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ABSTRACT 
 

In wireless rechargeable sensor networks (WRSNs), wireless charging stations can 
recharge the batteries of sensor nodes so that they can operate sustainably. Since wireless 
charging stations are costly and have limited charging distances, how to deploy the 
minimal number of charging stations to cover all sensor nodes and satisfy the energy 
requirements of all sensor nodes are important and challenging issues. This paper 
proposes a new deploy strategy by taking the number of charging stations and the 
distance between the sensor node and charging station into account simultaneously. We 
formulate the proposed strategy into a multi-objective problem and employ a non-
dominated sorting genetic algorithm-II (NSGA-II) to solve this problem. We compare 
the proposed approach to the simulated annealing-based charging algorithm (SABC) and 
the layoff simulated annealing-based charging algorithm (LSABC) in terms of the 
number of charging stations and the overall charging power. The simulation results reveal 
that the overall charging power obtained using the proposed approach is 5% and 8% 
higher than that obtained using SABC and LSABC approaches. Moreover, the number 
of charging stations obtained using NSGA-II is 6% and 1% less than that obtained using 
SABC and LSABC approaches, respectively. 

 
Keywords: Wireless rechargeable sensor networks, Wireless charging stations 
deployment, NSGA-II, Multi-objective problem. 
 

 
1. INTRODUCTION 
 

With the rapid development of Internet of Things (IoT), all devices are gradually able 
to communicate via the Internet (Liu et al., 2019). In order to get more information, the 
technology of wireless sensor network (WSN), which is composed of wireless sensor 
nodes and relay nodes, is used extensively. WSN technology can be used in various 
applications because it has many advantages, such as lower cost, scalability, reliability, 
accuracy, flexibility, and ease of deployment. As wireless sensor nodes become smarter, 
smaller and cheaper, billions of wireless sensor nodes are deployed in many application 
scenarios. For example, sensor nodes can be used to detect, locate or track enemy 
movements. In addition, it can sense and detect the environment to predict disasters in 
advance. Moreover, sensor nodes can monitor a patient's health (Rajba et al., 2013). In 
the security, sensors can provide vigilant surveillance and increase alertness to potential 
terrorist attacks (Huang et al., 2017). In the future, wireless sensor networks will 
eventually realize automatic monitoring of forest fires, avalanches, hurricanes, 
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transportation, hospitals, etc. The wide ranges of potential 
applications for wireless sensor networks have made WSN 
becoming a fast-growing multi-purpose network (Akyildiz 
et al., 2002). 

Although the WSN allows users to access information 
conveniently, there are some inherent problems. For 
example, in WSN, each sensor node senses various kinds of 
information and then transfer them to relay nodes. All 
actions consume energy, but the energy of sensor node is 
limited by battery capacity. When the energy of sensor node 
is exhausted, it may cause obstacles in the operation of 
WSN. To solve this network lifetime’s problem, wireless 
rechargeable sensor network (WRSN) (Lin et al., 2009; 
Zeng et al., 2010; Rawat et al., 2014), which is composed of 
charging stations, sensor nodes and relay nodes, is a 
promising approach.  

Since wireless charging stations are costly and have 
limited charging distances, how to deploy the minimal 
number of charging stations to cover all sensor nodes and 
satisfy the energy requirements of all sensor nodes are 
important and challenging issues. Regarding these issues, 
most of the researches focus on reducing the number of 
charging stations. But they do not consider the charging 
efficiency of each sensor node under the same coverage of 
charging station. Actually, when the distance between the 
sensor node and charging station decreases, the charging 
efficiency will be increased. Consequently, the charging 
stations do not need to replenish the sensor nodes’ power 
frequently. Therefore, this paper proposes a new deploy 
strategy by taking the number of charging stations and the 
distance between the sensor node and charging station into 
account simultaneously. We formulate the proposed strategy 
into a multi-objective problem and employ a non-dominated 
sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002) to 
solve this problem. Note that many approaches have 
proposed for searching the optimal solution of multi-
objective problem, such as Vector Evaluated Genetic 
Algorithm (VEGA) (Schaffer, 1986), Weight-based Genetic 
Algorithm (WBGA) (Murata and Ishibuchi, 1995) and 
Multi-objective GA (MOGA) (Fonseca and Fleming, 1993). 
However, NSGA-II can find the optimal solution better 
because NSGA-II simultaneously optimizes multiple 
assignment objective instead of searching for possible 
assignments based on a single composite value. 

The remaining portion of this paper is organized as 
follows. Recent related studies are discussed in Section 2. 
Section 3 describes the system model and presents the 
problem formulation. The NSGA-II charging station 
deployment algorithm is introduced in Section 4. In Section 
5, we conduct a simulation to verify the applicability of 
proposed approach and compare it with other prominent 
methods. Finally, the conclusions are provided in Section 6. 

 
2. RELATED WORK 

 
This section briefly introduces the concept of wireless 

rechargeable sensor networks and present various methods 
for the deployment of wireless charging station. The 
environment of WRSN can be broadly divided into two 
categories: indoor and outdoor. A typical example of WRSN 
in outdoor environment is depicted in Fig. 1. From the Fig. 
1 we can see that a vehicle carries a wireless charging 
equipment (WCE) and travels along with the prior path 
planning to charge the power of sensor nodes. Because the 
distance of the vehicle’s movement and the lifecycle of 
sensor nodes are limited, how to plan the vehicle’s motion 
path is an important issue. The vehicle motion path planning 
needs to ensure that sensor nodes do not fail to deplete the 
WSN due to energy depletion, and charge as more sensor 
nodes as possible under the limited energy of WCE. 

In order to allow the WCE to travel further distance, 
Zhang et al. (2014) proposed a Push-Wait mechanism, 
where WCEs are allowed to intentionally transfer energy 
between themselves. However, this approach needs too 
many WCEs. Liu et al. (2016) proposed a Push-Shuttle-
Back mechanism to allow that the WCE can go back to base 
station halfway for replenishing energy. 

 

Fig. 1. Typical example of WRSN in outdoor environment 
 
With this mechanism, the energy loss in the movement 

and charging processes between WCEs can be reduced. In 
addition, the number of WCEs also can be reduced. In terms 
of path planning, Lyu et al. (2019) proposed a periodic 
charging planning for a mobile WCE with limited traveling 
energy. This periodic charging planning ensures that the 
energy of the nodes in the WRSN varies periodically and 
that nodes perpetually fail to die. The authors proposed a 
Hybrid Particle Swarm Optimization Genetic Algorithm 
(HPSOGA) to solve this NP-hard problem. 

A typical example of WRSN in indoor environment is 
shown in Fig. 2. In indoor environment of WRSN, the 
charging station deployment needs to consider the sensor 
node position, radio frequency interference and charging 
efficiency. A good charging stations deployment intends to 
minimize the number of deployed charging station under the 
requirement of covering all sensor nodes. Jian et al. (2015) 
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proposed a movable-charger-based algorithm (MCBA), 
which is using overlapping area of charging antenna 
covered area, to find out some candidate locations deploying 
of charging stations and then record them to a set. With the 
set of candidate locations, the authors employed a greedy 
algorithm to search the final deploying location of charging 
stations. It chooses the candidate position which covers the 
most sensor nodes. According to this rule, greedy algorithm 
is difficult to find better solution because it is easier to fall 
into local optimum. Similarly, based on the candidate set 
obtained from MCBA, Chien et al. (2015) proposed a 
simulated annealing-based charging algorithm (SABC) to 
find the final charging station locations. The main concept 
of SABC is that he can accept candidate nodes with a small 
number of sensor nodes. At the beginning of the process, a 
charging station is randomly selected from the candidate 
nodes, and the temperature is determined during each 
iteration to decide whether to add a charging station or 
replace the original charging station. This method has more 
directions for finding a solution, so there is a higher chance 
to find a good solution. However, during the SABC iteration 
process, unnecessary solutions are often found repeatedly. 
If unnecessary solutions can be eliminated in the process, 
the convergence of the algorithm can be accelerated. 
Furthermore, Chien et al. (2016) used the layoff algorithm 
to eliminate the unnecessary solutions during SA iterations. 
Different from SABC, LSABC initially treats all candidate 
nodes as all placements, and then randomly selects one 
candidate point for each iteration to eliminate. If the result 
is better, it replaces the original solution. If not, the 
candidate point is retrenched. Consequently, the 
computation time can be reduced. Lin et al. (2020) proposed 
a novel hybrid search and remove strategy for power 
balance wireless charger deployment in wireless 
rechargeable sensor networks. Wan et al. (2019) proposed a 
new algorithm of planning the charging stations based on 
the greedy algorithm and the location relationship of sensor 
nodes. Although both Lin et al. (2020) and Wan et al. (2019), 
which are related to our proposed approach, can greatly 
reduce the computing time, but the greedy algorithm is easy 
to fall into the local optimal solution. Besides, because the 
experimental environments of these two papers are different 
with ours, we do not compare them in this paper. Therefore, 
we compare the SABC and the LSABC in terms of the 
number of charging stations and the overall charging power. 

 

 
Fig. 2. Typical example of WRSN in indoor environment 

3. SYSTEM MODEL AND PROBLEM 
FORMULATION 
 
In this study, we construct a 20 X 15 square meters indoor 

environment with n wireless rechargeable sensor nodes and 
m wireless directional charging stations which is shown in 
Fig. 3. Let S = {s1, ⋯, sn} be the set of all the wireless 
rechargeable sensor nodes and C = {c1, ⋯, cm} be the set of 
all the charging stations. Those sensor nodes are randomly 
distributed in the three-dimensional region. Every 
directional charging station is identical and can charge a 
circular area with R-radius. Denote ui as the number of 
sensor nodes covered by charging station ci and U as the set 
of ui, where each ui is greater than equal to one.  

 

 
Fig. 3. 20 x 15 indoor environment 

 
Because the efficiency of power transmission decreases 

as the distance of power transmission increases, the sensor 
nodes which are out of this R-radius circle cannot receive 
the effective power. A sensor node may be covered by 
multiple charging stations and receives power from multiple 
charging stations simultaneously. This paper aims to 
minimize the number of charging stations and maximize the 
overall charging capacity. To do that, we define the 
following problem: 

 

�

𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚  𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚  𝑃𝑃
subject to 𝑅𝑅𝑟𝑟,𝑖𝑖 ≤ 𝐸𝐸,∀ 𝜇𝜇𝑖𝑖 ≤ 1

                         (1) 

 
where m  denotes the number of charging stations for each 
chromosome, Crate represents the cover ratio of total 
charging stations, P denotes the sum of all sensor nodes 
received energy, E represents the effectual charging distance 
which is defined by charging equipment, and Rt, i denotes 
the distance between sensor node i and charging station t. 
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4. NSGA-II BASED CHARGING STATION 
DEPLOYMENT 
 
In proposed method, all candidate deploying locations of 

charging station are discovered by applying MCBA (Jian et 
al. 2015) and then record them to a set. Based on this set, a 
modified NSGA-II scheme are performed to find a solution 
for the charging station deployment problem. Note that 
proposed by Deb et al. (2002) on the basis of NSGA, 
NSGA-II improves the non-dominated sorting algorithm 
and reduces the computational of parents and children with 
elitist strategy, introduces the crowded comparison operator 
to improve diversity of solutions, and avoids the use of 
niched operators. We encode all candidate locations of 
charging station into a set of genes, which is known as a 
chromosome or an individual. In our scheme, four primary 
phases are performed – initialization, crossover, mutation 
and selection. Individuals are created randomly in the 
initialization phase. In the crossover phase, genes are copied 
and are delivered to offspring. In the mutation phase, genes 
change their information content. Through the phases of 
crossover and mutation, different chromosomes are 
generated for maintaining the diversity of the next 
generation of solutions. In the selection phase, a modified 
non-dominated sorting scheme is used to preserve the 
diversity of different objectives. After many generations, the 
stronger genes are obtained. The chromosomes are updated 
continually in the main loop until the stopping criterion is 
met. The flowchart of the proposed NSGA-II approach is 
displayed in Fig. 4. 

 

 
Fig. 4. Flowchart of the proposed mechanism 

 
4.1 Representation and Initialization 

In the proposed approach, we assume that each sensor 
node can be covered by multiple charging stations and can 
receive power from multiple charging stations 
simultaneously. The WRSN deployment space is regarded 
as a cuboid with the dimension (L, E, H), where L is the 
length of cuboid, W is the width of cuboid and H is the 
height of cuboid. In order to efficiently avoid the 
interference from obstacles and consider the actual situation, 
we deploy the charging station at ceiling as well as the 

sensor nodes are randomly distributed in the floor. On the 
basis of these assumptions, a sensor node is represented as 
a point si with coordinates (xi, yi, zi = 0, for i = 1, 2, ⋯, n) 
and a charging station is denoted as a point cj with 
coordinates (xj, yj, zj = H, for j = 1, 2, ⋯ , m) in three-
dimensional space. By applying the MCBA algorithm, we 
can get a set V which includes all the places where the 
charging station may be deployed. Each candidate point is 
considered as a genetic cell. 

A gene, which is a component of a chromosome, has two 
indicators, α and β. Note that α stores the candidate position 
of charging station with the form of (x, y) and βrepresents 
this candidate point is deployed or not, where β = 1 means 
this candidate point is deployed and β = 1 represents the 
candidate point is not deployed. Fig. 5 presents a coding 
example, which includes five sensor nodes and five 
candidate locations, is transformed into a chromosome. 

 

 
Fig. 5. Example of a chromosome coding 

 
In the initialization phase, Ni individuals are created 

randomly. For example, in Fig. 6, we randomly generate 
four chromosomes. 

 
4.2 Crossover 

In the crossover phase, switching point is randomly 
selected. At each iteration, parents selected after replication 
are exchanged for genetic, so that the new offspring can 
retain some of the characteristics of the parents. In order to 
avoid a large number of genes change caused by single-
point mating, in this study, two-point mating method is used. 
The process is determined by the crossover rate rc, which is 
a floating number between zero and one. If the generated 
random number is less then rc, two replicating parents are 
selected randomly. Two crossover point on this 
chromosome are also generated randomly and then 
exchange the genetic at the crossover point. An example of 
the crossover is presented in Fig. 7. 

 
4.3 Mutation 

The purpose of mutation is to generate the genetic that 
have not appeared in the parents, in order to prevent the best 
solution for falling into the local optimal solution. In this 
study, single-point mutation method is used. Similar to the 
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crossover phase, the mutation phase is determined by the 
mutation rate rm, which is a floating number between zero 
and one. If the generated random number is less then rm, 
then one gene of the chromosome is randomly selected for 
mutation. In this case, if the β value of selected point is 0, it 
will be changed to 1. The opposite if the β value of selected 
point is 1, it will be changed to 0. An example of mutation 
is presented in Fig.8. 

 
4.4 Selection 

In the selection phase, all chromosomes are decoded to 
obtain their information, such as the location of candidate 
nodes, the location is deployed or not. 

 

 

 
Fig. 6. Four chromosomes are created in initialize phase 

 

 
Fig. 7. Example of a crossover 

 

 
Fig. 8 An example of mutation 
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These parameters are used to calculate the fitness value 
through fitness function. In fitness function, three metrics 
are considered, m, Crate, and P. Note that these parameters 
were mentioned in Equation (1). We can obtain m, Crate, and 
P by following equations:  

 
𝑚𝑚 = ∑ 𝛽𝛽𝑖𝑖𝑙𝑙

𝑖𝑖=1

 

                                      (2) 

 

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ 𝑠𝑠𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑛𝑛

   

                                 (3) 

                              (3) 

𝑃𝑃 = ∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

                                   (4) 
 
In Equation (2), l is the number of genes in chromosome 

and βi represents this candidate point i is deployed or not, βi 
= 1 means this candidate point is deployed and βi = 0 
represents the candidate point is not deployed. In Equation 
(3), si represents the sensor node i which is covered by any 
charging station. If sensor node i is covered by any charging 
station, si is equal to 1; otherwise si is equal to 0. In Equation 
(4), for a sensor node i, the total amount power received 
from multiple charging stations is denoted as pi. To measure 
pi, the following model which is provided by the company 
Powercast (Powercast, 2003; He et al., 2012) is employed: 

 
𝑝𝑝𝑖𝑖 = ∑ 𝑝𝑝𝑟𝑟,𝑖𝑖𝑔𝑔𝑟𝑟𝑇𝑇

𝑟𝑟=0 𝑔𝑔𝑖𝑖(
𝜆𝜆

4𝜋𝜋𝑅𝑅𝑡𝑡,𝑖𝑖
)2                             (5) 

 
where pt,i represents the power which transfer from charging 
station t to the sensor node i; T denotes the number of 
charging stations covering the sensor node i; gt denotes the 
value of antenna gains of charging station t; gi represents the 
value of antenna gains of sensor node i; λ denotes the 
wavelength of radio frequency (RF); Rt,i denotes the 
distance between sensor node i and charging station t. 

From the initial population Ni and the population Qi 
obtained after the crossover and mutation phase, it becomes 
a Ni + Qi population. In order to retain the first 50% of the 
population into the next generation, we must calculate the 
non-dominated sorting and the crowding distance. After 
non-dominated sorting, all chromosomes are classified into 
different levels and all levels rank by ascending order. If 
they are belonged to the same level, they will be ranked 
according to the crowding distance. 

 
4.4.1 Non-Dominated Sorting 

A non-dominated solution means that this solution cannot 
be dominated by other solutions. In other words, all 
objective function values of other solution can be greater 
than this solution. The main purpose of non-dominated 
ordering is to divide the initial population Ni into several 
groups of non-dominated solution sets according to the 
objective function value of each chromosome. A pseudo 
code for non-dominated sorting is presented in Algorithm 1. 
To perform this algorithm, we need to input a set of 
population G with three parameters m, Crate and P. In 
Algorithm 1, we first calculate the number of chromosomes 

dominated by other chromosomes (lines 1-17). It is noted 
that A represents the set of all solutions. For each solution a 
in A, we calculate two entities, na and Sa, where na 
represents the number of solutions which dominate the 
solution a and Sa denotes the set of solutions that the 
solution a dominates. If na is equal to 0, which means that 
the chromosome is not dominated by other chromosomes, 
this chromosome is defined as level 1 and is removed from 
the population (lines 18-21). It is noted that arank represents 
the level of solution a and Fi denotes the set of solutions 
belonged to level i. If arank is equal to 1, the solution a will 
be classified to F1. Next, we calculate the number of 
chromosomes dominated by other chromosomes from the 
remaining population. B is used to store the members of next 
front. If the number of chromosomes dominated is 0, they 
are defined as level 2 (lines 23-33). Continuing the process 
until the entire population is sorted. Note that F is the non-
dominated front. 

 
4.4.2 Crowding Distance 

According to the ranks sorted in the previous step, the 
chromosomes of the same rank are taken out and then the 
crowding distance is calculated for these chromosomes. The 
concept of crowding distance is the denseness between the 
chromosome and its surrounding chromosomes. When the 
crowding distance is smaller, it means that the chromosome 
falls in a relatively crowded range. If the crowding distance 
is larger, it means that the chromosome falls in a relatively 
loose range. The formula for the crowding distance of the 
ith chromosome is as follows: 

 
𝐶𝐶𝐶𝐶𝑖𝑖 = ∑ 𝐺𝐺𝑂𝑂(𝑋𝑋𝑖𝑖+1)−𝐺𝐺𝑂𝑂(𝑋𝑋𝑖𝑖−1)

𝐺𝐺𝑂𝑂
𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)−𝐺𝐺𝑂𝑂

𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥)
 , 𝑚𝑚 = 2,3, … ,𝑊𝑊 − 1𝐾𝐾

𝑂𝑂=1        (6) 

 
where K represents the number of target formulas, o 
represents the value of one of the objective functions, i 
denotes the number of chromosomes, W denotes the last 
chromosome in this level, Go(xi+1) and Go(xi-1) represent the 
next chromosome objective function value and the previous 
chromosome objective function value of chromosome 𝑚𝑚 
under the oth target. In each level, when the chromosome 
distributes at the two ends, their crowding distance is set as 
infinity. A pseudo code for crowding distance calculation is 
presented in Algorithm 2.  

By following the example mentioned in Fig. 6, after the 
crossover and mutation phases, we get four new 
chromosomes and calculate the fitness value through the Eq. 
(3)(4)(5) together with the original chromosomes as shown 
in Fig. 9. Then we find the non-dominated set for all 
chromosomes and sort them according to the non-
dominated set as shown in Fig. 10. Level 1 indicates that the 
chromosome is not dominated by any chromosome, level 2 
indicates that the chromosome is dominated by a 
chromosome, and so on. In the next generation, we have to 
pick out four new chromosomes, but we can see that there 
are 5 chromosomes in level 1, so we need to calculate the 
crowding distance of these five chromosomes. 
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Before calculating the crowding distance, we have to sort 
each target as shown in Fig. 11. After finishing the sorting, 
we can apply Eq. (6) to calculate the crowding distance. For 
example, the crowding distance of chromosome A is equal 
to ((2-1)/(4-1))+((0.85-0.65)/(0.85-0.15)) + ((30-10)/(70-
10)). Because the crowding distance value of the 
chromosome increases, the similarity of chromosome with 
other chromosomes deceases, the chromosomes with larger 
four values are picked after the calculation. 

The process of proposed NSGA-II is shown in Algorithm 
3. In the input parameters, population represents the amount 
of initial chromosome population; iter denotes a value for 
stopping criteria; rc and rm represent the rate of crossover 
and mutation, respectively; final is the output solution and 
represents the deployment positions of charging stations. 
The procedure Evaluation is used to calculate the fitness 
value of each solution. 
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Fig. 9. An example of fitness value 

 

 
Fig. 10. An example of non-dominated sorting 
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Fig. 11. An example of crowding distance 

 

 
 
5. EXPERIMENTAL SIMULATION AND 

RESULTS 
 
To verify the feasibility of proposed strategy, we simulate 

the proposed approach in a cubic indoor environment, 15 * 
20 * 2.3 (m3), by using Python programming language. In 
section 5.1, we describe the experimental setting. NSGA-II 
convergence experiments are demonstrated in section 5.2 
afterwards. Finally, we compare the proposed method with 
Jian et al.’s simulated annealing-based charging algorithm 
(SABC) approach and Jian et al.’s layoff simulated 
annealing-based charging algorithm (LSABC) approach in 
terms of the number of charging stations and the overall 
charging power in section 5.3. 

 
5.1 Experimental Settings 

In the simulation experiment, the sensor nodes are 
randomly deployed on the ground. For a charging station, 
the effectual charging distance is 3 (m) and the angle θ is set 

to 30° (Jiang et al. 2018). We vary the number of sensor 
nodes from 25 to 125 with increment of 25. According to 
Powercast (2003), frequency of charging station is set as 
915MHz, the transmission power is set as 3W EIPR and 
receiver antenna gain is set as 6 dBi. Note that as the same 
with other researches, we assume that the charging 
efficiency is not affected by the number of sensor nodes. In 
other words, the time required to charge multiple power-
depleted sensor nodes is the same as to charge a single one 
(Ma et al., 2018, Lai and Hsiang, 2018).  The size of the 
population almost does not affect the result of experiment 
but the calculation time will increase. Therefore, we choose 
a population of 10 as the experimental setting. Before 
performing the comparisons between the proposed 
approach and other approaches, the crossover rate and 
mutation rate should be identified for the proposed NSGA-
II approach. After experiments, it is found that the algorithm 
will reach a stable convergence after 1000, so we set 
iteration to 1000. The parameters details are shown in Table 
1. 
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Table 1. Simulation parameters  
Parameters Setting 
Size of Venue 15*20*2.3 m3 

Number of Sensor Nodes 25~125 
Effectual Charging Distance 3 m 

Transmitted Power 3 W EIRP 
Receiver Antenna Gain 6 dBi 

Frequency 915 MHz 
Population 10 

Crossover Rate 1 
Mutation Rate 0.8 

Iteration 1000 
 
5.2 NSGA-II Convergence Experiment 

We observe the convergence behavior of the number of 
charging stations under different crossover rate and 
mutation rate. In the experiment, the default values of rc, rm 
and population are set as 1, 0.8 and 10, respectively. First, 
we vary the values of rc from 0.2 to 1 with increments of 0.2 
to observe the effects on the NSGA-II convergence. The 
simulation result is presented in Fig. 12. From the figure, we 
observe that the number of charging stations is smallest 
when rc is equal to 1. As a result, we set the crossover rate 
as 1. This means that every time you will go through the 
steps of crossover. 

Next, we vary the values of rm from 0.2 to 1 with 
increments of 0.2 to observe the effects on the NSGA-II 
convergence. The simulation result is presented in Fig. 13. 
From the figure, we observe that the number of charging 
stations is smallest as rm is equal to 0.8. As a result, we set 
the mutation rate as 0.8. 

 
5.3 Simulation Results 

In our experiments, the simulations are executed 30 times. 

We measure the average number of charging stations and 
the average received energy of every sensor node. The Fig. 
14 shows the comparison of number of chargers with 
NSGA-II, LSABC and SABC. X-axis represents the 
number of sensor nodes, and Y-axis represents the number 
of charging stations. Obviously, the number of charging 
station of NSGA-II and LSABC is lower than SABC and 
this phenomenon become evident increasingly when the 
number of sensor nodes is increased. This is because 
NSGA-II uses the mechanisms of crossover and mutation 
and LSABC uses the layoff algorithm to avoid falling into 
local optimum. 

The Fig. 15 shows the comparison of the average energy 
received of each sensor node. X-axis represents the number 
of sensor node, and Y-axis represents the average energy 
received of each sensor node (mW). The simulation results 
reveal that NSGA-II can receive more power than LSABC 
and SABC, because LSABC and SABC do not take the 
distance between the charging station and the sensor node 
into account. When the distance is closer, the sensor can 
receive more energy. 

We also compare the number of charging stations 
required by different methods under different sensor nodes 
and the overall sensor nodes energy received. The details are 
shown in Table 2. We can see that under the same number 
of charging stations, the overall energy received by the 
NSGA-II method is greater than that of other methods. 
Besides, we perform a simulation to investigate the effect of 
network size on the number of charging stations. We vary 
the network size as 16*20*2.3 (m3), 20*15*2.3 (m3), and 
30*24*2.3 (m3), with correspond to the number of sensor 
nodes are 40, 50, and 60, respectively. The simulation result 
is shown in Table 3. The table revealed that our approach 
outperforms other two approaches. 

 
 

 
Fig. 12. Effects of the crossover rate on NSGA-II convergence 
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Fig. 13. Effects of the mutation rate on NSGA-II convergence 

 

 
Fig. 14. The number of charging station with sensor nodes increasing from 25 to 125 

 

 
Fig. 15. The average energy received of each sensor node with sensor nodes increasing from 25 to 125 
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Table 2. Charging Station vs. Charging Efficiency in different number of sensor nodes  

Sensor Nodes 
SABC LSABC NSGA-II 

Charging 
Station 

Energy 
(mW) 

Charging 
Station 

Energy 
(mW) 

Charging 
Station 

Energy 
(mW) 

25 15 34.866 15 34.899 15 34.907 
50 28 79.272 27 76.1 27 77.94 
75 34 122.513 34 119.305 33 121.703 

100 42 177.8 41 162.31 40 169.83 
125 45 222.94 45 217.12 45 235.25 

 
Table 3. Effect of network sizes on the number of charging stations 

network size SABC LSABC NSGA-II 
16*20*2.3 (m3) 20 19 17 
20*15*2.3 (m3) 28 27 27 
30*24*2.3 (m3) 39 38 36 

 
6. CONCLUSIONS 

 
This paper proposed a new deploy strategy by taking the 

number of charging stations and the distance between the 
sensor node and charging station into account 
simultaneously. We formulated the proposed strategy into a 
multi-objective problem and employed a NSGA-II to solve 
charging station deployment problem. We compared the 
proposed approach to the simulated annealing-based 
charging algorithm (SABC) and the layoff simulated 
annealing-based charging algorithm (LSABC) in terms of 
the number of charging stations and the overall charging 
power. The simulation results revealed that under the same 
number of charging stations, the overall charging power 
obtained using the proposed approach is 5% and 8% higher 
than that obtained using SABC and LSABC approaches. 
Moreover, the number of charging stations obtained using 
NSGA-II was 6% and 1% less than that obtained using 
SABC and LSABC approaches under the same number of 
sensor nodes, respectively. In future work, we can consider 
that there will be obstacles in the real environment, and 
these obstacles will interfere with the charging efficiency. 
Therefore, these conditions can also be added to the multi-
objective problem. 
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