga bit streams were generated from the proposed RNG
with P ≥ 0.01 (the level of significance).

3.1 Evaluation Based on NIST Statistical Test Suites
The keys generated by the key-scheduling algorithm have

to be tested for its randomness. A PRNG should exhibit
following characteristic

1. Uniformity: For the generated random or
pseudorandom sequence of bits, the probability (P) of
occurrence of a zero or one is equally likely, (i. e. P =
½)

2. Scalability: The randomness tests applied to a
sequence can be applied to the extracted subsequences.
Thus, the subsequence generated should also pass all
the randomness tests.

3. Consistency: the RNG must produce consistent results
across initial seeds. Based on the output produced from

Fig. 1. Proposed Random number generation using LFSR

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 4

a given output, a single seed should be inadequate to
test a random number generator.

US National Institute of Science and Technology (NIST)
developed the statistical test suite validating the random
number generators for cryptographic applications and is
published as NIST Special Publication 800-22 Revision 1a
by Rukhin et al. (2010). The tests are used to determine the
quality of the random number generator. This test suite
comprises of fifteen different tests and explained below.

1. Frequency (Monobit) Test: In this test the number of
0’s and 1’s in the given stream are compared. The
proportion of ones should be same as number of zeros
in the sequence.

2. Block-Frequency Test: for a given block of M-bit size
this tests measures the number of ones and zeros. The
frequency of ones or zeros should be approximately
M/2 for randomness.

3. Runs-test: This test computes the occurrences of
uninterrupted sequences or runs of ones or zeros for a
given sequence. For a random sequence, this test
figures out whether the number of runs of zeros and
ones of different lengths is as required.

4. Test for the Longest-Run of Ones in a Block: This test
computes the longest run of ones for a given M-bit
block.

5. Binary-Matrix-Rank Test: This test determines the
linear dependence of fixed length substrings from the
original sequence. Here the entire sequence is divided
into stream of rows and columns of matrices and the
rank of disjoint sub matrices of the entire sequence is
tested.

6. Discrete-Fourier-Transform (Spectral) Test: The peak
heights of the sequence in the DFT (Discrete Fourier
Transform) is observed. The aim is to determine the
repetitive patterns in the given stream. If the number of
peaks exceeds the given threshold, then the test fails.

7. Non-Overlapping-Template Matching Test: The test
determines the bit stream for number of occurrences in
a distinct non-periodic pattern. This test searches for a
m-bit pattern in a m-bit window. The window is reset
if the sequence is found to the next bit and the search
starts again else window moves by one position.

8. Overlapping-Template Matching Test: The test finds
the number of occurrences of the specific target strings.

9. Maurer’s “Universal-Statistical” Test: In this test, in a
data stream it computes the number of bits between
matching patterns.

10. Linear-Complexity Test: This test determines the
complexity of the generated sequence, length of a
LFSR to generate the required bit-stream.

11. Serial-Test: The frequency of overlapping of m-bit
sequence in a 2m bit-stream is calculated in this test.

12. Approximate-Entropy Test: This test measures the
frequency of overlapping of an m-bit patterns across
the overall sequence.

13. Cumulative-Sums (Cusum) Test: This check
determines the maximal excursion from a
random walk from 0 using the values [-1, +1].

14. Random-Excursions Test: This test calculates the
number of cycles in a cumulative sum random walk of
K visits. The cumulative sum random walk is obtained
from the sequence [0, 1] if a “0” is traverse then [-1]
and if a 1 is traversed it [+1]. Thus, the test determines
9 states [-4, -3, -2, -1, 0, 1, 2, 3, 4].

15. Random-Excursions-Variant Test: This test computes
the number of occurrences of the particular state in a
cumulative sum random walk and checks the
deviations from number of occurrences to different
states in a random walk. It uses a series of 18 tests and
convulsions { -9, -8, -1, +1, +2,…,+8}.

Table 1 shows the results of the P value for the NIST
randomness tests and it is found that the P-values obtained
are greater than 0.01 hence the generated bits are random in
nature.

3.2 FPGA Implementation
The proposed LFSR based RNG is implemented in

ARTIX-7, Nexys-4 DDR FPGA. The optimized structure of
the proposed LFSR based RNG results in lesser area and
power.

The proposed key generation scheme blocks have been
modelled using Verilog HDL, Xilinx Vivado is used to
obtain the simulation and synthesis and verified on the
Nexys 4 Artix-7 FPGA and Oasys-RTL Tool (45-nm
technology). The RTL Schematic is shown in Fig. 4. The
results design summary is obtained in Table 2 shows Slice
LUTS, Registers and IOB’s and timing/ critical Path delay
(logic delay + net delay) and total on chip power
(Dynamic+Static) in terms of Watts. The proposed scheme
has power consumption reduced by 32% than SIMON
scheme.

Fig. 2 shows the RTL schematic of LFSR Key generation
scheme implemented in TEA/XTEA algorithm.

Fig. 3 shows the RTL Schematic of the Key generation
scheme used in SIMON Cipher.

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 5

Table 1. NIST test results of proposed Key generation scheme
Test P-value Result

Frequency 0.739918 Passed
Block-Frequency 0.179120 Passed

Cumulative-Sums (forward) 0.534146 Passed
Cumulative-Sums (inverse) 0.739918 Passed

Runs 0.350485 Passed
Longest-Run 0.179120 Passed

Rank 0.035174 Passed
FFT 0.213309 Passed

Non-Overlapping-Template 0.122325 Passed
Overlapping-Template 0.430102 Passed

Universal 0.122325 Passed
Approximate-Entropy 0.350485 Passed
Random-Excursions 0.911413 Passed

Random-Excursions-Variant 0.534146 Passed
Serial 0.035174 Passed

Linear-Complexity 0.739918 Passed

Table 2. FPGA implementation of key generation schemes

Key
Generation

Scheme

Nexys 4 Artix-7 FPGA Oasys RTL Tool - 45nm
Technology

Timing/
Path delay

(ns)

Area
Power
(W)

Area
(µm2)

Power
(µW)

Slice
Registers
(15850)

Slice
LUT’s

(63400)

IOB’
s

(210)
32-bit LFSR 4.065 19 1 64 31.195 231 40.411373

SIMON 62.718 104 34 160 235.614 142 212.511063
Proposed

RNG-LFSR 9.036 92 00 144 76.53 1213 1196.31

Fig. 2. RTL Schematic of Linear feedback shift register

Fig. 3. RTL Schematic of SIMON Key generation scheme

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 6

Fig. 4. RTL schematic of the key generation for proposed RNG-LFSR

Fig. 5 shows the comparison chart. It is seen that when
implemented in Xilinx Vivado the LUT and slices are lesser
than SIMON key generation scheme while its
implementation in Oasys tool has greater area and power
than the state of the art implementations which is well
within the lightweight requirements as per the NISTIR
report.

The comparative analysis in terms of AREA (LUT +
IOBs), Bit-rate for the implemented ciphers with the state
of the art implementations is shown in Table 3.

Fig. 6 shows the comparison of proposed key generation
schemes with the state of the art implementations. It can be
seen that the proposed RNG using LFSR encryption has
better results.

Fig. 5. Comparison of key generation schemes

0

200

400

600

800

1000

1200

1400

Slice LUT Slice
Registers

IOBs Time Delay Power Power (uW) Area (um2)

Xilinx Oasys Tool

32-bit LFSR SIMON RNGLFSR

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 7

Table 3. Comparative analysis of the proposed key generation scheme

RNG Year Area(LUT+IOBs) Bit-rate
Mb/s

BPA Mb/s/
(LUT+Reg) FPGA

32-bit LFSR 2020 32+34 26.43 0.408 Artix--7
SIMON 2020 32+160 27.3 0.142 Artix--7

Proposed RNG-LFSR 2021 92 +144 110.668 0.4689 Artix--7
Gupta et al. 2019 581+16 1600 2.68 Artix--7
Wu and Li 2017 298 150 0.5033 Cyclone-IV
Choi et al. 2017 21+15 12.5 0.347 Cyclone-IV

Fig. 6. Comparison of key generation scheme with the proposed key generation scheme

4. CONCLUSION

In this paper a novel RNG algorithm using LFSR and
Scrambling Algorithm is proposed. The random numbers
obtained can be used as round keys of an encryption process
in a cryptographic algorithm especially in lightweight
cryptographic platforms. The scheme generates keys which
are more random in nature as seen from the implemented
results. The NIST statistical randomness tests was
conducted and implementation results were analyzed and
found that this RNG scheme is more secure and resistance
against attacks, it can be employed in an encryption process
for lightweight ciphers. The proposed scheme is more
efficient than the other implemented algorithms. The future
work is to implement and analyze it for sensitive
applications like healthcare.

ACKNOWLEDGMENT

The authors would like to thank the department of
Computer Science and Engineering, N M A M Institute of
Technology Karkala and Visvesvaraya Technological
university (VTU-RRC), Belagavi for the support for
carrying out the research work.

REFERENCES

Afzal, S., Waqas, U., Mubeen, M.A., Yousaf, M. 2015.
Statistical analysis of key schedule algorithms of
different block ciphers, Science International, 27.

Amiruddin, A., Ratna, A.A.P., Sari, R. 2019. Construction
and analysis of key generation algorithms based on
modified Fibonacci and scrambling factors for privacy
preservation. International Journal of Network
Security, 21, 250–258.

Avanzi, R. 2016. A salad of block ciphers-the state of
the art in block ciphers and their analysis
(http://eprint.iacr.org/2016/1171.pdf, 2016).

Bakiri, M., Guyeux, C., Couchot, J.F., Oudjida, A.K. 2018.
Survey on hardware implementation of random number
generators on FPGA: Theory and experimental analyses.
Computer Science Review, Elsevier, 27, 135-153. hal-
02182827, 4, 5–13.

Barreto, P., Rijmen, V. 2000. The khazad legacy-level block
cipher, Primitive submitted to NESSIE, 97.

Biryukov, A., Nikoli´c, I. 2011. Search for related-key
differential characteristics in DES-like ciphers. In Fast
Software Encryption, 6733, 18–34.

0

100

200

300

400

500

600

700

LFSR SIMON RNG-LFSR Ramji et al
2019

Wu Li 2017 Choi et al
2017

LUT +IOB

Registers

Timing(nS)

BPA

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 8

Blumenthal, U., Bellovin, S.M. 1996. A better key schedule
for DES-like ciphers, in Proceedings of the Pragocrypt,
Prague, Czech Republic.

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C. 2007. PRESENT: an ultra-lightweight block cipher, in
Cryptographic Hardware and Embedded Systems—
CHES 2007, 450–466, Springer, Berlin, Heidelberg.

Choi, P., Lee, M.‐K., Kim, D.K. 2017. Fast compact true
random number generator based on multiple sampling.
Electronics Letters, 53, 841–843.

Cusick, T.W., Stanica, P. 2017. Chapter 2 - Fourier analysis
of Boolean functions, editor(s): Thomas W. Cusick,
Pantelimon Stanica, cryptographic Boolean functions and
applications (Second Edition), Academic Press, 7–29,
ISBN 9780128111291, https://doi.org/10.1016/B978-0-
12-811129-1.00002-X.

Daemen, J. 1995. Cipher and hash function design strategies
based on linear and differential cryptanalysis, Ph.D.
dissertation, Doctoral Dissertation, KU Leuven.

Daemen, J., Rene, G., Joos, V. 1993. Weak keys for IDEA,
Annual International Cryptology Conference, 224–231,
Springer, Berlin, Heidelberg.

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. 2011. The
LED block cipher. In CHES 2011, 6917, 326–341.

Gupta, R., Pandey, A., Baghel, R.K. 2019. FPGA
implementation of chaos‐based high‐speed true random
number generator. International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields. 32,
e2604. https://doi.org/10.1002/jnm.2604

Harmouch, Y., El Kouch, R. 2019. The benefit of using
chaos in key schedule algorithm, Journal of Information
Security and Applications, 45, 143–155.

Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S.,
Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.,
Chee, S. 2006. HIGHT: A new block cipher suitable for
low-resource device. In CHES, 4249, 46–59. Springer.

Jaya Sudha, K., Jaya Rani, G., Mirza Shafi Sahahsavar,
2015. Generation of uniform random numbers using look
up table as shift register, International Journal of Science,
Engineering and Technology Research (IJSETR), 4.

Justin, R., Mathew, B.K., Abe, S. 2016. FPGA
implementation of high quality random number generator
using LUT based shift registers, Procedia Technology, 24,
1155–1162, ISSN 2212-0173. https://doi.org/10.1016/j.
protcy.2016.05.069.

Kim, C.H. 2011. Improved differential fault analysis on
AES key schedule, IEEE Transactions on Information
Forensics and Security, 7, 41–50.

Knudsen, L., Leander, G., Poschmann, A., Matthew, R.J.B.
2010. PRINTcipher: A block cipher for IC-printing. In
CHES 2010, 6225, 16–32.

Knudsen, L.R., Mathiassen, J.E. 2004. On the role of key
schedules in attacks on iterated ciphers, in European
Symposium on Research in Computer Security, 322–334,
Springer, Berlin, Heidelberg.

Kumar, V.G.K., Rai, C.S. 2020. FPGA implementation of
simple encryption scheme for resource-constrained
devices, International Journal of Advanced Trends in
Computer Science and Engineering, 9.
https://doi.org/10.30534/ ijatcse/2020/213942020.

Kumar, V.G.K., Rai, C.S. 2021. Efficient implementation of
cryptographic arithmetic primitives using reversible logic
and Vedic mathematics. Journal of The Institution of
Engineers (India): Series B 102, 59–74.
https://doi.org/10.1007/s40031-020-00518-w.

Matsumoto, M., Kurita, Y. 1992. Twisted GFSR generators.
ACM Transactions on Modeling and Computer
Simulation, 2, 179–194. DOI: https://doi.org/10.1145/
146382.146383.

May, L., Henricksen, M., Millan, W., Carter, G., Dawson, E.
2002. Strengthening the key schedule of the AES, in
Information Security and Privacy, 226–240, Springer,
Berlin Heidelberg.

McKay, K.A., Bassham, L., Turan, M.S., Mouha, N. 2016.
DRAFT NISTIR 8114: Report on lightweight
cryptography, National Institute of Standards and
Technology Internal Report 8114.

Mitchell, R.L., Stone, C.R. 1977. Table-lookup methods for
generating arbitrary random numbers, in IEEE
Transactions on Computers, C-26, 1006–1008, doi:
10.1109/TC.1977.1674735.

NIST, 2010. A statistical test suite for random and
pseudorandom number generators for cryptographic
applications. http://csrc.nist.gov/publications/nistpubs/
800-22- rev1a/SP800- 22rev1a.pdf.

Paje, R.E.J., Sison, A.M., Medina, R.P. 2019.
Multidimensional key RC6 algorithm, in Proceedings of
the 3rd International Conference on Cryptography,
Security and Privacy—ICCSP’19, 33–38, Kuala Lumpur,
Malaysia.

Seok, B., Lee, C. 2019. Fast implementations of ARX-based
lightweight block ciphers (SPARX, CHAM) on 32-bit
processor. International Journal of Distributed Sensor
Networks. https://doi.org/10.1177/1550147719874180.

Simion, E. 2015. The relevance of statistical tests in
cryptography, IEEE Security & Privacy, 13, 66–70.

Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E. 2013.
TWINE: A lightweight block cipher for multiple
platforms. In Selected Areas in Cryptography, 7707, 339–
354.

Sys, M., Klinec, D., Kubıcek, K., Svenda, P. 2017. BoolTest:
the fast randomness testing strategy based on boolean
functions with application to DES, 3-DES, MD5, MD6,
and SHA-256, in International Conference on E-Business
and Telecommunications, 123–149, Springer, Cham,
Switzerland.

Tezuka, S. 1995. Linear congruential generators. In:
Uniform Random Numbers. The Springer International
Series in Engineering and Computer Science (Discrete
Event Dynamic Systems), 315. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4615-2317-8_3.

https://doi.org/10.1016/B978-0-12-811129-1.00002-X
https://doi.org/10.1016/B978-0-12-811129-1.00002-X

International Journal of Applied Science and Engineering

Poojari et al., International Journal of Applied Science and Engineering, 18(6), 2021114

https://doi.org/10.6703/IJASE.202112_18(6).001 9

Thomas, D.B., Luk, W. 2013. The LUT-SR family of
uniform random number generators for FPGA
architectures, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 21, 761–770.

Ukrop, M. 2016. Randomness analysis in authenticated
encryption systems, Ph.D. thesis, Masarykovauniverzita,
Fakultainformatiky, Brno, Czechia.

Usman, M., Ahmed, I., Aslam, M.I., Khan, S., Shah, U.A.
2017. SIT: A lightweight encryption algorithm for secure
internet of things, International Journal of Advanced
Computer Science and Applications, 8.

Wetzels, J., Bokslag, W. 2015. Simple SIMON: FPGA
implementations of the SIMON 64/128 block cipher.
Cryptography Engineering Kerckhoffs Institute. 1, 1–20.

Wu, W., Zhang, L. 2011. LBlock: A lightweight block cipher.
In Applied Cryptography and Network Security, 6715,
327–344.

Wu, X., Li, S. 2017. A new digital true random number
generator based on delay chain feedback loop, IEEE
conference 978‐1‐4673‐6853‐7/17/$31.00

	FPGA implementation of random number generator using LFSR and scrambling algorithm for lightweight cryptography
	ABSTRACT
	1. INTRODUCTION

	Suzaki et al. (2013); Biryukov and Nikoli´c (2011) and have proposed different key schedules that perform different operations such as low diffusion. Some key schedules apply simple operations such as permutation or linear operations on master keys Wu...
	2. The Proposed Random Number Generation using LFSR and Scrambling Algorithm

	The security of any cryptographic method depends mainly on the keys used in the encryption process and hence in turn depends on on the key generation algorithm.
	The proposed novel random number generation algorithm is a fusion of three different implementations, the random number generation used for SIT algorithm developed n by Usman et al. (2017) inspired from Khazad block cipher proposed by Barreto and Rijm...
	In the proposed Random number generation using LFSR and Scrambling Algorithm, the round keys to be used in the various rounds of the encryption phase of the lightweight cryptographic system are generated using a novel method as shown in Fig. 1. The ke...
	The steps are as follows:
	1. A 64-bit user defined initial-seed is the input to the proposed RNG scheme (key scheduling scheme).
	2. The 64-bit input key is partitioned into blocks of 4-bits each. (p1, p2, p3,.,.,p16) .
	3. The four 4-bits block are concatenated into four blocks of 16-bits each.
	(say pp1 = [p1||p5||p9||p13], pp2 = [p2||p6||p10||p14], pp3 = [p3||p7||p11||p15], pp4 = = [p4||p8||p12||p16]).
	4. Next the 16-bit data generated from the above step is given as the input to the LFSR which outputs a 16-bit random number.
	5. Next the 16- bit data generated from 3rd step and the pseudorandom number generated from the linear feedback shift register are XORed which outputs, QI, Q2, Q3, Q4 which are fed to the Fibonacci scrambling algorithm [19]., to derive the keys for th...
	a. The key K (1) = mod (Q1 + Q2, n)
	b. Similarly, the key K (2) = mod (Q3 + Q4, n)
	c. The remaining keys are determined as (n = 4)
	for 𝑖=3 𝑡𝑜 𝑟 do
	𝐾 (𝑖) = 𝑚𝑜𝑑 (𝐾 (𝑖−1) + 𝐾 (𝑖−2) , 𝑛)
	end for
	d. end
	thus keys K(1), … K(5) are obtained which may be used as round keys for the encryption process of a cryptographic algorithm.
	3. Results and Discussion

	The proposed FPGA based random number generator is simulated using Xilinx Vivado Design Suite and implemented in Nexys-4 DDR Artix-7 FPGA family. The randomness and statistical test was evaluated using the NIST800-22 statistical tests by Andrew Rukhin...
	3.1 Evaluation Based on NIST Statistical Test Suites

	The keys generated by the key-scheduling algorithm have to be tested for its randomness. A PRNG should exhibit following characteristic
	1. Uniformity: For the generated random or pseudorandom sequence of bits, the probability (P) of occurrence of a zero or one is equally likely, (i. e. P = ½)
	2. Scalability: The randomness tests applied to a sequence can be applied to the extracted subsequences. Thus, the subsequence generated should also pass all the randomness tests.
	3. Consistency: the RNG must produce consistent results across initial seeds. Based on the output produced from
	Fig. 1. Proposed Random number generation using LFSR
	a given output, a single seed should be inadequate to test a random number generator.
	US National Institute of Science and Technology (NIST) developed the statistical test suite validating the random number generators for cryptographic applications and is published as NIST Special Publication 800-22 Revision 1a by Rukhin et al. (2010)....
	1. Frequency (Monobit) Test: In this test the number of 0’s and 1’s in the given stream are compared. The proportion of ones should be same as number of zeros in the sequence.
	2. Block-Frequency Test: for a given block of M-bit size this tests measures the number of ones and zeros. The frequency of ones or zeros should be approximately M/2 for randomness.
	3. Runs-test: This test computes the occurrences of uninterrupted sequences or runs of ones or zeros for a given sequence. For a random sequence, this test figures out whether the number of runs of zeros and ones of different lengths is as required.
	4. Test for the Longest-Run of Ones in a Block: This test computes the longest run of ones for a given M-bit block.
	5. Binary-Matrix-Rank Test: This test determines the linear dependence of fixed length substrings from the original sequence. Here the entire sequence is divided into stream of rows and columns of matrices and the rank of disjoint sub matrices of the ...
	6. Discrete-Fourier-Transform (Spectral) Test: The peak heights of the sequence in the DFT (Discrete Fourier Transform) is observed. The aim is to determine the repetitive patterns in the given stream. If the number of peaks exceeds the given threshol...
	7. Non-Overlapping-Template Matching Test: The test determines the bit stream for number of occurrences in a distinct non-periodic pattern. This test searches for a m-bit pattern in a m-bit window. The window is reset if the sequence is found to the n...
	8. Overlapping-Template Matching Test: The test finds the number of occurrences of the specific target strings.
	9. Maurer’s “Universal-Statistical” Test: In this test, in a data stream it computes the number of bits between matching patterns.
	10. Linear-Complexity Test: This test determines the complexity of the generated sequence, length of a LFSR to generate the required bit-stream.
	11. Serial-Test: The frequency of overlapping of m-bit sequence in a 2m bit-stream is calculated in this test.
	12. Approximate-Entropy Test: This test measures the frequency of overlapping of an m-bit patterns across the overall sequence.
	13. Cumulative-Sums (Cusum) Test: This check determines the maximal excursion from a random walk from 0 using the values [-1, +1].
	14. Random-Excursions Test: This test calculates the number of cycles in a cumulative sum random walk of K visits. The cumulative sum random walk is obtained from the sequence [0, 1] if a “0” is traverse then [-1] and if a 1 is traversed it [+1]. Thus...
	15. Random-Excursions-Variant Test: This test computes the number of occurrences of the particular state in a cumulative sum random walk and checks the deviations from number of occurrences to different states in a random walk. It uses a series of 18 ...
	Table 1 shows the results of the P value for the NIST randomness tests and it is found that the P-values obtained are greater than 0.01 hence the generated bits are random in nature.
	3.2 FPGA Implementation

	The proposed LFSR based RNG is implemented in ARTIX-7, Nexys-4 DDR FPGA. The optimized structure of the proposed LFSR based RNG results in lesser area and power.
	The proposed key generation scheme blocks have been modelled using Verilog HDL, Xilinx Vivado is used to obtain the simulation and synthesis and verified on the Nexys 4 Artix-7 FPGA and Oasys-RTL Tool (45-nm technology). The RTL Schematic is shown in ...
	Fig. 2 shows the RTL schematic of LFSR Key generation scheme implemented in TEA/XTEA algorithm.
	Fig. 3 shows the RTL Schematic of the Key generation scheme used in SIMON Cipher.
	Table 1. NIST test results of proposed Key generation scheme
	Table 2. FPGA implementation of key generation schemes
	Fig. 2. RTL Schematic of Linear feedback shift register
	Fig. 3. RTL Schematic of SIMON Key generation scheme
	Fig. 4. RTL schematic of the key generation for proposed RNG-LFSR
	Fig. 5 shows the comparison chart. It is seen that when implemented in Xilinx Vivado the LUT and slices are lesser than SIMON key generation scheme while its implementation in Oasys tool has greater area and power than the state of the art implementat...
	The comparative analysis in terms of AREA (LUT + IOBs), Bit-rate for the implemented ciphers with the state of the art implementations is shown in Table 3.
	Fig. 6 shows the comparison of proposed key generation schemes with the state of the art implementations. It can be seen that the proposed RNG using LFSR encryption has better results.
	Fig. 5. Comparison of key generation schemes
	Table 3. Comparative analysis of the proposed key generation scheme
	Fig. 6. Comparison of key generation scheme with the proposed key generation scheme
	4. CONCLUSION

	In this paper a novel RNG algorithm using LFSR and Scrambling Algorithm is proposed. The random numbers obtained can be used as round keys of an encryption process in a cryptographic algorithm especially in lightweight cryptographic platforms. The sch...
	Acknowledgment

	The authors would like to thank the department of Computer Science and Engineering, N M A M Institute of Technology Karkala and Visvesvaraya Technological university (VTU-RRC), Belagavi for the support for carrying out the research work.
	REFERENCES

	Afzal, S., Waqas, U., Mubeen, M.A., Yousaf, M. 2015. Statistical analysis of key schedule algorithms of different block ciphers, Science International, 27.
	Amiruddin, A., Ratna, A.A.P., Sari, R. 2019. Construction and analysis of key generation algorithms based on modified Fibonacci and scrambling factors for privacy preservation. International Journal of Network Security, 21, 250–258.
	Avanzi, R. 2016. A salad of block ciphers-the state of the art in block ciphers and their analysis (http://eprint.iacr.org/2016/1171.pdf, 2016).
	Bakiri, M., Guyeux, C., Couchot, J.F., Oudjida, A.K. 2018. Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses. Computer Science Review, Elsevier, 27, 135-153. hal-02182827, 4, 5–13.
	Barreto, P., Rijmen, V. 2000. The khazad legacy-level block cipher, Primitive submitted to NESSIE, 97.
	Biryukov, A., Nikoli´c, I. 2011. Search for related-key differential characteristics in DES-like ciphers. In Fast Software Encryption, 6733, 18–34.
	Blumenthal, U., Bellovin, S.M. 1996. A better key schedule for DES-like ciphers, in Proceedings of the Pragocrypt, Prague, Czech Republic.
	Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C. 2007. PRESENT: an ultra-lightweight block cipher, in Cryptographic Hardware and Embedded Systems—CHES 2007, 450–466, Springer, Berlin, Heidel...
	Choi, P., Lee, M.‐K., Kim, D.K. 2017. Fast compact true random number generator based on multiple sampling. Electronics Letters, 53, 841–843.
	Cusick, T.W., Stanica, P. 2017. Chapter 2 - Fourier analysis of Boolean functions, editor(s): Thomas W. Cusick, Pantelimon Stanica, cryptographic Boolean functions and applications (Second Edition), Academic Press, 7–29, ISBN 9780128111291, https://do...
	Daemen, J. 1995. Cipher and hash function design strategies based on linear and differential cryptanalysis, Ph.D. dissertation, Doctoral Dissertation, KU Leuven.
	Daemen, J., Rene, G., Joos, V. 1993. Weak keys for IDEA, Annual International Cryptology Conference, 224–231, Springer, Berlin, Heidelberg.
	Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. 2011. The LED block cipher. In CHES 2011, 6917, 326–341.
	Gupta, R., Pandey, A., Baghel, R.K. 2019. FPGA implementation of chaos‐based high‐speed true random number generator. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 32, e2604. https://doi.org/10.1002/jnm.2604
	Harmouch, Y., El Kouch, R. 2019. The benefit of using chaos in key schedule algorithm, Journal of Information Security and Applications, 45, 143–155.
	Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S. 2006. HIGHT: A new block cipher suitable for low-resource device. In CHES, 4249, 46–59. Springer.
	Jaya Sudha, K., Jaya Rani, G., Mirza Shafi Sahahsavar, 2015. Generation of uniform random numbers using look up table as shift register, International Journal of Science, Engineering and Technology Research (IJSETR), 4.
	Justin, R., Mathew, B.K., Abe, S. 2016. FPGA implementation of high quality random number generator using LUT based shift registers, Procedia Technology, 24, 1155–1162, ISSN 2212-0173. https://doi.org/10.1016/j. protcy.2016.05.069.
	Kim, C.H. 2011. Improved diﬀerential fault analysis on AES key schedule, IEEE Transactions on Information Forensics and Security, 7, 41–50.
	Knudsen, L., Leander, G., Poschmann, A., Matthew, R.J.B. 2010. PRINTcipher: A block cipher for IC-printing. In CHES 2010, 6225, 16–32.
	Knudsen, L.R., Mathiassen, J.E. 2004. On the role of key schedules in attacks on iterated ciphers, in European Symposium on Research in Computer Security, 322–334, Springer, Berlin, Heidelberg.
	Kumar, V.G.K., Rai, C.S. 2020. FPGA implementation of simple encryption scheme for resource-constrained devices, International Journal of Advanced Trends in Computer Science and Engineering, 9. https://doi.org/10.30534/ ijatcse/2020/213942020.
	Kumar, V.G.K., Rai, C.S. 2021. Efficient implementation of cryptographic arithmetic primitives using reversible logic and Vedic mathematics. Journal of The Institution of Engineers (India): Series B 102, 59–74. https://doi.org/10.1007/s40031-020-00518-w.
	Matsumoto, M., Kurita, Y. 1992. Twisted GFSR generators. ACM Transactions on Modeling and Computer Simulation, 2, 179–194. DOI: https://doi.org/10.1145/ 146382.146383.
	May, L., Henricksen, M., Millan, W., Carter, G., Dawson, E. 2002. Strengthening the key schedule of the AES, in Information Security and Privacy, 226–240, Springer, Berlin Heidelberg.
	McKay, K.A., Bassham, L., Turan, M.S., Mouha, N. 2016. DRAFT NISTIR 8114: Report on lightweight cryptography, National Institute of Standards and Technology Internal Report 8114.
	Mitchell, R.L., Stone, C.R. 1977. Table-lookup methods for generating arbitrary random numbers, in IEEE Transactions on Computers, C-26, 1006–1008, doi: 10.1109/TC.1977.1674735.
	NIST, 2010. A statistical test suite for random and pseudorandom number generators for cryptographic applications. http://csrc.nist.gov/publications/nistpubs/ 800-22- rev1a/SP800- 22rev1a.pdf.
	Paje, R.E.J., Sison, A.M., Medina, R.P. 2019. Multidimensional key RC6 algorithm, in Proceedings of the 3rd International Conference on Cryptography, Security and Privacy—ICCSP’19, 33–38, Kuala Lumpur, Malaysia.
	Seok, B., Lee, C. 2019. Fast implementations of ARX-based lightweight block ciphers (SPARX, CHAM) on 32-bit processor. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719874180.
	Simion, E. 2015. The relevance of statistical tests in cryptography, IEEE Security & Privacy, 13, 66–70.
	Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E. 2013. TWINE: A lightweight block cipher for multiple platforms. In Selected Areas in Cryptography, 7707, 339–354.
	Sys, M., Klinec, D., Kubıcek, K., Svenda, P. 2017. BoolTest: the fast randomness testing strategy based on boolean functions with application to DES, 3-DES, MD5, MD6, and SHA-256, in International Conference on E-Business and Telecommunications, 123–1...
	Tezuka, S. 1995. Linear congruential generators. In: Uniform Random Numbers. The Springer International Series in Engineering and Computer Science (Discrete Event Dynamic Systems), 315. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2317-8_3.
	Thomas, D.B., Luk, W. 2013. The LUT-SR family of uniform random number generators for FPGA architectures, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21, 761–770.
	Ukrop, M. 2016. Randomness analysis in authenticated encryption systems, Ph.D. thesis, Masarykovauniverzita, Fakultainformatiky, Brno, Czechia.
	Usman, M., Ahmed, I., Aslam, M.I., Khan, S., Shah, U.A. 2017. SIT: A lightweight encryption algorithm for secure internet of things, International Journal of Advanced Computer Science and Applications, 8.
	Wetzels, J., Bokslag, W. 2015. Simple SIMON: FPGA implementations of the SIMON 64/128 block cipher. Cryptography Engineering Kerckhoffs Institute. 1, 1–20.
	Wu, W., Zhang, L. 2011. LBlock: A lightweight block cipher. In Applied Cryptography and Network Security, 6715, 327–344.
	Wu, X., Li, S. 2017. A new digital true random number generator based on delay chain feedback loop, IEEE conference 978‐1‐4673‐6853‐7/17/$31.00

