
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202209_19(3).007 Vol.19(3) 2022121

OPEN ACCESS

Received: May 10, 2021
Revised: February 6, 2022
Accepted: February 19, 2022

Corresponding Author:
Wael Hadeed
wael.hadeed@uomosul.edu.iq

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)

ISSN: 1727-7841 (Online)

Container live migration in edge computing: a real-
time performance amelioration

Dhuha Basheer Abdullah, Wael Hadeed*

Department of computer science, University of Mosul, 41002, Mosul, Iraq

ABSTRACT

A new trend of advanced applications with high demands has emerged in recent
years. Though cloud computing provides ripe management services with ubiquitous
abilities, new needs and workloads decreed by new services tend to unmask their
deficiencies. Edge computing is a new type of computing that brings cloud services
closer to customers. In addition to that, edge computing reduces client/server latency
significantly. The services must work on edge nodes that are physical as near to their
customers as reasonable to achieve slight latencies. As a result, when a client relocates,
a service should migrate across edge nodes to preserve proximity. Besides, migration of
containers between edge nodes allows for many emerging use cases, reduces back-to-
the-cloud, and optimizes resource management (for example, e-learning systems). In
this paper, an algorithm for managing container execution has been proposed. A set of
constraints are considered when migrating containers between nodes, such as resource
availability, deadline time, and nodes location. When an event occurs, the container
must be migrated from one node to another closest/best possible node is searched. The
container live migration is used to get the best possible response time, reduce server
return, and better manage resources.

Keywords: Edge computing, Container, Docker, Optimal decision, Live migration.

1. INTRODUCTION

In the last few years, a modern trend of advanced applications with a strong desire
for Quality of Service (QoS) has evolved. Cloud computing is a technology that has
been widely adopted over the last decade and depends primarily on the centralization of
computing and data resources so that hand-out end users can use them on-demand.
Services can be supplied by large data centralized centres located far away from users.
Consequently, with the connection to remote services, a user may experience long
latency. In recent years, significant progress has been made in bringing cloud services
closer to customers, resulting in improved reliability and faster access (Salaht et al.,
2020; Wang et al., 2018).

Modern information and communication technologies strategy aims to bring cloud
processing as close to data sources as possible, leading to the emergence of novel
computing paradigms such as edge, fog, and mist computing. Edge computing is a
novel computing model that brings services cloud closer to end-users. Edge computing,
among other benefits, exceptionally reduces client/server latencies. Every day, the
number of real-time apps grows. These applications necessitate the availability of
computational resources close to the equipment (Ketu and Mishra, 2021; Vasconcelos
et al., 2019).

To achieve such minimum latencies, services must operate on edge nodes that are
physically as close as feasible to their customers. As a result, when a client moves, a
service must migrate across edge nodes to look after closeness. By managing resource
allocation in the network edges and prioritizing time through load balancing,

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 2

mobile edge computing appears to be a viable way to
reduce network operational expenses while also improving
network node quality of service (QoS). Furthermore,
service migration has a lot of potential for addressing the
difficulties in determining when and where these services
are migrated due to user mobility and demand changes
(Wang et al., 2018; Benomar et al., 2020).

Edge computing is a divided, scaled-down version of
cloud computing that can be used as a replacement for
cloud computing while also providing extra benefits (Ngo
et al., 2020). Virtualization allows cloud and edge
computing to offer a single user an isolated
computing/storage resource. As a result, a user can
delegate computationally intensive activities to a dedicated
virtual machine or container that runs on edge computing.
Though cloud and edge computing can be used
interchangeably in some applications, edge computing
offers significant benefits due to its proximity to users.
There are few security and privacy issues, reduced
bandwidth, and fast response times because network
transmission occurs right in front of customers (Puliafito et
al., 2019).

The edge computing stand uses Docker containers (a
type of software that can virtually package and isolate
applications for deployment) to supply the required
isolation of applications. Isolation is done by detaching
their execution from external stimuli and obtaining multi-
tenancy by reusing applications across different containers
using virtualization (Kim et al., 2021). The service
migration design can fully use the abilities of edge nodes
abilities and decrease system downtimes by raising the
fault tolerance. Docker container migration keeps the
system running when a container stops responding due to
overloading or failure. Docker container migration
essentially pauses a live container in one location and then
restores it to a new location with all of its data. During the
live migration, users receive a connection interrupted
notification, and their data is restored to its previous
condition (Kaur and Kaur, 2020).

Containers can be moved in real-time from one physical
hardware node to another within a data center, resulting in
minimal downtime. In addition, the load can be rebalanced
by migrating containers from one hardware node to
another with live migration (Govindaraj and Artemenko,
2018; Ma et al., 2017).

In recent years, there has been a surge in interest in
technologies that enable the integration of edge computing
with containers, including several methodologies for
dealing with remote infrastructure management and
provisioning. Some concerns have been addressed in the
literature in this context.

Maheshwari et al. (2018) proposed an approach to
container migration by implementing a comprehensive
system using a container hypervisor called Linux
Container Hypervisor (LXD); then, he evaluated the
container migration model based on real-time applications
and took the example of license plate recognition based on

the mobile edge cloud. The evaluation measured quality-
of-experience (QoE) and network efficiencies such as
average system response time and relay cost for various
loads, computing resources, bandwidth, and user latency.
The author proposed a distributed resource migration
algorithm and compared it with alternative techniques, and
the results were satisfactory. Moreover, Linux containers
are very popular because they have different advantages
over virtual machines (VMs) and take advantage of the
micro-service style software development mechanism.
That is done by designing applications as independently
deployable services. However, in the event of an attack or
a resource issue, these applications do not enable container
migration.

Dhumal and Janakiram (2020) suggested the C-Balancer
system, which provided scheduling work for placing
containers in the best possible way. C-Balancer works to
improve containers' performance in terms of resource use
and productivity; by experimenting with the proposed
model, the maximum improvement in performance and
variance in resource use has been achieved.

Another study by Benomar et al. (2020) proposed an
intermediary cloud system using a set of possible tools to
deploy and manage containers within the Fog and Mist
cloud computing layer. The author considers the edge
cloud computing layer to be peripheral; thus, it is possible
to use other cloud layers for deployment and container
management. The author used a set of tools, including the
cloud industrial intermediary program OpenStack, in
addition to Stack for Things (S4T). Furthermore, the
migration of virtual machines and containers in dynamic
resource management is a key aspect in lowering data
center operating expenses by lowering energy consumption
and, as a result, lowering the environmental effect.
Smimite and Afdel (2020) proposed a dynamic strategy for
how RAM is used for the host and virtual machines in the
data center to prevent needless power usage. When the
suggested model is compared to other techniques, the
findings demonstrated that using containers instead of
virtual machines saves energy usage and migration time,
which affects the quality of service (QoS), and reduces
service level agreement (SLA) violation. In the same
context, the mobile node represents a significant burden
for systems that rely on edge computing and container live
migration. Addressing this type of problem is complex.
Several authors have gone down their research path to
address this condition. For instance, Ma et al. (2017)
developed a framework that enhanced service handoff
among edge offloading servers by exploiting Docker
containers' multi-tiered storage architecture, improving
migration performance, which was presented. This system
enabled the edge computing platform to provide handoff
services continuously in a short time by eliminating
unnecessary transfers while supporting the mobility feature
only when the migration process starts. After the
experiment, the author showed that the handoff time
decreased significantly.

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 3

According to the description above, several researches
on container technology and edge computing were used in
different scenarios. However, few studies evaluated the
network's performance based on live container migration
technology with edge computing. As a result, the current
study helps assess how well the network performs when
certain events, such as energy conservation, resource
allocation, and fault tolerance, occur at specified periods.
Furthermore, this work is also an extension of a work that
was done in the previous studies by evaluating the
performance of live migration and indicating the ability of
the proposed algorithm that is based on real-time to choose
the best/closest possible node and to exceed the failure
case in the event of a disconnection.

2. THE PROPOSED METHOD

The work's main part is forming a group of nodes. The

nodes are connected, specifying the IP and port of each
node. Fig. 1 shows the main structure of the system. Also,
the available resources (processor and memory) for all
nodes are described.

Fig. 1. Network nodes

An algorithm based on real-time technology and edge

computing has been proposed to achieve the best possible
way to communicate between nodes. Through cooperation
between the nodes and the transfer of parts of the
implementation between the nodes, depending on the
selection of the best/nearest node. The main goal is to
achieve a set of criteria that give strength to the system
with perfect quality of service. The criteria that have been
set are:

1. Container live migration: Use container live migration
to reduce the time required for processing. Using
CRIU Tool to continue the work of the container
when it moves to another node from the point at
which execution stopped. The ability to monitor and
analyze physical resource usages, such as memory,
processor, and networking, is enabled by migrating
containers into a controlled environment.

2. Load Balancing: Supporting balance in the system
even when there is a discrepancy in the physical parts
of the nodes that make up the system by distributing
containers on the nodes to ensure balance.

3. Maintenance: If there is maintenance at a particular
node, the processing part of that node can be moved
to another node.

4. Energy-saving: Energy consumption is a major
challenge in edge computing systems that are
resource-constrained. Saving resources often requires
energy, especially for peripheral devices, so as much
as possible to control energy consumption in this type
of system.

5. Resources management allocation (dynamic run time):
The use of the container and its transfer between
nodes always needs to reserve resources. Resources
must be available when the container moves to the
leaf node. Controlling resources is one of the most
important problems facing systems. Docker Swarm
tool provides a convenient solution for controlling
resource reservation; by allowing a node to manage
containers and spread them on multiple host nodes.

6. Fault tolerance: For systems with multiple nodes,
fault tolerance is a challenge. Although the behaviour
of systems generally assumes the presence of faults
during work, it must be taken into account that there
is a tolerance for these errors. Improving the state of
the terminal nodes is one of the solutions to take
quick actions that reduce the impact of errors.

System Model
Initially, when the network is configured, each node will

be permitted to access all network node resources. Access
permission enables the network nodes to use the resources
available on the node while adhering to what has been
specified by Docker Swarm for all nodes. Docker Swarm
uses to ensure that all nodes store the same consistent state.
Thus, when a failure occurs, any node can restore balance
and stability to the system. When an event (time priority,
load balancing, node under maintenance, etc.) occurs at the
current node and the node has a container in execution, the
current state of the running container will be stored. Next,
the search for the appropriate node to migrate the container
begins. The update of nodes' information is done by
Algorithm 1.

The proposed model targets edge computing. Until the
computation is away from the server, part of the processing
operations is transferred to the edge nodes by giving them
some permissions. Events are periodically evaluated for all
nodes to determine how active and properly the system
behaves.

The system is divided into two parts: the first one is the
Node Examination Unit (NEU). NEU is used to check the
status of each active node, its resource utilisation, and the
discretionary time of the node in an execution state. The
process of node checking is done periodically by selecting

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 4

a release time and deadline for each execution cycle in a
node in the event of no response (more than a period was
taken). Second, Node Selector (NS). A container must be
relocated to another node whenever a specified event
happens. The list of nearest/best nodes is searched in the
Nodes List (NL), as shown in Algorithm 2. A set of
constraints are taken into account to select the appropriate
node. The priority is the availability of the required
resources, the state of the overload, and the proximity of
the current node to the node that will be selected take
precedence.

Algorithm 1: Node Examination Unit / Node List
Checking
 Input: Node List (NL)
 While Node Status is Available do
 - Determine Deadline Time
 - Check Node Resources Available
 - Check Node Container Available
 - Check Node Location
 - If Container in Execution do
 Check Time Established
 Output: New Node List (NL)

Algorithm 2: Node Selector (NS)
 Input: Node List
 For 1 : Node List (N) do
 - Determine Deadline Time
 - Check Node resources available
 - Check Node Location
 - If Node List (n) == Best do
 Candidate Node= Node List (n)
 Calculate Node Distance

Output: Candidate Node (NodeIP, NodePORT, NodeDIS)
 Start Container Live Migration

In Algorithm 2, the (Best) state means the following

cases occur: First, the Deadline time of the Candidate node
allows execution of the remainder of the container. Second,
there are enough resources to complete the container's
execution.

The list of nodes is sampled in Table 1, which illustrates
the state of each node at the moment. When a specific
event is received to evacuate node 1, the live container
migration process begins to migrate the implementation of
the Con1N1 container to another node. Using algorithm
number 2 to find the best/nearest node. There are three
main types of synchronization mechanisms (cold, pre-copy,
and post-copy). The best one that applied in our work was
the pre-copy migration. This mechanism states that the
execution will not stop while searching for a candidate
node for migration. Pre-copy migration takes shorter to
migrate than post-copy and cold migration. That is because
pre-copy migration does not convey the whole state of the
source container to the destination host. Instead, when the
migration process begins, it pre-dumps a portion of the
container's state, often its memory pages, and transfers it to
the destination host, leaving the source container alive and
well. As a result, the state of the source container may yet
be updated while the pre-dump state is being transmitted,
and any state of the source container that is modified over
the transfer is identified as modified to avoid any obsolete
or conflicted states. Fig. 2 shows the Pre-copy migration.

Fig. 2. Pre-copy migration

𝑎 = 𝑠𝑖𝑛ଶ ቀ
௅௔௧ଵି௅௔௧ଶ

ଶ
ቁ + cos(𝐿𝑎𝑡1) ∗ cos(𝐿𝑜𝑛𝑔2) ∗

𝑠𝑖𝑛ଶ ቀ
௅௢௡௚ଵି௅௢௡௚

ଶ
ቁ (1)

𝑐 = 2 ∗ 𝑎𝑡𝑎𝑛2൫√𝑎 . ඥ(1 − 𝑎൯ (2)

𝑑 = 6371𝑒3 ∗ 𝑐 (3)

Table 1. System snapshot for four nodes

Node name
Information Description

NodeDL ResAva (usage) ConAvaQ NodeLoc EsConEx

Node 1 12:00:00PM
CPU: 33%
RAM: 35%

Con1N1
Latitude: 36 22 44

Longitude: 43 08 37
120 sec

Node 2 1:00:00PM
CPU: 30%
RAM: 40%

Available
Latitude: 36 23 10

Longitude: 43 08 51

Node 3 12:00:00PM
CPU: 30%
RAM: 40%

Available
Latitude: 36 21 56

Longitude: 43 05 12

Node 4 2:00:00PM
CPU: 40%
RAM: 50%

Con1N4
Con2N4
Con3N4

Latitude: 36 21 18
Longitude: 43 09 01

200 sec

Note: NodeDL: Node Deadline, ResAva: Resources Available, ConAvaQ: Container Available Queue, NodeLoc: Node
Location, EsConEx: Estimated container execution time.

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 5

The distance is calculated by taking the nodes'
geographical location (Latitude, Longitude), noting the
equations 1, 2, and 3 (Gery, 1997) to calculate the
displacement between the nodes.

After selecting the appropriate node through the search
algorithm, the communication between the current and
selected node via the IP and port is configured. Finally, the
live migration is carried out with the help of CRIU's
features. Fig. 3 illustrates the CRIU principle. The CRIU
tool depends on several serial points starting from: first,
sending an ACK packet from source to destination node;
the goal is to give synchronization between them. Second,
dump its current state as a set of files on disk.

Third, copy the dump file from the source to the
destination node. Fourth, send an ACK confirmation
packet from the source to the destination node. Fifth,
freeze a working container. Sixth, resume the frozen
container in the destination node. Seventh, stop and then
destroy the container in the source node.

Fig. 3. CRIU technique

3. RESULTS AND DISCUSSION

The performance evaluation of the proposed algorithm

was done based on the formation of four nodes within a
virtual environment with the identification of resources
and IP addresses, as shown in table 2 and Fig. 3. In table 1,
the container migration process started from node 1 when
an event occurred. Periodically, Algorithm 1 updates the
list of nodes in the network. During implementation,
several periods (1, 2, and 5 minutes) were tried to find the
best possible period. Then, through Algorithm 2, the
best/closest node is searched in the list of network nodes.

Initially, it is considered within the nodes list. Then,
priority shall be given to effective contracts with no
execution state. Another point is the inventory of nodes
that contain the required resources. Then the displacement
is calculated using equation (1 2 3).

Haversine's formula is used to find the distance between
two points on a spherical surface by taking the latitude and
longitude in degrees on the Earth. In equation 1, (Lat1,
Long1) represent the coordinates of the first point, and
(Lat2, Long2) represents the coordinates of the second
point. Finally, (d) represents the distance in kilometers
between two points in equation 3. Table 1 shows that node
2 and node 3 are in the "Available" state. Thus, the
displacement is calculated and was (0.8753 km) between
node 1 and node 2; and (5.276 km) between node 1 and
node 3. So the migration process for the container will start
at node 1 to node 2. CRIU technology was used to move
the container. Fig. 3 shows the CRIU migration method for
the container.

Table 2. Nodes description

VM name Resources IP Address

Vm1
-2 CPU core i5 -2GB
RAM -12MB GPU

192.168.30.11

Vm2
-1 CPU core i5 -1GB
RAM -12MB GPU

192.168.30.12

Vm3
-2 CPU core i5 -2GB
RAM -12MB GPU

192.168.30.13

Vm4
-2 CPU core i5 -1GB
RAM -12MB GPU

192.168.30.14

Fig. 4. Nodes virtualization

A container can have its whole state stored in a disk file

because it is an isolated entity; this process is called
checkpointing. Then, using that file, a container can be
restarted. The solution takes advantage of Docker, which
comes with the CRIU checkpoint tool, to checkpoint a task
running in a container while performing a migration. Using
CRIU technology, it is possible to move the container
(Con1N1) currently executing on node 1 to node 2. CRIU
is used to create a checkpoint and restore it. The container
migration process starts after selecting the source and
destination node. The migration process starts by opening

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 6

a communication channel between node 1 and node 2,
depending on the IP address (192.168.30.12) and port
number (8080) of node 2. Next, an ACK., the packet is
sent to get synchronization between the two nodes. Then
pause, dump is created to execute container (Con1N1) at
node 1. Then the process of copying the dump file to the
host node and starting to resume the work of the container
(Con1N1) at the checkpoint at which the stop occurred in
node 1. Fig. 5 shows the usage percentage per node.

Fig. 5. Percentage usage per node

After container migration is complete, the destination

node of the migrated process restores all container
operations to their original state and sends resume
messages. Resume messages are issued unconditionally if
the partner node has not previously paused. Each pause
and resume message contains information about the source
and destination nodes. There will be no mistake regarding
which containers must be paused or resumed if several
containers migrate simultaneously. More precisely, each
container in the system has its unique ID. Therefore, the
system can differentiate the contents of each container. As
a result, no issues in terms of containers' contents can
happen when the migration is performed on many
containers. If the migration process fails at any stage, the
halted container will remain frozen and will not be able to
communicate again. This scenario will not be frightening
since the container will not be removed from the source
node until the container's work has been resumed in the
target node.

Calculating the response time using the proposed
algorithm gave perfect results. Using the proposed
algorithm to find the closest/best node for container
migration, when experimenting, a good and optimal
response time rate was obtained compared to the response
time rate to find a suitable node regardless of the node's
proximity to the parent node. One case that may give better
results for response time is pre-scheduling or off-line
scheduling, but its use is limited, does not support mobility
features, and is not compatible with the principle of real-
time. Fig. 6 shows the average response time of the
proposed algorithm. By using the values in Table 3, each

case represents the response time using (proposed
algorithm (Palg), directly algorithm (Dalg), and off-line
scheduling (Offalg).

Fig. 6. Nodes response time

The proposed technique is compared to the no-migration

situations in Fig. 7. Since container live migration is
employed in load balancing, the average system response
time is moderate compared to other alternatives. However,
the average system reaction time is notable in the case of
the nearest edge (nodes connect to the nearest available
edge). The real-time approach utilized to track nodes is the
cause behind this.

The above results are considered promising; however, it
is needed to prove that these results are statistically
significant. To this end, a regression model is built aiming
to test the variations of these results using one-way
Analysis of Variance (ANOVA) as follows:
lm(performance ~ Palg + Dalg + Offalg), where
performance is the dependent variable and Palg, Dalg, and
Offalg are the independent variables. We also involved two
hypotheses as follows:

Null Hypothesis: the means of all the algorithms are
equal

H0: µPalg = µDalg = µOffalg
Alternative Hypothesis: the means of the algorithms are

not equal
H1: µPalg ≠ µDalg ≠ µOffalg
The confidence level we choose is 95%, which means

the value (α = 0.05). However, after implementing the
model, we found a p-value of (0.001) lower than the
significance level; This means we cannot accept the Null
Hypothesis of equal means. Therefore, the means are
different and the results obtained are statistically
significant.

The topic of container live migration in edge nodes have
been considered before. For example, Maheshwari et al.
(2018) proposed an approach to container migration, a set
of techniques for efficient VM live migration on edge,
while Dhumal and Janakiram (2020) suggested the C-
Balancer system, which provided scheduling work for
placing containers in the best possible way. Finally,

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 7

Table 3. Average nodes response time
Case 1 Case 2 Case 3 Case 4 Case 5 AvRsT Variance

Palg 0.2 0.5 0.2 0.4 0.1 0.28 0.027
Dalg 0.3 0.7 0.3 0.5 0.3 0.42 0.032

Offalg 0.1 0.2 0.2 0.1 0.3 0.18 0.007

Fig. 7. Migration and no-migration comparison

Benomar et al. (2020) proposed an intermediary cloud
system using possible tools to deploy and manage
containers within the Fog and Mist cloud computing layer.

The difference between this work and the other works in
the literature is that none of the previous works used
metrics such as deadline time, resources available,
overload, and node's place to choose the best node.
Moreover, they did not take these metrics together;
choosing the appropriate node is more accurate using the
proposed algorithm, which makes it the first to address the
problem.

Finally, some additional papers, such as those (Smimite
and Afdel, 2020; Kotikalapudi, 2017), looked at migration
as scheduling, mapping, and orchestration problem.
Although the suggested approach does not address these
issues, it can be used to exploit or leverage such works.

4. CONCLUSION

Although there is a waste of time during the live

container migration process, especially for systems that
depend on the principle of real-time, the use of direct
migration gives greater flexibility with the stability of the
system in general and the presence of good quality of
services in addition to ensuring that work does not stop
when an emergency occurs in one of the network nodes.
Although dealing with moving nodes complicates the
calculations to find the nearest suitable node. Nevertheless,
the algorithm to find the best/nearest path was very
effective. The proposed algorithm gives a set of initial
solutions before the containers are migrated. The nodes list
provides a complete knowledge of the network
infrastructure, the most important of which are the
available resources and the location of the nodes. Thus
periodically provides information on all network nodes,
which in turn gives planning for dynamic resource
management. Getting optimal response time by sticking to

time slots and real-time constraints. There are challenges
in protecting mobile containers between nodes; through
unauthorized access, if it is to the network or nodes,
protection must be provided to the data of all customers.
We recommend this in future work.

ACKNOWLEDGMENT

The author is grateful to the Department of Computer

Science / College of computer science and mathematics at
the University of Mosul / Iraq for supporting me in
completing this work.

REFERENCES

Benomar, Z., Longo, F., Merlino, G., Puliafito, A. 2020.
Cloud-based enabling mechanisms for container
deployment and migration at the network edge. ACM
Transactions on Internet Technology, 20. https://doi.org/
10.1145/3380955

Dhumal, A., Janakiram, D. 2020. C-balancer: a system for
container profiling and scheduling. 1–10.
http://arxiv.org/ abs/2009.08912

Gery, S.W. 1997. Direct fix of latitude and longitude from
two observed altitudes. Navigation, Journal of the
Institute of Navigation, 44, 15–24. https://doi.org/
10.1002/j.2161-4296.1997.tb01935.x

Govindaraj, K., Artemenko, A. 2018. Container live
migration for latency critical industrial applications on
edge computing. IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA,
2018-Septe(iii), 83–90. https://doi.org/10.1109/ETFA.
2018.8502659

H., N.S., Kumar, K.R.A., Shenoy, S.N., Rao, A.S., 2020.
Data security in cloud environment based on
comparative performance evaluation of cryptographic
algorithms. International Journal of Advanced Trends in
Computer Science and Engineering, 9, 4989–4997.

Hadeed, W.W., Abdullah, D.B. 2021. Real-time based big
data and e-learning: a survey and open research issues.
AL-Rafidain Journal of Computer Sciences and
Mathematics, 15, 225–243.

Havanje, N.S., Kumar, K.R.A., Shenoy, S.N., Rao, A.S.,
Thimmappayya, R.K. 2022. Secure and reliable data
access control mechanism in multi-cloud environment
with inter-server communication security. Suranaree
Journal of Science & Technology, 29.

Kaur, H., Kaur, K. 2020. Live Migration of stateful
processes across edge servers. International Journal of

International Journal of Applied Science and Engineering

Abdullah and Hadeed, International Journal of Applied Science and Engineering, 19(3), 2022121

https://doi.org/10.6703/IJASE.202209_19(3).007 8

Recent Technology and Engineering, 8, 5207–5211.
https://doi.org/10.35940/ijrte.e9850.038620

Ketu, S., Mishra, P.K. 2021. Cloud, fog and mist
computing in iot: an indication of emerging
opportunities. IETE Technical Review (Institution of
Electronics and Telecommunication Engineers, India), 0,
1–12. https://doi.org/10.1080/02564602.2021.1898482

Kim, T., Al-Tarazi, M., Lin, J.W., Choi, W. 2021. Optimal
container migration for mobile edge computing:
algorithm, system design and implementation. IEEE
Access, 9, 158074–158090. https://doi.org/10.1109/
ACCESS.2021.3131643

Kotikalapudi, S.V.N. 2017. Comparing live migration
between linux containers and kernel virtual machine :
investigation study in terms of parameters. February, 42.
www.bth.se

Ma, L., Yi, S., Li, Q. 2017. Efficient service handoff across
edge servers via docker container migration. 2017 2nd
ACM/IEEE Symposium on Edge Computing, SEC 2017.
https://doi.org/10.1145/3132211.3134460

Maheshwari, S., Choudhury, S., Seskar, I., Raychaudhuri,
D. 2018. Traffic-Aware Dynamic Container Migration
for Real-Time Support in Mobile Edge Clouds.
International Symposium on Advanced Networks and
Telecommunication Systems, ANTS, 2018-(December).
https://doi.org/10.1109/ANTS.2018. 8710163

Nagesh Shenoy H, K.R. Anil Kumar, Rajgopal K.T.,
Abhishek S. Rao. 2020. An Audit on cloud architectures
addressing data privacy and security concerns.
International Journal of Advanced Science and
Technology, 29, 6373–6382. Retrieved from
http://sersc.org/journals/index.php/IJAST/article/view/2
0081

Ngo, M.V., Luo, T., Hoang, H.T., Tony Quek, Q.S. 2020.
Coordinated container migration and base station
handover in mobile edge computing. 2020 IEEE Global
Communications Conference, GLOBECOM 2020 -
Proceedings. https://doi.org/10.1109/GLOBECOM
42002.2020.9322368

Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G., Longo,
F., Puliafito, A. 2019. Container migration in the fog: A
performance evaluation. Sensors (Switzerland), 19, 1–
22. https://doi.org/10.3390/s19071488

Salaht, F.A., Desprez, F., Lebre, A. 2020. An overview of
service placement problem in fog and edge computing.
ACM Computing Surveys, 53. https://doi.org/10.1145/
3391196

Smimite, O., Afdel, K. 2020. Containers placement and
migration on cloud system. International Journal of
Computer Applications, 176, 9–18. https://doi.org/
10.5120/ijca2020920493

Vasconcelos, D.R., Andrade, R.M.C., Severino, V., De
Souza, J.N. 2019. Cloud, Fog, or Mist in IoT? That is
the qestion. ACM Transactions on Internet Technology,
19. https://doi.org/10.1145/3309709

Wang, S., Xu, J., Zhang, N., Liu, Y. 2018. A survey on
service migration in mobile edge computing. IEEE
Access, 6, 23511–23528. https://doi.org/10.1109/
ACCESS.2018.2828102

