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ABSTRACT 

A robust power supply system with high availability and acceptable cost/benefit is 
essential for many service systems, such as communication networks and product 
manufacturing processes. This investigation is concerned with the evaluation of the cost-
benefit of a standby retrial power supply system incorporating standby switching failure 
and general repair times, which is the first work on the comparative analysis of retrial 
availability systems incorporating switching failure and general repair times. Four 
different standby power supply retrial configurations are included and each configuration 
consists of a different number of primary and standby generators. The investigated 
system assumes that the time-to-failure and the time-to-repair of the primary and standby 
generators obey the exponential and general distributions, respectively. We also take that 
the switching over standbys may be failed into account. By using the supplementary 
variable technique, the explicit expressions of the steady-state availability for each 
configuration are derived. A comparative analysis of the availability and the cost-benefit 
ratio among four retrial systems is presented. We also rank the configurations based on 
the steady-state availability and cost-benefit ratio for two repair time distributions, 
Weibull and lognormal. The calculated numerical results can provide managers with 
decision reference for stable power supply system and cost reduction. 

Keywords: Retrial queue, Availability, Switching failure, Cost-benefit, Supplementary 
variable. 

1. INTRODUCTION

The high-tech fabrication plants (called fabs) play an important role in modern
industries, such as packaging and testing, IC design, and wafer foundry. For Fabs, stable 
power supply system is essential for maintaining his competition. By analysing the data 
collected from Hsinchu’s semiconductor fabs, Hu and Chuah (2003) indicted that the 
average power consumption of a fab was 2.18 kW/m2. However, the power generator 
may malfunction and power outages are not only causing significant financial losses but 
also interrupting the production. For ensuring the power supply stability for a fab, the 
power system has to consist of primary generators conveyed from both the local power 
company and the backup generators. Notice that the fabs have to build a monitoring 
system to monitor the process of switching power sources. In fact, the switching from 
the standby generator to primary generator may fail. On the other side, retrial is common 
phenomenon in various applications. In a retrial repairing system, an arriving failed 
component finding that there is no available repairing server would enter the retrial orbit 
and attempts to obtain his repairing service after a random time. This paper uses a retrial 
system with standby switching failure to model the power supply system for a fab. We 
assume that the area and the power demand of a fab are 12000 m2 and 24MW, 
respectively. Four different retrial configurations are included and each configuration 
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consists of different number of primary and standby 
generators.  

The existing research works on the retrial systems, such 
as Yang and Templeton (1987); Falin (1990); Falin and 
Templeton (1997); Phung-Duc (2019); Artalejo (1990a, 
1990b); Artalejo and Gomez-Corral (2008), have reported 
the most comprehensive concepts and reviews. Wang et al. 
(2001) studied a retrial queue with server breakdowns and 
repairs, and discussed the reliability issue. They obtained 
the explicit expressions of availability, reliability function 
of the server, and failure frequency. Wang (2006) studied an 
M/G/1 retrial queues with general retrial times and server 
breakdowns. For an M/G/1 retrial system incorporating 
warm standby components and a repairable server, Ke et al. 
(2013) investigated the availability of steady-state and 
developed an efficient algorithm to compute the steady-state 
availability. For a retrial and repairable multi-component 
system incorporating mixed standby components, Kuo et al. 
(2014) studied the reliability-based measures and performed 
a sensitivity analysis on the MTTF and the availability.  

Most articles on repairable standbys systems have 
assumed that the switching from the standby generator to 
primary generator will not fail. In fact, the process of 
switching over standbys may not be perfect. In a fuzzy 
environment, Huang et al. (2006) considered a queueing 
system subject to switching failure and server breakdown. 
By using a bootstrap method, Liu et al. (2011) examined the 
statistical inferences of a repairable system with standby 
switching failure. Hsu et al. (2014) explored an M/M/R 
MRP subject to switching failure and reboot delay. By 
applying the supplementary variable technique, Ke et al. 
(2016) studied an M/G/1 MRP subject to standbys switching 
failure. Lee (2016) also applied the supplementary variable 
technique to determine availability for a redundancy model 
with switching failure and interrupted repairs. Ke et al. 
(2018) generalized the model proposed by Ke et al. (2016) 
through the inclusion of an unreliable repairman and 
assumed that both the recovery time and the repair time 
follow general distributions.  

These literatures pointed out that retrial behavior and 
switching failure are general situations happened in 
common repairable availability systems. Obviously, a 
model with general repair times is more generalized and 
extensive for availability evaluation applications. To the 
best of our knowledge, there is no works on the standby 
retrial system incorporating standby switching failure and 
general repair times. The remainder of this paper is 
structured as below. Section 2 describes the standbys retrial 
system incorporating standbys switching failure and general 
repair times. Section 3 introduces four different standby 
retrial configurations. For each configuration, we derive the 
explicit expressions for the availability. In section 4, by 
taking repair time distributions, Weibull and lognormal, into 

account, we compare four configurations for the availability 
according to the numerical values given to the system 
parameters. Section 5 summarizes the works of this article. 
Some derivations are presented in Appendices. 

2. SYSTEM DESCRIPTION

For the convenience of analysis, we consider that a
system requires 24WM power and assume that the power 
generating capacity of generator is available in units of 
24WM, 12WM and 8WM. Before putting standby 
generators into full operation, they are assumed to be 
allowed to fail while inactive. Moreover, to identify whether 
standby generators fail or not and monitor the power 
switching process, they are continuously monitored by 
administrating device. Each primary generator malfunctions 
independently of the state of the others and obeys an 
exponential time-to-failure distribution with rate λ. Once a 
primary generator malfunctions, it is immediately replaced 
by a standby generator which is any available. During the 
switching process, there is a significant probability q of 
failure. The available standby generator malfunctions 
independently of the state of the others and follows an 
exponential time-to-failure distribution with rate α ( 0 <
α < λ ). In addition, the failure characteristics of standby 
generator are those of a primary-generator as a standby 
generator successfully switches into a primary-generator 
state. In the repair facility, one server is responsible for 
repairing failed generators and there is no waiting space in 
front of the server. Therefore, when a failed generator 
observing the repair server is busy, it will be delivered to the 
orbit and retry to get his service after waiting a random time. 
The times to retrial are exponentially distributed with rate γ. 
If the server is free at the end of the retrial queue waiting 
time, the failed generator obtains services immediately; 
otherwise, it will be sent back to the retrial queue. The times 
to repair of the generators are independent and identically 
distributed random variables which have a distribution 
𝑅𝑅(𝑢𝑢) (𝑢𝑢 ≥ 0) , a density function 𝑟𝑟(𝑢𝑢) (𝑢𝑢 ≥ 0)   and a 
mean repair time 𝑟𝑟1. Suppose that the system fails when the 
remaining power generating capacity is less than 24WM. 

Four different standby retrial configurations are 
considered as below. Configuration 1 includes one 24WM 
primary generator and one 24WM standby generator; 
configuration 2 includes of two 12WM primary generators 
and one 12WM standby generator; configuration 3 is 
composed of two 12WM primary generator and two 12WM 
standby generator; configuration 4 contains three 8WM 
primary generators and two 8WM standby generators. For 
ease of reference, the used notations and probabilities are 
listed as follows. 
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λ Failure rate of primary generators 
α Failure rate of standby generators 
q Unsuccessful switching probability 
γ Retrial rate of generators in orbit 

𝑅𝑅(𝑢𝑢) Distribution function of the repair time 
𝑟𝑟(𝑢𝑢) Probability density function of the repair time 
𝑟𝑟1 Mean repair time 

𝑅𝑅∗(𝑢𝑢) Laplace-Stieltjes transform of 𝑅𝑅(𝑢𝑢) 
𝑃𝑃0,𝑛𝑛(𝑡𝑡) Probability of n generators in orbit at time t when the server is free 
𝑃𝑃1,𝑛𝑛(𝑡𝑡) Probability of n generators in orbit at time t when the server is busy 
𝑃𝑃0,𝑛𝑛 Steady-state probability of n generators in orbit when the server is free 
𝑃𝑃1,𝑛𝑛 Steady-state probability of n generators in orbit when the server is busy 

𝑃𝑃1,𝑛𝑛
∗ (𝑠𝑠) Laplace-Stieltjes transform of 𝑃𝑃1,𝑛𝑛(𝑡𝑡) 
𝐴𝐴𝐴𝐴 Steady-state availability 

3. PROBLEM SOLUTIONS

For each configuration, we first draw the transition-rate
diagram. Based on the diagram, we derive the differential 
equations of each state at time t. Then, we take the Laplace 
transform on both sides of the differential equations. Finally, 
by working on these Laplace transform equations, we can 
obtain the steady-state availability. In order to govern the 
general repair times, we adopt the following supplementary 
variables at time t: 
𝑈𝑈(𝑡𝑡) ≡ remaining repair time for the generator, 
𝑁𝑁(𝑡𝑡) ≡ number of failed generators in orbit, 
𝐼𝐼(𝑡𝑡) ≡ the states of the server. 
There are two possible states for the server: 𝐼𝐼(𝑡𝑡) = 0 

represents the server is free, 𝐼𝐼(𝑡𝑡) = 1 denotes the server is 
busy. 

Let 
𝑃𝑃𝑖𝑖,𝑛𝑛(𝑢𝑢, 𝑡𝑡)𝑑𝑑𝑢𝑢 = 𝑃𝑃𝑟𝑟{𝑁𝑁(𝑡𝑡) = 𝑛𝑛, 𝐼𝐼(𝑡𝑡) = 𝑖𝑖,𝑢𝑢 < 𝑈𝑈(𝑡𝑡) ≤ 𝑢𝑢 +
𝑑𝑑𝑢𝑢},𝑢𝑢 ≥ 0, 
𝑃𝑃𝑖𝑖,𝑛𝑛(𝑡𝑡) = ∫ 𝑃𝑃𝑖𝑖,𝑛𝑛(𝑢𝑢, 𝑡𝑡)𝑑𝑑𝑢𝑢∞

0 , 𝑖𝑖 = 0, 1. 
In steady-state, we define 

( ), ,limi n i nt
P P t

→∞
= , i = 0, 1, 

( ) ( ), ,lim ,i n i nt
P u P u t

→∞
= , i = 0, 1. 

Fig. 1. State-transition-rate diagram of configuration 1 

3.1 Configuration 1 
Fig. 1 shows the state-transition-rate diagram of 

configuration 1. From Fig. 1, we have the following steady-
state Equations (1)-(4): 

( ) ( )0,0 1,00 0P Pλ α= − + +  (1) 

( ) ( )0,1 1,10 0P Pλ γ= − + +  (2) 

( ) ( )( ) ( ) ( ) ( )1,0 0,0 1,0 0,11d P u q r u P P u r u P
du

λ α λ γ− = − + − +  

(3) 

( ) ( ) ( ) ( )1,1 0,0 1,0 0,1
d P u qr u P P u r u P
du

λ λ λ− = + +   (4)

where we define 𝑃𝑃0,0(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,0  and 𝑃𝑃0,1(𝑢𝑢) =
𝑟𝑟(𝑢𝑢)𝑃𝑃0,1. For detailed derivation that led to the steady-state 
availability, please refer to Appendix A. The steady-state 
availability can be expressed as Equation 5. 

Fig. 2. State-transition-rate diagram of configuration 2 

λ 

λb(u) 

γqλ

b(u) λ(1-q)+α 

0, 0 0, 1 

1, 0 1, 1 

2λ 

2λb(u) 

γ2qλ

b(u) 2λ(1-q)+α 

0, 0 0, 1 

1, 0 1, 1 
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( )( ) ( )
( )

*

1 1,1 0,0 0,1 1,0 0,0*

1
1

RqAv P P P P P
R

λ α λ γ λλ γ
γ λγ λ

  + + −+ = − = + + = +  
   

(5) 

3.2 Configuration 2 
For configuration 2, the state-transition-rate diagram is 

depicted in Fig. 2. Hence, for configuration 2, the following 
steady-state Equations (6)-(9) can be constructed: 

( ) ( )0,0 1,00 2 0λ α= − + +P P  (6) 

( ) ( )0,1 1,10 2 0P Pλ γ= − + +  (7) 

( ) ( )( ) ( ) ( ) ( )1,0 0,0 1,0 0,12 1 2d P u q r u P P u r u P
du

λ α λ γ− = − + − +  

(8) 

( ) ( ) ( ) ( )1,1 0,0 1,0 0,12 2 2d P u qr u P P u r u P
du

λ λ λ− = + +  

 (9) 

where we defined 𝑃𝑃0,0(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,0  and 𝑃𝑃0,1(𝑢𝑢) =
𝑟𝑟(𝑢𝑢)𝑃𝑃0,1. Using a similar argument, the explicit expression 
for the steady-state availability can be obtained as Equation 
(10). Please see Appendix B for detailed derivation. 

3.3 Configuration 3 
Fig. 3 presents the state-transition-rate diagram of 

configuration 3. Hence, for configuration 3, the steady-state 
Equations (11)-(16) are as below: 

( ) ( )0,0 1,00 2 2 0λ α= − + +P P (11) 

( ) ( )0,1 1,10 2 0λ α γ= − + + +P P (12) 

( ) ( )0,2 1,20 2 2 0λ γ= − + +P P (13) 

Fig. 3. State-transition-rate diagram of configuration 3 

( )( ) ( )
( )

*

2 1,1 0,0 0,1 1,0 0,0*

2 2 1 221
2 2

RqAv P P P P P
R

λ α λ γ λλ γ
γ λγ λ

 + + −+
= − = + + = +  

 
(10) 

( ) ( )( ) ( ) ( ) ( ) ( )1,0 0,0 1,0 0,12 1 2 2d P u q r u P P u r u P
du

λ α λ α γ− = − + − + + (14) 

( ) ( ) ( ) ( ) ( )( ) ( )1,1 1,1 0,0 1,02 2 1 2 1d P u P u q q r u P q P u
du

λ λ λ α− = − + − + − +

( )( ) ( ) ( )0,1 0,22 1 2q r u P r u Pλ α γ+ − + +  (15) 

( ) ( ) ( ) ( ) ( ) ( )2
1,2 1,0 1,1 0,0 0,1 0,22 2 2 2 2d P u qP u P u q r u P qr u P r u P

du
λ λ λ λ λ− = + + + +   (16) 

2λq

b(u) 

2γ 
2λq2 2λq

2λ 

2λ2λ(1-q)+α 

2λ(1-q)+α

b(u) 

γ

2λq(1-q)

b(u) 

2λ(1-q)+2α 

0, 0 0, 1 

1, 0 1, 1 

0, 2 

1, 2 
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( )( ) ( )

( )( )( ) ( )
( )

( ) ( )( ) ( )
( )

( )( ) ( )
( )

( )( )
( )

3 0,0 0,1 0,2 1,0 1,1

2

*

*

*

*

*

2 *

*

2 2 2 2 1
2 2

2 1 2 2 1 21 1
2 2 2

2 2 2 1 1 21 1
2 2 2

2 2 2 1 2
2 2

2 2 2 1 2
2

Av P P P P P

q q q q

q R
R

q R
R

q R
R

R

λ γ λ γ λ
γ γ

λ α λ α γ λ
γ λ γ λ

λ α λ α λ
α λ γ λ

λ α λ γ λ α
γ λ α

λ α λ α γ λ
γ λ α

= + + + +

+ + −
= −


− + + +  − 
− +   

   
+ − +  − 

+ +   
   

 + + − +
+  + 

+ + + −
+

+
( )

( )
( ) ( )( )( )

( )
( )

( )
( )( ) ( )

( ) ( )

*

*

*

*

0,0* *

2

2 2 2 1 2 2 1 2
2 2 2

2 2 2 1 21 1 1
2 2 2 2

R

q R
R

R
P

R R

α
λ α

λ α λ α λ α γ λ α
αγ λ α λ α

λ α λ α γ λ
γ λ γ λ λ α

 +
 + 

+ − + + +  − +
−  + + 

 + + + −  + +    +   

(17) 

where we defined 𝑃𝑃0,0(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,0, 𝑃𝑃0,1(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,1 
and 𝑃𝑃0,2(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,2. Applying a similar argument, we 
can get the steady-state availability as Equation (17). The 
detailed derivation is given in Appendix C. 

3.4 Configuration 4 
For configuration 4, the diagram of state-transition-rate is 

shown in Fig. 4. Hence, based on the Fig. 4, the steady-state 
Equations (18)-(23) for configuration 4 are listed as below: 

( ) ( )0,0 1,00 3 2 0λ α= − + +P P (18) 

( ) ( )0,1 1,10 3 0λ α γ= − + + +P P (19) 

( ) ( )0,2 1,20 3 2 0λ γ= − + +P P (20) 

Fig. 4. State-transition-rate diagram of the configuration 4 

3λq
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b(u) 

3λ(1-q)+2α 

0, 0 0, 1 

1, 0 1, 1 
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( ) ( )( ) ( ) ( ) ( ) ( )1,0 0,0 1,0 0,13 1 2 3d P u q r u P P u r u P
du

λ α λ α γ− = − + − + + (21) 

( ) ( )( ) ( ) ( ) ( ) ( )1,1 1,0 1,1 0,03 1 3 3 1d P u q P u P u q q r u P
du

λ α λ λ− = − + − + −

( )( ) ( ) ( )0,1 0,23 1 2q r u P r u Pλ α γ+ − + +     (22) 

( ) ( ) ( ) ( ) ( ) ( )2
1,2 1,0 1,1 0,0 0,1 0,23 3 3 3 3P u qP u P u q r u P qr u P r u P

u
λ λ λ λ λ∂

− = + + + +
∂

     (23) 

4 0,0 0,1 0,2 1,0 1,1Av P P P P P= + + + +

( )( ) ( )

( )( )( ) ( )
( )

( )( )( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

( )

*

*

*

*

*

*

*

*

1 1 13 3 2 3 1
2 2

1 31 1 13 1 2 3
3 2 3

1 31 1 13 1 3 2
3 2 3

1 31 13 2 3
2 3

1 31 13 2 3
3 3

3 2

q q q q

R
q

R

R
q

R

R
q

R

R
R

λ γ λ γ λ
γ γ γ

λ
λ α λ α γ

λ γ γ λ

λ
λ α λ α

λ γ α λ

λ α
λ α λ γ

γ γ λ α

λ α
λ α λ α γ

λ α γ λ α

λ


= + + − −


 − 
− − + + + +   

   
 − 

+ − + + +   
   
 − +

+ + +  + 
 − +

+ + + +  + + 

− +( ) ( )( )( ) ( )
( )

( )

( )( ) ( )
( ) ( )

*

*

*

0,0* *

1 31 1 13 1 3 2
3 2 3

1 31 1 13 2 3
3 2 3 3

R
q

R

R
P

R R

λ α
α λ α λ α γ

λ α γ α λ α

λ
λ α λ α γ

λ γ γ λ λ α

 − +
− + + +  + + 

 −  + + + + +    +   
   (24) 

where we defined 𝑃𝑃0,0(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,0, 𝑃𝑃0,1(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,1 
and 𝑃𝑃0,2(𝑢𝑢) = 𝑟𝑟(𝑢𝑢)𝑃𝑃0,2 . Using a similar argument, the 
steady-state availability can be obtained as Equation (24). 
The detailed derivation is given in Appendix D. 

4. COMPARISON OF THE FOUR
CONFIGURATIONS

In this section, we compare the steady-state availability
among four configurations with two different repair time 
distributions, Weibull and lognormal. We set the parameters 
𝑎𝑎 = √2𝜇𝜇 2⁄  , 𝑏𝑏 = 2  for Weibull distribution and 𝑚𝑚 =
−ln(𝜇𝜇) − 1

2
, 𝜎𝜎 = 1 for lognormal distribution, where μ is 

the repair rate. 

4.1 Comparison of All Configurations Based on their 
Steady-State Availability 

We provide the following cases to investigate the effects 
of various system parameters on the steady-state availability 
of four configurations. 

Case 1. Given 𝛼𝛼 = 0.2𝜆𝜆 , 𝜇𝜇 = 1 , 𝑞𝑞 = 0.1 , 𝛾𝛾 = 0.5 , 
varied the values of 𝜆𝜆 from 0.001 to 0.4. 

Case 2. Given 𝜆𝜆 = 0.1 , 𝛼𝛼 = 0.2𝜆𝜆 , 𝑞𝑞 = 0.2 , 𝛾𝛾 = 0.5 , 
varied the values of 𝜇𝜇 from 0.5 to 2. 

Case 3. Given 𝜆𝜆 = 0.1 , 𝛼𝛼 = 0.2𝜆𝜆 , 𝜇𝜇 = 0.9 , 𝛾𝛾 = 0.5 , 
varied the values of 𝑞𝑞 from 0.1 to 0.9. 

Case 4. Given 𝜆𝜆 = 0.5 , 𝛼𝛼 = 0.2𝜆𝜆 , 𝜇𝜇 = 1 , 𝑞𝑞 = 0.1 , 
varied the values of 𝛾𝛾 from 0.1 to 2. 

Tables 1-4 provide the numerical results of the steady-
state availability for each configuration for cases 1-4, 
respectively. From these tables, based on the steady-state 
availability comparisons, one can find that configuration 1. 
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Table 1. Comparison of the configurations 1-4 for 𝐴𝐴𝐴𝐴 (𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝑞𝑞 = 0.1, 𝛾𝛾 = 0.5) 
Scope of 𝜆𝜆 Results 

Weibull repair time 
0.001 < 𝜆𝜆 < 0.0255 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 

0.0255 < 𝜆𝜆 < 0.4 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 
Lognormal repair time 

0.001 < 𝜆𝜆 < 0.0103 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 > 𝐴𝐴𝐴𝐴2 
0.0103 < 𝜆𝜆 < 0.0367 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 

0.0367 < 𝜆𝜆 < 0.4 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 

Table 2. Comparison of the configurations 1-4 for 𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.1, 𝛼𝛼 = 0.2𝜆𝜆, 𝑞𝑞 = 0.2, 𝛾𝛾 = 0.5) 
Scope of 𝜇𝜇 Results 

Weibull repair time 
0.5 < 𝜇𝜇 < 1.783 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 
1.783 < 𝜇𝜇 < 2 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 

Lognormal repair time 
0.5 < 𝜇𝜇 < 1.383 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 
1.383 < 𝛾𝛾 < 2 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 

Table 3. Comparison of the configurations 1-4 for 𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.1, 𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝛾𝛾 = 0.5) 
Scope of 𝑞𝑞 Results 

Weibull repair time 
0.1 < 𝑞𝑞 < 0.402 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 
0.402 < 𝑞𝑞 < 0.9 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 

Lognormal repair time 
0.1 < 𝑞𝑞 < 0.317 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 

0.317 < 𝑞𝑞 < 0.864 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 
0.864 < 𝑞𝑞 < 0.9 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 

Table 4. Comparison of the configurations 1-4 for 𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.5, 𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝑞𝑞 = 0.1) 
Scope of 𝛾𝛾 Results 

Weibull repair time 
0.1 < 𝛾𝛾 < 0.246 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 
0.246 < 𝛾𝛾 < 2 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 

Lognormal repair time 
0.1 < 𝛾𝛾 < 0.217 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴4 
0.217 < 𝛾𝛾 < 2 𝐴𝐴𝐴𝐴1 > 𝐴𝐴𝐴𝐴2 > 𝐴𝐴𝐴𝐴3 > 𝐴𝐴𝐴𝐴4 

may be the best configuration. However, because each 
configuration consumes different costs during the 
construction process, as a standard for comparing these four 
configurations, the 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡/𝐴𝐴𝐴𝐴 rate may be fairer than 𝐴𝐴𝐴𝐴. 

4.2 Comparison of All Configurations Based on their 
Cost/Benefit Ratios 

We consider that the different configurations may have 
different costs. When different configurations are fairly 
compared, these costs should be considered. Table 5 lists the 
size-proportional costs for the primary generators and 
standby generators. From this table, the cost (𝐶𝐶𝑖𝑖) for each 
configuration 𝑖𝑖 (𝑖𝑖 = 1, 2, 3, 4)  can be calculated and are 
given in Table 6. Next, we compare 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡/𝐴𝐴𝐴𝐴  for each 
configuration.by using the four aforementioned cases. 
Tables 7-10 depicts the results, respectively. We find from 

Tables 7 and 8 that the optimal configuration based on 
𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡/𝐴𝐴𝐴𝐴 value depends on the value of λ and μ. We observe 
that configuration 1 is the optimal configuration as 0.001 <
𝜆𝜆 < 0.0085; configuration 3 is the optimal configuration as 
0.0087 < 𝜆𝜆 < 0.1113  or 1.683 < 𝜇𝜇 < 2 ; but when 
0.1113 < 𝜆𝜆 < 0.4 or 0.5 < 𝜇𝜇 < 1.683, configuration 4 is 
the optimal configuration. In the case of the repair time 
following the lognormal distribution, we find that 
configuration 1 is the optimal configuration as 0.001 <
𝜆𝜆 < 0.0085;  configuration 3 is the optimal configuration 
when 0.0087 < 𝜆𝜆 < 0.2851 or 1.769 < 𝜇𝜇 < 2 ; but the 
optimal configuration 4 when 0.2851 < 𝜆𝜆 <
0.4 or 0.5 < 𝜇𝜇 < 1.769. We can easily see from Table 9 
that the optimal configuration based on 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡/𝐴𝐴𝐴𝐴 value is 
configuration 3, and from Table 10, the optimal 
configuration is configuration 4. 
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Table 5. The costs for the primary generators and standby generators 
Primary generators Cost (in $) Standby generators Cost (in $) 

24MW 6 × 106 24MW 5.4 × 106 
12MW 3 × 106 12MW 2.7 × 106 
8MW 2 × 106 8MW 1.8 × 106 

Table 6. The costs for each configuration 
Configuration Cost (in $) 

1 11.4 × 106 
2 8.7 × 106 
3 11.4 × 106 
4 9.6 × 106 

Table 7. Comparison of the configurations 1-4 for cost/𝐴𝐴𝐴𝐴 (𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝑞𝑞 = 0.1, 𝛾𝛾 = 0.5) 
Scope of 𝜆𝜆 Results 

Weibull repair time 
0.001 < 𝜆𝜆 < 0.0085 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

0.0085 < 𝜆𝜆 < 0.1113 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
0.1113 < 𝜆𝜆 < 0.3135 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

0.3135 < 𝜆𝜆 < 0.4 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
Lognormal repair time 

0.001 < 𝜆𝜆 < 0.0087 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
0.0087 < 𝜆𝜆 < 0.1158 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
0.1158 < 𝜆𝜆 < 0.2851 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

0.2851 < 𝜆𝜆 < 0.4 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

Table 8. Comparison of the configurations 1-4 for cost/𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.1, 𝛼𝛼 = 0.2𝜆𝜆, 𝑞𝑞 = 0.2, 𝛾𝛾 = 0.5) 
Scope of 𝜇𝜇 Results 

Weibull repair time 
0.5 < 𝜇𝜇 < 1.283 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄  

1.283 < 𝜇𝜇 < 1.683 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
1.683 < 𝜇𝜇 < 2 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

Lognormal repair time 
0.5 < 𝜇𝜇 < 1.257 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄  

1.257 < 𝜇𝜇 < 1.769 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  
1.769 < 𝜇𝜇 < 2 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

Table 9. Comparison of the configurations 1-4 for cost/𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.1, 𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝛾𝛾 = 0.5) 
Scope of 𝑞𝑞 Results 

Weibull repair time 
0.1 < 𝑞𝑞 < 0.9 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

Lognormal repair time 
0.1 < 𝑞𝑞 < 0.9 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄ > 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄  

Table 10. Comparison of the configurations 1-4 for cost/𝐴𝐴𝐴𝐴 (𝜆𝜆 = 0.5, 𝛼𝛼 = 0.2𝜆𝜆, 𝜇𝜇 = 1, 𝑞𝑞 = 0.1) 
Scope of 𝛾𝛾 Results 

Weibull repair time 
0.1 < 𝛾𝛾 < 2 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄  

Lognormal repair time 
0.1 < 𝛾𝛾 < 2 𝐶𝐶4 𝐴𝐴𝐴𝐴4⁄ > 𝐶𝐶3 𝐴𝐴𝐴𝐴3⁄ > 𝐶𝐶2 𝐴𝐴𝐴𝐴2⁄ > 𝐶𝐶1 𝐴𝐴𝐴𝐴1⁄  
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5. CONCLUSIONS

This research has studied the evaluation of cost-benefit of
four standby retrial power supply configurations with 
standby switching failure and general repair times, which is 
the first work on the comparative investigation relative to 
retrial availability systems incorporating switching failure 
and general repair times. We utilized the supplementary 
variable method to derive the explicit expressions of the 
steady-state availability for each configuration and make the 
comparison. Finally, we ranked four configurations based 
on the steady-state availability and the cost/benefit ratio for 
two different repair time distributions, Weibull and 
lognormal. The numerical results revealed that the optimal 
configuration based on cost/benefit value depended on the 
values of λ and μ. The developed results can provide 
managers with decision reference for stable power supply 
system and cost reduction. In the future, we can lengthen 
this work to the fault of primary or standby generators may 
not be detected. The fellow researchers also can extend this 
investigation for an unreliable repair server. 
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APPENDIX 

Appendix A. Derivation of the steady-state availability for configuration 1. 
From (1) and (2), we obtain 

( ) ( )1,0 0,00P Pλ α= +
, (A.1) 

( ) ( )1,1 0,10P Pλ γ= +
. (A.2) 

Further define 

( ) ( )*

0

suR s e dR u
∞ −= ∫ , 
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( ) ( )*
, ,0

su
i n i nP s e P u du

∞ −= ∫ , 

( ) ( ), , ,0
0i n i n i nP P P u du

∞
= = ∫ , 

( ) ( ) ( )*
, , ,0

0su
i n i n i n

de P u du sP s P
du

∞ − = −∫
. 

After taking the Laplace-Stieltjes on both sides of (3) and (4), we have 

( ) ( ) ( )( ) ( ) ( ) ( )* * *
1,0 0,0 0,1 1,01 0s P s q R s P R s P Pλ λ α γ− = − + + −

, (A.3) 

( ) ( ) ( ) ( ) ( )* * * *
1,1 0,0 0,1 1,0 1,1 0sP s qR s P R s P P s Pλ λ λ− = + + −

. (A.4) 
Setting 𝑠𝑠 = 𝜆𝜆 and 𝑠𝑠 = 0 into (A.3) and using (A.1), we have 

( ) ( )
( )

*

0,1 0,0*

11 R
P q P

R
λ

λ λ α
γ λ

  − = + +  
    , (A.5) 

and 

( ) ( )
( )

*
*

1,0 1,0 0,0*

1
0

R
P P P

R
λλ α

λ λ
 −+ = =   

    . (A.6) 
Setting 𝑠𝑠 = 0 into (A.4), we have 

( )0,0 0,1 1,0 1,10 0qP P P Pλ λ λ= + + −
. (A.7) 

Differentiating (A.3) with respect to s and setting 𝑠𝑠 = 0 in the result, 
( ) ( ) ( )( )* 1

1,0 1,0 1 0,0 0,10 1P P r q P Pλ λ α γ = − − + +  , (A.8) 
where 𝑟𝑟1 = −𝑅𝑅∗(1)(0). Likewise, differentiating (A.4) with respect to s and setting 𝑠𝑠 = 0 in the result, 

( ) ( ) ( )* 1*
1,1 1,1 1 0,0 0,1 1,00P P r qP P P sλ λ λ = = + −  . (A.9) 
After doing some manipulations, we have 

( ) ( ) ( ) ( ) ( )
( )

*
1

1,1 1 0,0*

11q r R
P r P

R
λ λ γ λ γ λ

λ α λ α
γ γ λ λ

  + + −    = + + + + −    
        . (A.10) 

Substituting (A.5), (A.6) and (A.10) into the following normalizing condition 𝑃𝑃0,0 + 𝑃𝑃0,1 + 𝑃𝑃1,0 + 𝑃𝑃1,1 = 1, we obtain 

( )
( ) ( )( ) ( ) ( )( )( ) ( )

*

0,0 *
1 1 11 1 1 1

R
P

r r q q r R
γ λ

λ α λ γ γ λ λ α λ λ
=

 + + + + + − − + +  . (A.11) 
Therefore, the steady-state availability can be expressed as 

( )( ) ( )
( )

*

1 1,1 0,0 0,1 1,0 0,0*

1
1

RqAv P P P P P
R

λ α λ γ λλ γ
γ λγ λ

  + + −+ = − = + + = +  
    . (A.12) 

Appendix B. Derivation of the steady-state availability for configuration 2. 
From (6) and (7), we have 

( ) ( )1,0 0,00 2P Pλ α= +
, (B.1) 

( ) ( )1,1 0,10 2P Pλ γ= +
. (B.2) 

Taking the Laplace-Stieltjes on both sides of (8) and (9) and using (B.1) - (B.2), 

( ) ( ) ( )( ) ( ) ( ) ( )* * *
1,0 0,0 0,1 0,02 2 1 2s P s q R s P R s P Pλ λ α γ λ α− = − + + − +

, (B.3) 

( ) ( ) ( ) ( ) ( )* * * *
1,1 0,0 1,0 0,1 0,12 2 2 2sP s qR s P P s R s P Pλ λ λ λ γ− = + + − +

. (B.4) 
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Setting 𝑠𝑠 = 2𝜆𝜆 and 𝑠𝑠 = 0 into (B.3), we have 

( ) ( )
( )

*

0,1 0,0*

1 21 2 2
2

R
P q P

R
λ

λ λ α
γ λ

  − = + +  
    , (B.5) 

and 

( ) ( )
( )

*
*

1,0 1,0 0,0*

1 220
2 2

R
P P P

R
λλ α

λ λ
 −+ = =   

    , (B.6) 
Differentiating (B.3) with respect to s and setting 𝑠𝑠 = 0 in the result, 

( ) ( ) ( )( )* 1
1,0 1,0 1 0,0 0,12 0 2 1P P r q P Pλ λ α γ = − − + +  ,  (B.7) 

Likewise, differentiating (B.4) with respect to s and setting 𝑠𝑠 = 0 in the result, 

( ) ( ) ( )* 1*
1,1 1,1 1 0,0 0,1 1,00 2 2 2 0P P r qP P Pλ λ λ = = + −  . (B.8) 
Hence, we have 

( ) ( ) 1
1,1 1

2 2
2

q r
P r

λ λ γ
λ α

γ
+

= + +


( ) ( ) ( )
( )

*
1

0,0*

2 1 212
2 2

r R
P

R
λ γ λ

λ α
γ λ λ

 + −  + + −   
    . (B.9) 

To find 𝑃𝑃0,0, we substitute (B.5), (B.6) and (B.9) into the following normalizing condition 𝑃𝑃0,0+𝑃𝑃0,1 + 𝑃𝑃1,0 + 𝑃𝑃1,1 = 1 
and obtain 

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

*

0,0 *
1 1 1

2
2 1 2 1 2 2 1 2 1 2

R
P

r qr r q R
γ λ

λ α λ γ γ λ λ λ α λ
=

 + + + + + − + − +  (B.10) 
We assumed that the state (1, 1) is a system down state. For configuration 2, we have 

( )( ) ( )
( )

*

2 0,0 0,1 1,0 0,0*

2 2 1 22
2 2

RqAv P P P P
R

λ α λ γ λλ γ
γ λγ λ

 + + −+
= + + = +  

  . (B.11) 
Appendix C. Derivation of the steady-state availability for configuration 3. 

From (11)-(13), 

( ) ( )1,0 0,00 2 2P Pλ α= +
, (C.1) 

( ) ( )1,1 0,10 2P Pλ α γ= + +
, (C.2) 

( ) ( )1,2 0,20 2 2P Pλ γ= +
. (C.3) 

Using Laplace transforms as before and using (C.1)-(C.3), (14)-(16) become 

( ) ( ) ( )( ) ( ) ( ) ( )* * *
1,0 0,0 0,0 0,12 2 1 2 2 2s P s q R s P P R s Pλ α λ α λ α γ+ − = − + − + +

, (C.4) 

( ) ( ) ( ) ( ) ( )( ) ( )* * *
1,1 0,0 1,02 2 1 2 1s P s q q R s P q P sλ λ λ α− = − + − +

 
( )( ) ( ) ( ) ( )* *

0,1 0,1 0,22 1 2 2q R s P P R s Pλ α λ α γ γ+ − + − + + +
, (C.5) 

( ) ( ) ( ) ( ) ( )* * * 2 * *
1,2 1,0 1,1 0,0 0,12 2 2 2sP s qP s P s q R s P qR s Pλ λ λ λ− = + + +

( ) ( )*
0,2 0,22 2 2R s P Pλ λ γ+ − +

. (C.6) 
Setting 𝑠𝑠 = 2𝜆𝜆 + 𝛼𝛼 and 𝑠𝑠 = 0 into (C.4), we have 

( ) ( )
( )

*

0,1 0,0*

1 21 2 2 2
2

R
P q P

R
λ α

λ λ α
γ λ α

  − + = + +  +    , (C.7) 
and 
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( ) ( )
( )

*
*

1,0 1,0 0,0*

1 22 20
2 2

R
P P P

R
λ αλ α

λ α λ α
 − ++ = =   + +    . (C.8) 

Again, setting 𝑠𝑠 = 2𝜆𝜆 into (C.4), we have 

( ) ( ) ( )
( )

* *
*

1,0 0,0*

2 22 22
2

R R
P P

R
λ λ αλ αλ

α λ α
 − ++ =    +    . (C.9) 

Setting 𝑠𝑠 = 2𝜆𝜆 into (C.5) yields 

( ) ( )( ) ( ) ( )*
0,2 0,0 1,0*

1 12 1 2 1 2
2 2

P q q P q P
R

λ λ α λ
γ λ

  = − − − − +  
  

( )( ) ( ) ( )0,1 0,1*

12 1 2
2

q P P
R

λ α λ α γ
λ

  − − + + + +  
   .

It implies that 

( ) ( )( ) ( )
( )

*
2

0,2 *

1 21 1 12 2 2 2 2
2 2

R
P q q

R
λ α

λ λ γ λ α λ γ
γ γ γ λ α

  − += + + + +  +  

( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ α

λ α λ α
α λ α
 − +

− − + +  + 

( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ

λ α λ α
α λ
 −

+ − + +  
   

( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ

λ α λ α γ
γ λ
 −

− − + + +  
 

( )( ) ( )
( ) ( )

*

0,0* *

1 212 2 2
2 2

R
P

R R
λ

λ α λ α γ
γ λ λ α

 − + + + +  +   . (C.10) 
Setting 𝑠𝑠 = 0 into (C.5) yields 

( ) ( )( ) ( ) ( )
( )

*
*

1,1 1,1 1,0 0,1*

1 210 2 1 2
2 2

R
P P q P P

R
λ

λ α λ α γ
λ λ

  −= = − + + + +  
  

( )( )( ) ( ) ( )
( ) ( )

* *

0,0* *

2 212 1 2 2
2 2

R R
q P

R R
λ λ α

λ α λ α
α λ λ α

 − + − − + +  +    .
This implies that 

( )( )( ) ( )
( )

*

1,1 *

1 21 12 1 2 2
2 2 2

R
P q

R
λ α

λ α λ α
λ λ α λ α

  − += − + +  + +  

( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ α

λ α λ α
α λ α
 − +

− − + +  + 
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( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ

λ α λ α
α λ
 −

+ − + +  
   

( )( )( ) ( )
( )

*

*

1 212 1 2 2
2

R
q

R
λ

λ α λ α γ
γ λ
 −

− − + + +  
 

( )( ) ( )
( ) ( )

*

0,0* *

1 212 2 2
2 2

R
P

R R
λ

λ α λ α γ
γ λ λ α

 − + + + +  +   . (C.11) 
Differentiating (C.4) with respect to s and setting 𝑠𝑠 = 0 in the result, 

( ) ( ) ( ) ( )( )* 1
1,0 1 0,0 0,1 1,02 0 2 1 2P r q P P Pλ α λ α γ + = − − + + +  . (C.12) 

Differentiating (C.5) with respect to s and setting 𝑠𝑠 = 0, we have 
( ) ( ) ( ) ( )( )* 1

1,1 1,1 1 0,0 0,1 0,22 0 2 1 2 1 2P P r q q P q P Pλ λ λ α γ = − − + − + +   
( )( ) ( ) ( )* 1

1,02 1 0q Pλ α+ − +
, (C.13) 

Differentiating (C.6) with respect to s and setting 𝑠𝑠 = 0 in the result, 

( ) ( ) ( ) ( )*
1,2 1,2 1 0,0 0,1 0,2 1,0 1,10 2 2 2 2 2P P r P P P P Pλ α λ α γ λ γ = = + + + + + + − −  . (C.14) 
Hence, we have 

( )( ) ( ) ( )( )2
1 1

1,2 1 2

2 2 2 2 2
2

q r q r
P q r

λ α λ γ λ λ γ λ γ
λ α

γ γ
 + + + += + + +


( ) ( )( ) ( ) ( )
( )

*
1

*

2 2 2 1 2 2 1 21
2 2 2

q r R
R

λ α λ α λ γ λ
α γ λ λ

+ − +  + − 
+ −   

   
( )( )( ) ( ) ( )

( )

*
1

*

2 1 2 2 2 2 1 21
2 2 2

q r R
R

λ α λ α γ λ γ λ
γ γ λ λ

− + + +  + − 
− −   

   

( )
( )

*

*

1 22 2
2 2

R
R

λ αλ α
λ α λ α

 − ++
−  + + 

( )( ) ( )
( )

*
1

*

2 2 2 1 2
2

r R
R

λ α λ α γ λ α
γ λ α

 + + + − +
+  + 

( ) ( )( )
( )

( ) ( )
( )

*
1

*

2 2 2 1 2 2 1 21
2 2 2

q r R
R

λ α λ α λ γ λ α
α λ α γ λ α

+ − +    + − +
+ −    + +   

( )( )( ) ( )
( )

*
1

2 *

2 2 2 2 2 1 2
2 2
q r R

R
λ α λ γ λ γ λ α

γ λ α
 + + + − +

+  + 

( )( ) ( ) ( )
( ) ( )

*
1

0,0* *

2 2 2 2 2 1 21
2 2 2 2

r R
P

R R
λ α λ α γ λ γ λ

γ γ λ λ λ α

 + + + + −  + −    +     (C.15) 

Using the following normalizing condition 𝑃𝑃0,0 + 𝑃𝑃0,1 + 𝑃𝑃0,2 + 𝑃𝑃1,0 + 𝑃𝑃1,1 + 𝑃𝑃1,2 = 1  and doing some algebraic 
manipulation, we can compute 𝑃𝑃0,0. We assumed that the state (1, 2) is system down state. For configuration 3, the explicit 
expression for the steady-state availability is given by 

3 0,0 0,1 0,2 1,0 1,1Av P P P P P= + + + +
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( )( ) ( ) ( )( ) ( )
( )

*

2 2 *

2 2 2 2 1 2 2 2 1 2
2 2 2 2

q q q q q R
R

λ γ λ γ λ λ α λ γ λ α
γ γ γ λ α

  + + − + + − += − +  +  

( )( )
( )

( )
( )

*

*

2 2 2 1 2
2 2

R
R

λ α λ α γ λ α
γ λ α λ α

 + + + − +
+  + + 
( ) ( )( )( )

( )
( )

( )

*

*

2 2 2 1 2 2 1 2
2 2 2

q R
R

λ α λ α λ α γ λ α
αγ λ α λ α

+ − + + +  − +
−  + + 

( )( )( ) ( )
( )

*

*

2 1 2 2 1 21 1
2 2 2

q R
R

λ α λ α γ λ
γ λ γ λ

− + + +  − 
− +   

   
( ) ( )( ) ( )

( )

*

*

2 2 2 1 1 21 1
2 2 2

q R
R

λ α λ α λ
α λ γ λ

+ − +  − 
+ +   

   

( )( ) ( )
( ) ( )

*

0,0* *

2 2 2 1 21 1 1
2 2 2 2

R
P

R R
λ α λ α γ λ

γ λ γ λ λ α

 + + + −  + +    +    . (C.16) 
Appendix D. Derivation of the steady-state availability for configuration 4. 

From (18)-(20), we have 

( ) ( )1,0 0,00 3 2P Pλ α= +
, (D.1) 

( ) ( )1,1 0,10 3P Pλ α γ= + +
, (D.2) 

( ) ( )1,2 0,20 3 2P Pλ γ= +
. (D.3) 

Using Laplace transforms as before and using (D.1) - (D.3), (21) - (23) reduce to 

( ) ( ) ( )( ) ( ) ( ) ( )* * *
1,0 0,0 0,0 0,13 3 1 2 3 2s P s q R s P P R s Pλ α λ α λ α γ+ − = − + − + +

, (D.4) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )* * * *
1,1 1,0 0,0 0,23 3 1 3 1 2s P s q P s q q R s P R s Pλ λ α λ γ− = − + + − +

( )( ) ( ) ( )*
0,1 0,13 1 3q R s P Pλ α λ α γ+ − + − + +

, (D.5) 

( ) ( ) ( ) ( ) ( )* * * 2 * *
1,2 1,0 1,1 0,0 0,13 3 3 3sP s qP s P s q R s P qR s Pλ λ λ λ− = + + +

( ) ( )*
0,2 0,23 3 2R s P Pλ λ γ+ − +

. (D.6) 
Setting 𝑠𝑠 = 3𝜆𝜆 + 𝛼𝛼 and 𝑠𝑠 = 0 into (D.4), we have 

( ) ( )
( )

*

0,1 0,0*

1 31 3 3 2
3

R
P q P

R
λ α

λ λ α
γ λ α

  − + = + +  +    , (D.7) 
and 

( ) ( )
( )

*
*

1,0 1,0 0,0*

1 33 20
3 3

R
P P P

R
λ αλ α

λ α λ α
 − ++ = =   + +    . (D.8) 

Again, setting 𝑠𝑠 = 3𝜆𝜆 into (D.4), it implies that 

( ) ( ) ( ) ( )
( )

* *
*

1,0 0,0*

3 2 3 3
3

3
R R

P P
R

λ α λ λ α
λ

α λ α
 + − +

=  +  . (D.9) 
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Setting 𝑠𝑠 = 3𝜆𝜆 into (D.5), we get 

( ) ( )( ) ( ) ( )*
0,2 0,0 1,0*

1 13 1 3 1 3
2 3

P q q P q P
R

λ λ α λ
γ λ
= − − − − +
  

( )( ) ( ) ( )0,1 0,1*

13 1 3
3

q P P
R

λ α λ α γ
λ

− − + + + + 
 .

After doing some manipulations, we obtain 

( ) ( )0,2
1 13 3 3 1

2
P q q q qλ λ γ λ

γ γ


= + − −
  

( )( ) ( ) ( )
( )

*

*

3 2 1 3
3 1

3
R

q
R

λ α λ α
λ α

α λ α
 + − +

− − +  + 

( )( ) ( )
( )

*

*

1 313 2 3
3

R
q

R
λ α

λ α λ γ
γ λ α
 − +

+ + +  + 

( )( ) ( ) ( )
( )

*

*

3 2 1 3
3 1

3
R

q
R

λ α λ
λ α

α λ
 + −

+ − +  
 

( )( )( ) ( )
( )

*

*

1 313 1 2 3
3

R
q

R
λ

λ α λ α γ
γ λ
 −

− − + + +  
 

( )( ) ( )
( ) ( )

*

0,0* *

1 31 13 2 3
3 3

R
P

R R
λ

λ α λ α γ
γ λ λ α

 − + + + +  +   . (D.10) 
Setting 𝑠𝑠 = 0 into (D.5), we get 

( ) ( )( ) ( ) ( )
( )

*
*

1,1 1,1 1,0 0,1*

1 310 3 1 3
3 3

R
P P q P P

R
λ

λ α λ α γ
λ λ

  −= = − + + + +  
  

( )( ) ( ) ( ) ( )
( ) ( )

* *

0,0* *

3 2 3 3
3 1

3 3
R R

q P
R R

λ α λ λ α
λ α

α λ λ α

 + − + − − +  +    .
It implies that 

( )( ) ( ) ( )
( )

*

1,1 *

3 2 1 31 3 1
3 3

R
P q

R
λ α λ

λ α
λ α λ

  + −= − +  
    

( )( )( ) ( )
( )

*

*

1 313 1 2 3
3

R
q

R
λ

λ α λ α γ
γ λ
 −

− − + + +  
 

( )( )( ) ( )
( )

( )

*

*

1 333 1 3 2
3 3

R
q

R
λ αλλ α λ α

α λ α λ α
 − +

− − + +  + + 

( )( ) ( )
( ) ( )

*

0,0* *

1 313 2 3
3 3

R
P

R R
λ

λ α λ α γ
γ λ λ α

 − + + + +  +   . (D.11) 



International Journal of Applied Science and Engineering 

Liu et al., International Journal of Applied Science and Engineering, 18(6), 2021213 

https://doi.org/10.6703/IJASE.202112_18(6).004  16 

Differentiating (D.4) with respect to s and setting 𝑠𝑠 = 0 in the result, we finally get 
( ) ( ) ( ) ( )( )* 1

1,0 1,0 1 0,0 0,13 0 3 1 2P P r q P Pλ α λ α γ + = − − + +  , (D.12) 
Differentiating (D.5) with respect to s and setting 𝑠𝑠 = 0 in the result, we obtain 

( ) ( ) ( )( ) ( ) ( )* 1 * 1
1,1 1,0 1,13 0 3 1 0P q P Pλ λ α= − + +

( ) ( )( )1 0,0 0,2 0,13 1 2 3 1r q q P P q Pλ γ λ α − − + + − +  ,  (D.13) 
Similarly, differentiating (D.6) with respect to s and setting 𝑠𝑠 = 0 in the result, we find that 

( ) ( ) ( ) ( )*
1,2 1,2 1 0,0 0,1 0,2 1,0 1,10 3 2 3 3 2P P r P P P P Pλ α λ α γ λ γ = = + + + + + + − −  . (D.14) 
Finally, yields 

( ) ( )( ) ( )
2

1 1
1,2 12

3 3 3 3 3 2
3 2

2
q r q r

P r
λ λ α γ λ λ γ λ γ

λ α
γ γ

 + + + += + + +


( ) ( )( ) ( ) ( )
( )

*
1

*

3 2 3 1 3 2 1 31
2 3 3

q r R
R

λ α λ α λ γ λ
α γ λ λ

+ − +  + − 
+ −   

   
( )( )( ) ( ) ( )

( )

*
1

*

3 1 2 3 3 2 1 31
2 3 3

q r R
R

λ α λ α γ λ γ λ
γ γ λ λ

− + + +  + − 
− −   

   

( )( )( ) ( )
( )

*
1

2 *

3 2 3 3 2 1 3
2 3
q r R

R
λ α λ γ λ γ λ α

γ λ α
 + + + − +

+  + 

( )( ) ( )
( )

*
1

*

3 2 3 1 3
3

r R
R

λ α λ α γ λ α
γ λ α

 + + + − +
+  + 

( )
( )

*

*

1 33 2
3 3

R
R

λ αλ α
λ α λ α

 − ++
−  + + 

( ) ( )( )
( )

( ) ( )
( )

*
1

*

3 2 3 1 3 2 1 31
3 2 3

q r R
R

λ α λ α λ γ λ α
α λ α γ λ α

+ − +    + − +
+ −    + +   

( )( ) ( ) ( )
( ) ( )

*
1

0,0* *

3 2 3 3 2 1 31
2 3 3 3

r R
P

R R
λ α λ α γ λ γ λ

γ γ λ λ λ α

 + + + + −  + −    +     . (D.15) 
Using the normalizing condition 𝑃𝑃0,0 + 𝑃𝑃0,1 + 𝑃𝑃0,2 + 𝑃𝑃1,0 + 𝑃𝑃1,1 + 𝑃𝑃1,2 = 1, we can compute 𝑃𝑃0,0. We assume that the 

state (1, 2) is system down state. For configuration 4, the explicit expression for the steady-state availability is given by: 

4 0,0 0,1 0,2 1,0 1,1Av P P P P P= + + + +

( )2
2

3 13 3
2

q qλ γ λ λ γ
γ γ
+

= + + ( )( ) ( )
( )

*

*

1 31 13 2 3
2 3

R
q

R
λ α

λ α λ γ
γ γ λ α

 − +
+ + +  + 

( )( ) ( )
( )

( )

*

*

1 31 13 2 3
3 3

R
R

λ α
λ α λ α γ

λ α γ λ α
 − +

+ + + +  + + 

( ) ( )( )( ) ( )
( )

( )

*

*

1 31 1 13 2 3 1 3 2
3 2 3

R
q

R
λ α

λ α λ α λ α γ
λ α γ α λ α

 − +
− + − + + +  + + 
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	Evaluation of the cost-benefit of standby retrial systems incorporating switching failure and general repair times
	ABSTRACT
	1. INTRODUCTION

	consists of different number of primary and standby generators.
	The existing research works on the retrial systems, such as Yang and Templeton (1987); Falin (1990); Falin and Templeton (1997); Phung-Duc (2019); Artalejo (1990a, 1990b); Artalejo and Gomez-Corral (2008), have reported the most comprehensive concepts...
	Most articles on repairable standbys systems have assumed that the switching from the standby generator to primary generator will not fail. In fact, the process of switching over standbys may not be perfect. In a fuzzy environment, Huang et al. (2006)...
	These literatures pointed out that retrial behavior and switching failure are general situations happened in common repairable availability systems. Obviously, a model with general repair times is more generalized and extensive for availability evalua...
	2. System description

	For the convenience of analysis, we consider that a system requires 24WM power and assume that the power generating capacity of generator is available in units of 24WM, 12WM and 8WM. Before putting standby generators into full operation, they are assu...
	Four different standby retrial configurations are considered as below. Configuration 1 includes one 24WM primary generator and one 24WM standby generator; configuration 2 includes of two 12WM primary generators and one 12WM standby generator; configur...
	3. Problem solutions

	For each configuration, we first draw the transition-rate diagram. Based on the diagram, we derive the differential equations of each state at time t. Then, we take the Laplace transform on both sides of the differential equations. Finally, by working...
	𝑈,𝑡.≡ remaining repair time for the generator,
	𝑁,𝑡.≡ number of failed generators in orbit,
	𝐼,𝑡.≡ the states of the server.
	There are two possible states for the server: 𝐼,𝑡.=0 represents the server is free, 𝐼,𝑡.=1 denotes the server is busy.
	Let
	,𝑃-𝑖,𝑛.,𝑢,𝑡.𝑑𝑢=𝑃𝑟,𝑁,𝑡.=𝑛,𝐼,𝑡.=𝑖,𝑢<𝑈,𝑡.≤𝑢+𝑑𝑢., 𝑢≥0,
	,𝑃-𝑖,𝑛.,𝑡.=,0-∞-,𝑃-𝑖,𝑛.,𝑢,𝑡.𝑑𝑢., 𝑖=0, 1.
	In steady-state, we define
	, i = 0, 1,
	, i = 0, 1.
	Fig. 1. State-transition-rate diagram of configuration 1
	3.1 Configuration 1

	Fig. 1 shows the state-transition-rate diagram of configuration 1. From Fig. 1, we have the following steady-state Equations (1)-(4):
	(1)
	(2)
	(3)
	(4)
	where we define ,𝑃-0,0.,𝑢.=𝑟,𝑢.,𝑃-0,0. and ,𝑃-0,1.,𝑢.=𝑟,𝑢.,𝑃-0,1.. For detailed derivation that led to the steady-state availability, please refer to Appendix A. The steady-state availability can be expressed as Equation 5.
	Fig. 2. State-transition-rate diagram of configuration 2
	(5)
	3.2 Configuration 2

	For configuration 2, the state-transition-rate diagram is depicted in Fig. 2. Hence, for configuration 2, the following steady-state Equations (6)-(9) can be constructed:
	(6)
	(7)
	(8)
	(9)
	where we defined ,𝑃-0,0.,𝑢.=𝑟,𝑢.,𝑃-0,0. and ,𝑃-0,1.,𝑢.=𝑟,𝑢.,𝑃-0,1.. Using a similar argument, the explicit expression for the steady-state availability can be obtained as Equation (10). Please see Appendix B for detailed derivation.
	3.3 Configuration 3

	Fig. 3 presents the state-transition-rate diagram of configuration 3. Hence, for configuration 3, the steady-state Equations (11)-(16) are as below:
	(11)
	(12)
	(13)
	Fig. 3. State-transition-rate diagram of configuration 3
	(10)
	(14)
	(15)
	(16)
	(17)
	where we defined ,𝑃-0,0.,𝑢.=𝑟,𝑢.,𝑃-0,0., ,𝑃-0,1.,𝑢.=𝑟,𝑢.,𝑃-0,1. and ,𝑃-0,2.,𝑢.=𝑟,𝑢.,𝑃-0,2.. Applying a similar argument, we can get the steady-state availability as Equation (17). The detailed derivation is given in Appendix C.
	3.4 Configuration 4

	For configuration 4, the diagram of state-transition-rate is shown in Fig. 4. Hence, based on the Fig. 4, the steady-state Equations (18)-(23) for configuration 4 are listed as below:
	(18)
	(19)
	(20)
	Fig. 4. State-transition-rate diagram of the configuration 4
	(21)
	(22)
	(23)
	(24)
	where we defined ,𝑃-0,0.,𝑢.=𝑟,𝑢.,𝑃-0,0., ,𝑃-0,1.,𝑢.=𝑟,𝑢.,𝑃-0,1. and ,𝑃-0,2.,𝑢.=𝑟,𝑢.,𝑃-0,2.. Using a similar argument, the steady-state availability can be obtained as Equation (24). The detailed derivation is given in Appendix D.
	4. Comparison of the four configurations

	In this section, we compare the steady-state availability among four configurations with two different repair time distributions, Weibull and lognormal. We set the parameters 𝑎=,,2.𝜇-2., 𝑏=2 for Weibull distribution and 𝑚=−ln,𝜇.−,1-2., 𝜎=1 for l...
	4.1 Comparison of All Configurations Based on their Steady-State Availability

	We provide the following cases to investigate the effects of various system parameters on the steady-state availability of four configurations.
	Case 1. Given 𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1, 𝛾=0.5, varied the values of 𝜆 from 0.001 to 0.4.
	Case 2. Given 𝜆=0.1, 𝛼=0.2𝜆, 𝑞=0.2, 𝛾=0.5, varied the values of 𝜇 from 0.5 to 2.
	Case 3. Given 𝜆=0.1, 𝛼=0.2𝜆, 𝜇=0.9, 𝛾=0.5, varied the values of 𝑞 from 0.1 to 0.9.
	Case 4. Given 𝜆=0.5, 𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1, varied the values of 𝛾 from 0.1 to 2.
	Tables 1-4 provide the numerical results of the steady-state availability for each configuration for cases 1-4, respectively. From these tables, based on the steady-state availability comparisons, one can find that configuration 1.
	Table 1. Comparison of the configurations 1-4 for 𝐴𝑣 (𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1, 𝛾=0.5)
	Table 2. Comparison of the configurations 1-4 for 𝐴𝑣 (𝜆=0.1, 𝛼=0.2𝜆, 𝑞=0.2, 𝛾=0.5)
	Table 3. Comparison of the configurations 1-4 for 𝐴𝑣 (𝜆=0.1, 𝛼=0.2𝜆, 𝜇=1, 𝛾=0.5)
	Table 4. Comparison of the configurations 1-4 for 𝐴𝑣 (𝜆=0.5, 𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1)
	may be the best configuration. However, because each configuration consumes different costs during the construction process, as a standard for comparing these four configurations, the 𝑐𝑜𝑠𝑡/𝐴𝑣 rate may be fairer than 𝐴𝑣.
	4.2 Comparison of All Configurations Based on their Cost/Benefit Ratios

	We consider that the different configurations may have different costs. When different configurations are fairly compared, these costs should be considered. Table 5 lists the size-proportional costs for the primary generators and standby generators. F...
	Table 5. The costs for the primary generators and standby generators
	Table 6. The costs for each configuration
	Table 7. Comparison of the configurations 1-4 for cost/𝐴𝑣 (𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1, 𝛾=0.5)
	Table 8. Comparison of the configurations 1-4 for cost/𝐴𝑣 (𝜆=0.1, 𝛼=0.2𝜆, 𝑞=0.2, 𝛾=0.5)
	Table 9. Comparison of the configurations 1-4 for cost/𝐴𝑣 (𝜆=0.1, 𝛼=0.2𝜆, 𝜇=1, 𝛾=0.5)
	Table 10. Comparison of the configurations 1-4 for cost/𝐴𝑣 (𝜆=0.5, 𝛼=0.2𝜆, 𝜇=1, 𝑞=0.1)
	5. CONCLUSIONS

	This research has studied the evaluation of cost-benefit of four standby retrial power supply configurations with standby switching failure and general repair times, which is the first work on the comparative investigation relative to retrial availabi...
	Acknowledgment

	This research was partially supported by Ministry of Science and Technology of Taiwan under grants MOST 109-2221-E-324-013-.
	REFERENCES

	Artalejo, J.R. 1990a. Accessible bibliography on retrial queues, Mathematical Computer Modelling, 30, 1–6.
	Artalejo, J.R. 1990b. A classified bibliography of research on retrial queues: progress in 1990-1999, Top, 7, 187–211.
	Artalejo, J.R., Gomez-Corral, A. 2008. Retrial queueing Systems: a computational approach, Springer-Verlag.
	Falin, G. 1990. A survey of retrial queues, Queueing Systems, 7, 127–67.
	Falin, G., Templeton J. 1997. Retrial queues, Chapman & Hall.
	Hsu, Y.L., Ke, J.C., Liu, T.H., Wu, C.H. 2014. Modeling of multiserver repair problem with switching failure and reboot delay and related profit analysis, Computers and Industrial Engineering, 69, 21–28
	Hu, S.C., Chuah, Y.K. 2003. Power consumption of semiconductor fabs in Taiwan, Energy, 28, 895-907.
	Huang, H.I., Lin, C.H., Ke, J.C. 2006. Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters, Applied Mathematics and Computation, 183, 508–517
	Ke, J.C., Yang, D.Y., Sheu, S.H., Kuo, C.C. 2013. Availability of a repairable retrial system with warm standby components, International Journal of Computer Mathematics, 90, 2279–97.
	Ke, J.C., Liu, T.H., Yang, D.Y. 2016. Machine repairing systems with standby switching failure, Computers and Industrial Engineering, 99, 223–228.
	Ke, J.C., Liu, T.H., Yang, D.Y. 2018. Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover, Reliability Engineering & System Safety, 174, 12–18.
	Kuo, C.C., Sheu, S.H., Ke, J.C, Zhang, Z. 2014. Reliability-based measures for a retrial system with mixed standby components, Applied Mathematical Modelling, 38, 4640–51.
	Lee, Y. 2016. Availability analysis of redundancy model with generally distributed repair time, imperfect switchover, and interrupted repair, Electronic Letters, 52, 1851–1853.
	Liu, T.H., Ke, J.C., Hsu, Y.L., Hsu, Y.L. 2011. Bootstrapping computation of availability for a repairable system with standby subject to imperfect switching, Communications in Statistics - Simulation and Computation, 40, 469–483
	Phung-Duc, T. 2019. Retrial queueing models, A survey on theory and applications, arXiv preprint arXiv:1906.09560.
	Wang, J. 2006. Reliability analysis M/G/1 queues with general retrial times and server breakdowns, Progress in Natural Science, 16, 464–73.
	Wang, J., Cao, J., Li, Q. 2001. Reliability analysis of the retrial queue with server breakdowns and repairs, Queueing Systems, 38, 363–80.
	Yang, T., Templeton, J.G.C. 1987. A survey on retrial queues, Queueing Systems, 2, 201–33.
	Appendix

	Appendix A. Derivation of the steady-state availability for configuration 1.
	From (1) and (2), we obtain
	,                (A.1)
	.                 (A.2)
	Further define
	,
	,
	,
	.
	After taking the Laplace-Stieltjes on both sides of (3) and (4), we have
	,        (A.3)
	.         (A.4)
	Setting 𝑠=𝜆 and 𝑠=0 into (A.3) and using (A.1), we have
	,             (A.5)
	and
	.             (A.6)
	Setting 𝑠=0 into (A.4), we have
	.              (A.7)
	Differentiating (A.3) with respect to s and setting 𝑠=0 in the result,
	,           (A.8)
	where ,𝑟-1.=−,𝑅-∗(1).,0.. Likewise, differentiating (A.4) with respect to s and setting 𝑠=0 in the result,
	.            (A.9)
	After doing some manipulations, we have
	.      (A.10)
	Substituting (A.5), (A.6) and (A.10) into the following normalizing condition ,𝑃-0,0.+,𝑃-0,1.+,𝑃-1,0.+,𝑃-1,1.=1, we obtain
	.     (A.11)
	Therefore, the steady-state availability can be expressed as
	.     (A.12)
	Appendix B. Derivation of the steady-state availability for configuration 2.
	From (6) and (7), we have
	,                (B.1)
	.                (B.2)
	Taking the Laplace-Stieltjes on both sides of (8) and (9) and using (B.1) - (B.2),
	,      (B.3)
	.         (B.4)
	Setting 𝑠=2𝜆 and 𝑠=0 into (B.3), we have
	,            (B.5)
	and
	,            (B.6)
	Differentiating (B.3) with respect to s and setting 𝑠=0 in the result,
	,           (B.7)
	Likewise, differentiating (B.4) with respect to s and setting 𝑠=0 in the result,
	.           (B.8)
	Hence, we have
	.    (B.9)
	To find ,𝑃-0,0., we substitute (B.5), (B.6) and (B.9) into the following normalizing condition ,𝑃-0,0.,+𝑃-0,1.+,𝑃-1,0.+,𝑃-1,1.=1 and obtain
	(B.10)
	We assumed that the state (1, 1) is a system down state. For configuration 2, we have
	.      (B.11)
	Appendix C. Derivation of the steady-state availability for configuration 3.
	From (11)-(13),
	,                (C.1)
	,               (C.2)
	.                (C.3)
	Using Laplace transforms as before and using (C.1)-(C.3), (14)-(16) become
	,     (C.4)
	,         (C.5)
	.              (C.6)
	Setting 𝑠=2𝜆+𝛼 and 𝑠=0 into (C.4), we have
	,           (C.7)
	and
	.           (C.8)
	Again, setting 𝑠=2𝜆 into (C.4), we have
	.          (C.9)
	Setting 𝑠=2𝜆 into (C.5) yields
	.
	It implies that
	.          (C.10)
	Setting 𝑠=0 into (C.5) yields
	.
	This implies that
	.          (C.11)
	Differentiating (C.4) with respect to s and setting 𝑠=0 in the result,
	.         (C.12)
	Differentiating (C.5) with respect to s and setting 𝑠=0, we have
	,               (C.13)
	Differentiating (C.6) with respect to s and setting 𝑠=0 in the result,
	.     (C.14)
	Hence, we have
	(C.15)
	Using the following normalizing condition ,𝑃-0,0.+,𝑃-0,1.+,𝑃-0,2.+,𝑃-1,0.+,𝑃-1,1.+,𝑃-1,2.=1 and doing some algebraic manipulation, we can compute ,𝑃-0,0.. We assumed that the state (1, 2) is system down state. For configuration 3, the explicit ...
	.      (C.16)
	Appendix D. Derivation of the steady-state availability for configuration 4.
	From (18)-(20), we have
	,                (D.1)
	,                (D.2)
	.                (D.3)
	Using Laplace transforms as before and using (D.1) - (D.3), (21) - (23) reduce to
	,     (D.4)
	,           (D.5)
	.              (D.6)
	Setting 𝑠=3𝜆+𝛼 and 𝑠=0 into (D.4), we have
	,           (D.7)
	and
	.           (D.8)
	Again, setting 𝑠=3𝜆 into (D.4), it implies that
	.           (D.9)
	Setting 𝑠=3𝜆 into (D.5), we get
	.
	After doing some manipulations, we obtain
	.         (D.10)
	Setting 𝑠=0 into (D.5), we get
	.
	It implies that
	.          (D.11)
	Differentiating (D.4) with respect to s and setting 𝑠=0 in the result, we finally get
	,         (D.12)
	Differentiating (D.5) with respect to s and setting 𝑠=0 in the result, we obtain
	,           (D.13)
	Similarly, differentiating (D.6) with respect to s and setting 𝑠=0 in the result, we find that
	.     (D.14)
	Finally, yields
	.      (D.15)
	Using the normalizing condition ,𝑃-0,0.+,𝑃-0,1.+,𝑃-0,2.+,𝑃-1,0.+,𝑃-1,1.+,𝑃-1,2.=1, we can compute ,𝑃-0,0.. We assume that the state (1, 2) is system down state. For configuration 4, the explicit expression for the steady-state availability is g...
	.        (D.16)



