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ABSTRACT 
 

Detection of glaucoma has become critical, as it has arisen as the subsequent essential 
driver of visual impairment, around the world. At present, most of the algorithms in use 
rely on pre-trained deep neural networks to produce the best results. However, the high 
computational time and complexity and the need of a large database, make glaucoma-
detection arduous and difficult. Keeping these in mind, this paper proposes a new 
convolutional neural network architecture, in particular, ProspectNet, which has 
demonstrated to accomplish a better accuracy with lesser computational time and 
complexity when tested against two pre-trained networks: VGG16 and DenseNet121. 
The data set is an amalgamation of two publicly available datasets- DRISHTI-GS and 
Glaucoma Dataset (Kaggle), comprising ocular colour fundus images of glaucomatous 
as well as normal eyes. ProspectNet has accomplished a normal AUC (area under the 
curve) as 0.991, specificity, and precision as 0.98. Confusion matrices also plotted to 
illustrate the new architecture’s efficacy. These outcomes demonstrate that ProspectNet 
is a hearty option in contrast to other best in class calculations for a medium sized dataset. 
The paper suggests three distinct structures for glaucoma detection. One advantage of 
our approach is that no special feature selection, such as detailed measurements of 
particular traits like the structure of the optic nerve head, is necessary. 

 
Keywords: Glaucoma, Ocular colour fundus images, Deep convolutional neural 
networks. 
 

 
1. INTRODUCTION 
 

Glaucoma is an eye illness brought about by harm of the optic nerve. This harm 
frequently occurs by dint of high intraocular pressure and seldom because of a serious 
catastrophe for the eye or other injuries. Mostly, it lies in the genetic lineage and is 
inherited from ancestors to offspring. One aspect of this disease is that it pertains to old 
age and another is that it is irreversible. Usually, both the eyes are affected. However, 
one eye is, mostly, more badly affected than the other. An incredible level of the 
worldwide populace (assessed to be 64.3 million in 2013, expanding to 76 million in 
2020 and 111.8 million in 2040) is victim to glaucoma. New statistics gathered by Bourne 
et al. (2021) shows that at least 2.2 billion individuals worldwide suffer from some form 
of vision impairment, and at least 1 billion of those have a condition that could have 
been avoided or is yet unresolved. Halpern and Grosskreutz (2002) state that glaucoma 
poses an even bigger public health concern than cataracts since the blindness it causes is 
permanent. Detection of this disease is difficult since no symptoms are seen in the early 
stages. The majority of the time, ophthalmologists treat all common eye conditions, 
including glaucoma, diabetic retinopathy, and age-related macular degeneration. A recent 
study by Resnikoff et al. (2020), the ophthalmology workforce that encompassed 198  
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countries (or 94% of the world's population), found that 
there is a substantial shortage of ophthalmologists in both 
the present and the future. Since glaucoma causes optic 
nerve-head harm and resultantly, visual field abandons, the 
best evaluating for glaucoma is the recognition of 
characteristic changes in the optic nerve structure by 
Krishnan and Faust (2013). However, because of an absence 
of adequate number of prepared specialists, devising an 
automatic detection system is almost essential. Globally, 
work started on detection of glaucoma as an extension of the 
applications of image processing. It is undeniable, though, 
that this case of glaucoma-detection is a superior image-
processing application. Artificial intelligence (AI) was 
infused with image–processing techniques to obtain more 
accurate results, and the normal processing techniques like 
wavelet transform were modified to suit the occasions. 

The following describes how the paper is organised: 
section 2 presents related work for the detection of 
glaucoma. In addition to providing a clear record of the 
many convolutional networks that were used, section 3 
provides a full description of the dataset materials. The 
results of the several CNNs on the dataset taken into account, 
along with the ROC curves and confusion metrices, are 
shown in section 4 of the article. The conclusion and future 
work are described in section 5 at the end. 

 
2. RELATED WORKS 

 
A convolutional neural network (CNN) is a deep learning 

algorithm which inputs an image, relegates significance to 
different aspects of image and performs differentiation 
amongst the image set by Li et al. (2018). This work 
involves convolution neural networks as an instrument to 
distinguish between glaucoma eye and typical eye fundus 
images. The pre-processing needed in a convolution neural 
network is much lower than that of any other classification 
algorithms. A typical ConvNet comprises several 
convolution layers by Diaz-Pinto et al. (2019) and Gómez-
Valverde et al. (2019), accompanied by filters which are 
capable of retrieving features of importance required for 
classification. We need to use a substantial image data 
collection with more than 14000 images in order to fine-
tune these networks. 

For instance, Kolář and Jan (2008) had detected 
glaucoma on the basis of fractal description which was 
followed up by classification. Fractal aspects can be utilized 
as highlights for retinal nerve fiber misfortunes recognition, 
which is an indication of glaucomatous eye. Maheswari et 
al. (2017) accomplishing the objective by utilizing LS-SVM 
(Least Squares Support Vector Machine) to rank the 
correntropy features extracted by EWT (Empirical Wavelet 
Transform). In the interim, another school of thought 
proposed the analysis of the cup-to-disc ratio (CDR). The 
CDR communicates the extent of the disc occupied by the 
cup. For an eye that is typical, CDR ought to be somewhere 
in the range of 0.3 and 0.5. With progressive neuro-retinal 

degeneration, the ratio in question increases. Vision is 
totally lost at a CDR worth of around 0.8. Additionally, the 
method put forward in this paper restricts the extraction area 
by excluding the blood vessel region, and sample images of 
these structures are manually collected. Mishra et al. (2011) 
proposes a technique for segmentation utilizing the concept 
of adaptive thresholding and it utilizes the features acquired 
from the picture, like mean and standard deviation, to 
eliminate data from the red and green channels of a fundus 
image and obtain an image which contains just the optic 
nerve head region in both the channels. The optic circle is 
divided from the red channel and optic cup from the green 
channel respectively by Issac et al. (2015). However, their 
method failed when tested on low contrast images due to the 
small dataset used. Corner thresholding and point contour 
joining based novel techniques have additionally been 
proposed in literature to build smooth shapes of optic disc. 
This algorithm tracks blood vessels inside the disc region 
and identifies the points at which the first vessel twists from 
the optic circle limit and interfaces them to acquire the 
contours of optic cup by Soorya et al. (2018).  

A neuro-fuzzy strategy was likewise carried out to 
separate the features, for example, cup to disc (c/d) 
proportion, proportion of the distance between optic disc 
centre and optic nerve head to diameter of the optic disc, 
and the proportion of blood vessels area in inferior-superior 
side to area of blood vessel in the nasal-temporal side. These 
highlights are approved by characterizing the ordinary and 
glaucoma pictures utilizing neural network classifier by 
Nayak et al. (2009). Researchers have also tried to 
implement unsupervised learning to segment the optic nerve 
head. A template-matching, texture-based and model-based 
approach has been followed by Mvoulana et al. (2019). 
Gradually, deep learning (DL) came into the picture. Several 
algorithms have been proposed. Among different attributes, 
CNNs are known due to their capacity to learn highly 
discriminative features from raw pixel intensities by Diaz-
Pinto et al. (2019). Diaz-Pinto et al. (2019) utilizes five 
ImageNet-trained models (VGG16, VGG19, InceptionV3, 
ResNet50 and Xception) for automatic assessment utilizing 
fundus images. The outcomes propose that ImageNet-
trained models are an extraordinary option for automatic 
glaucoma screening frameworks. Phan et al. (2019) have 
examined about utilizing DCNNs where utilizing three 
DCNNs showed areas under the curve (AUCs) of 0.9 or 
more. They also noted that the factor influencing 
discriminating ability is image quality rather than image 
size. Gómez-Valverde et al. (2019) claims to have 
accomplished a great performance using a transfer learning 
scheme with VGG19 accomplishing an AUC of 0.94 with 
sensitivity and specificity ratios similar to the expert 
evaluators of the investigation of glaucoma. There have 
been more developments in this area, and end-to-end deep 
convolutional neural network models have been developed. 
Here, the learning technique is made out of three phases: 
OD (optic disc) and PC (physiological cup) segmentations, 
morphometric feature estimation and glaucoma detection, 
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which are sequentially trained utilizing a curriculum 
learning strategy by Perdomo et al. (2018). 

A few papers discuss using and modifying pre-trained 
neural nets. One such case being the utilization of a 
GoogleNet Inception v3 pre-trained model for transfer 
learning, this included training the data with a pre-defined 
(trained) existing model. The last classification layer of the 
Inception v3 model was changed to fit the classification 
needs, and then fine-tuned using data. For back-propagation, 
the Adam analyser, an adaptive learning rate technique, was 
utilized as an enhancement work, while cross entropy was 
utilized as a loss function. Ahn et al. (2018) has shown 
exploratory outcomes that showed that the deep networks 
accomplished better classification accuracy after the 
integration of the handcrafted features, e.g., scale-invariant 
feature transform by Li et al. (2019). Although these 
techniques had a maximum accuracy of 0.8284, they 
performed particularly poorly in segmenting and detecting 
lesions, indicating that this was a highly difficult task. 
Specialized and clinical view points to construct a DL 
framework to address those needs, and the possible 
difficulties for clinical adoption are discussed by Nath and 
Dandapat (2012). AI and DL gradually started playing a 
critical part in clinical ophthalmology practice, with 
suggestions for screening, diagnosis and follow up of the 
major causes of vision disability in the setting of ageing 
populations around the world by Haleem et al. (2013) and 
Ting et al. (2019). However, authors merely use "a deep 
learning approach" and comparable words to refer to all 
methods rather than discussing particular deep learning 
techniques or architectures. A study has demonstrated that a 
deep learning framework can identify glaucoma with high 
sensitivity and specificity. Be that as it may, high or 
obsessive nearsightedness and physiologic measuring 
brings about focus positive outcomes by Li et al. (2018). In 
this work, author used smaller data sets at the expense of 
decreased performance. 

The initial step to detect glaucoma is to capture good 
quality images of an eye. The images can be both colour 
fundus and those obtained through Optical Coherence 
Tomography (OCT). It is to be noted that a single OCT 
machine can cost up to $15000. This work aims to provide 
that early detection of glaucoma to the masses, especially to 
those remote places where affording a doctor is also a luxury. 
Thus, colour fundus images have been used. Many scientists 
are using CNNs to identify glaucoma with the greatest 
accuracy. The dedicated libraries of Python make the 
arduous task easier. Inspired and motivated by all of this, we 
have designed an algorithm using deep neural networks. 

Currently, most of the algorithms in use rely on pre-
trained deep neural networks to produce the best results. 
However, the high computational time and complexity and 
the need of a large database, make glaucoma-detection 
arduous and difficult. Most of the current algorithms have 
been found to perform worse in patients who have several 
disorders, such as glaucoma. Therefore, the use of deep 
learning-based technologies can improve the performance 

of specialists while treating patients who have a variety of 
eye disorders. The majority of currently used approaches 
rely on optic cup and disc-based factors such cup to disc 
ratio. These methods are sensitive to the fundus image 
quality. Such methods may not be able to handle visual 
noise, raising concerns about their security. This research 
work proposes a new CNN architecture, namely, 
ProspectNet, which has proved to achieve better accuracy 
with lesser computational time and complexity as compared 
to the existing architecture. 

 
3. PROPOSED METHOD 

 
The paper suggests three distinct glaucoma detection 

architectures. Our method has the benefit of not requiring 
any particular feature selection, which is one of its benefits. 
The models for our strategy were trained using a variety of 
datasets. The datasets include photos with various levels of 
illuminance, contrast, image resolution, colour, and other 
heterogeneities. Due to the broad dataset used for training, 
the models are robust and impervious to errors. 

 
3.1 Materials and Methods 

This study uses 1065 retinal colour fundus images from 
two publically accessible datasets: the DRISHTI-GS by 
Sivaswamy et al. (2015) and the glaucoma dataset (obtained 
from Kaggle). The images are labelled in two categories, 
glaucoma and normal. Fig. 1 demonstrates the images taken 
into consideration for the experiment. 

 

 
Fig. 1. Examples of colour fundus images from the dataset 

incorporated 
 

The DRISHTI- GS by Sivaswamy et al. (2015) comprises 
a total of 101 retinal colour fundus images. The dataset 
comprises 71 glaucomatous images and 30 normal images. 
This dataset is freely accessible and was acquired and 
commented by Aravind Eye Hospital, Madurai, India by 
Sivaswamy et al. (2014). The dataset comprises images 
from Indians. The other set of images are obtained from a 
publicly available image data source, Kaggle and is labelled 
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as Glaucoma dataset. This dataset envelops an aggregate of 
964 images, out of which, 450 images are glaucomatous and 
514 normal images. The subtleties of the datasets utilized 
are organized in Table 1. The train and test data were divided 
in the ratio of 4:1. 

 
Table 1. Database showing the number of images 
belonging to each of the category of normal and 

glaucomatous subsets along with the image formats 
Dataset Format Glaucomatous Normal 

DRISHTI-GS PNG 71 30 
Glaucoma Dataset 

(Kaggle) JPG 450 514 

Total  521 544 
 

3.2 Pre-Processing 
In order to reduce computational time and facilitate better 

results, pre-processing of the images was done by Diaz-
Pinto et al. (2019) and by Phan et al. (2019) using the 
technique of binary masking. This technique helps in 
defining the Region of Interest (ROI) by assigning binary 
value to image pixels and the background. The image was 
converted into greyscale for effective processing. A binary 
mask was created by classifying each pixel as belonging to 
either background (taken pixel value of 0) or region of 
interest (taken pixel value of 1). The extracted ROI 
constituted an image of fixed resolution of 224 × 224 and 
was fed as input to the algorithms used. The extraction of 
ROI helped in accelerating the performance of glaucoma 
diagnosis on all the proposed algorithms. 

 
3.3 Convolutional Neural Networks 

The study employs usage of two pre-trained 
convolutional neural networks, DenseNet121 and Vgg16. 
Moreover, a recently evolved convolution network, 
ProspectNet, has also been proposed. The usage of pre-
trained networks makes it easier to solve a problem as it has 
already been trained on a larger database, thus reducing 
computational cost by Gómez-Valverde et al. (2019). The 
accuracy of both the pre-trained neural networks and the 
newly proposed neural networks were compared. The brief 
discussion of the pre-trained CNN and newly proposed 
CNN is given as follows: 

3.3.1 Model Using VGG16 
The model VGG16 is a CNN architecture proposed by 

Simonyan and Zisserman (2014) from the University of 
Oxford. The VGG16, a convolution neural network of 16 
layers, when trained with ImageNet gives an accuracy of 
about 92.7%. The ImageNet is a huge dataset containing 
about 14 million images belonging to a large variety of 
classes. The architecture VGG16 model used in the work is 
shown in Fig. 2.  

The VGG16 takes an input of fixed size 224 × 224 RGB 
image for its first convolution layer. The sequential model 
constitutes the following layers: 
 Two convolution layers of 64 channels of 3 × 3 

dimension followed by one max pooling layer of 2 × 2 
pixel window. 

 Two convolution layers of 128 channels of 3 × 3 
dimension followed by one max pooling layer of 2 × 2 
pixel window. 

 Three convolution layers of 256 channels of 3 × 3 
dimension followed by one max pooling layer of 2 × 2 
pixel window. 

 Three convolution layers of 512 channels of 3 × 3 
dimension followed by one max pooling layer of 2 × 2 
pixel window and this set of layers is repeated. 

 
The 3 × 3 dimension filter has a very small receptive field 

essential to capture the concept of left, right, up , down and 
centre by Simonyan and Zisserman (2014). The max 
pooling layers are used for performing spatial pooling for 
those convolution layers, which are preceded by the max 
pooling layers. The last max pooling layer is trailed by a 
flatten layer, which is essential for converting the two- 
dimensional image matrix of features into a vector. This 
transformed vector is then converted to the stack of three 
fully connected layers. For VGG16 utilized in the study, the 
initial two fully connected layers have 4096 channels each. 
The third layer plays out a binary classification between 
glaucoma and normal, and therefore outputs one category. 
The hidden layers are utilized with the rectification (ReLU) 
non-linearity. This activation function has primarily been 
used keeping in mind that it yields best results to similar 
problems. 

 

 
Fig. 2. Architecture of VGG16 

 
 



International Journal of Applied Science and Engineering 
 

 
Ghorui et al., International Journal of Applied Science and Engineering, 20(1), 2022202 

 

 
https://doi.org/10.6703/IJASE.202303_20(1).003                                                                                     5 
          

Equation 1 is the mathematical expression of the ReLU. 
The model was involving Adam optimization and Binary 
Cross Entropy as loss function with the final layer having 
sigmoid function as activation by Gómez-Valverde et al. 
(2019). Equation 2 gives the mathematical expression for 
the sigmoid activation function. Additional usage of 
Dropout and Data augmentation were also done. The data 
augmentation included random rotation, random shift, 
vertical and horizontal flip. The developed model was 
trained for about 30 epochs the training was carried out 
using Google Colaboratory notebook. 

 
R(z) = max (0, z)                                (1) 
σ(z) = 1 / (1 + e-z)                                (2) 
 
3.3.2 Model Using DenseNet121 

The problem of glaucoma classification was also 
addressed by using another CNN, DenseNet121.  

The DenseNet121 architecture comprises the simplest 
architectures of other Dense Convolution networks trained 
in ImageNet. In a Dense CNN, each layer is associated with 
each and every layer in a feed-forward style by Huang et al. 
(2017). In a DenseNet, the element guides of all preceding 
layers are employed as inputs for each layer and its own 
feature-maps are utilized as inputs to ensuing layers. The 
architecture of DenseNet used for the classification of 
glaucoma is demonstrated in the Fig. 3.  

 

 
Fig. 3. Architecture of DenseNet used for glaucoma 

classification 
 

The CNN utilized in the study takes an input image of 
224 × 224 image size and passes it to the sequential model 
of the DenseNet121 neural network. The architecture of 
DenseNet121 is shown in Fig. 4. The architecture comprises 
the following layers: 
 One convolution layer of 7 × 7 dimension, followed by 

one max pooling layer of 3 × 3 pixel window and then 
the first dense block. 

 One convolution layer of 1 × 1 dimension followed by 
one average pooling layer of 2 × 2 pixel window and then 
the second dense block. 

 One convolution layer of 1 × 1 dimension followed by 
one average pooling layer of 2 × 2 pixel window and then 
the third dense block. 

 One convolution layer of 1 × 1 dimension followed by 
one average pooling layer of 2 × 2 pixel window and then 
the fourth dense block. 

A dense block consists of a set of convolution layers with 
3 × 3 filters and another set of convolution layers with 1x1 
filters. The convolution layer and average pooling layer 
with activation function as ReLU, comprises a transition 
block. The difference in the dense blocks depends on the 
number of the filters used. There are in total 121 layers (4 
convolution layers out of the dense block, 1 fully connected 
layer at the end, 4 dense block containing 6, 12, 24, 16 
convolution layers respectively, each of having both 1 × 1 
and 3 × 3 filter making it to a total of 121) which gives the 
significance of 121 in DenseNet121. Before the completely 
associated layer, a dropout layer is placed. The completely 
associated layer utilizes sigmoid activation function and 
also comprises 1 channel for categorisation of glaucomatous 
and normal images. The compilation of the model was done 
using Adam optimizer and binary cross entropy as loss 
function and was trained for 30 epochs. 

 
3.3.3 Proposed Model using ProspectNet  

A new CNN architecture was developed and tested for the 
problem of glaucoma diagnosis. The network architecture, 
as shown in Fig. 5, takes input image of 224 × 224 and feeds 
to a convolution layer. The architecture comprises the 
following layers: 
 One convolution layer of 64 channels of 3 × 3 dimension 

followed by one max pooling layer of 3 × 3 pixel window. 
 One convolution layer of 32 channels of 3 × 3 dimension 

followed by one max pooling layer of 3 × 3 pixel window. 
 One flatten layer followed by three fully connected layers 

having 128, 64 and 1 channel respectively.  
The third fully connected layer consists of 1 channel in 

order to suffice the glaucoma diagnosis algorithm. The 
model is finally compiled by using Adam optimiser and 
binary cross entropy as the loss function. The model was 
trained for 30 epochs. 

 
4. RESULTS AND DISCUSSION 

 
In order to evaluate the performance of the CNN 

architectures on glaucoma diagnosis, Receiver Operating 
Characteristic (ROC) analysis by Gómez-Valverde et al. 
(2019) was performed and comparison was made based on 
several performance metrics. Each of the architectures was 
fed with the same dataset and was trained for 30 epochs. The 
dataset was divided using train test split method where 25 
percent of images from each set was put into test images. 
After training of the models, the models were applied on the 
test set and predictions obtained were tabulated in the form 
of confusion matrix as shown in Fig. 6. The true positive 
(tp), true negative (tn), false positive (fp) and false negative 
(fn) values were obtained from confusion matrix, to suffice 
the calculation of various performance metrics for 
comparison of the mentioned CNNs. 
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Fig. 4. Architecture of DenseNet121 

 

 
Fig. 5. Architecture of ProspectNet 

 

 
(a) Confusion matrix for VGG16 

 
(b) Confusion matrix for DenseNet121 

 
(c) Confusion matrix for ProspectNet 

Fig. 6. Confusion matrix showing the predictions for glaucoma classification for VGG16, DenseNet121 and ProspectNet 
 

The computational time, accuracy, precision, AUC, 
sensitivity and specificity were taken as performance 
metrics for comparison. The VGG16, trained in ImageNet, 
gave a validation accuracy of about 80.28% when trained 
on the used dataset, while Densenet121 and ProspectNet 
proved to be exceptional in terms of accuracy, giving values 
of 96.25% and 96.63% respectively.  

The sensitivity (true positive rate, tpr) is defined as the 
number of true positives divided by the sum of the number 
of true positives and false negatives, as is represented in 
Equation 3. Similarly specificity (true negative rate, tnr) is 
the number of true negatives divided by sum of true 
negatives and the false positives, as shown in Equation 4. 
Sensitivity shows percentage of the glaucomatous cases 
correctly predicted and specificity does the same for 
correctly predicted normal cases. 

 
Sensitivity (tpr) = tp/(tp + fn)                      (3) 
Specificity (tnr) = tn/(tn + fp)                      (4) 

 
For VGG16, sensitivity was found to be 0.85 and 

specificity to be 0.79. The Densenet121 showed better 

metrics, with both sensitivity and specificity of 0.96. The 
new proposed model, ProspectNet gave a promising result 
with sensitivity value of 0.95 and specificity of 0.98. Further 
performance visualization of the models was done by 
plotting the ROC curve. The ROC graph is two dimensional 
representations with the sensitivity in Y axis and specificity 
in X axis. The AUC was obtained from the ROC curve and 
served as another metric for performance comparison. As 
per the graphs’ results, ProspectNet gave the most fruitful 
results of AUC 0.991, while DenseNet121 gave an AUC of 
0.990 and VGG16, an AUC of 0.892. The ROC curves of 
three models are shown in Fig. 7. 

It is to be noted that besides the specificity and accuracy, 
ProspectNet yielded lower computational complexity and 
time compared to VGG16 and DenseNet121. Furthermore, 
ProspectNET has a lighter architecture (just 96 pre-trained 
layers) than DenseNET121, which has 121 pre-trained 
layers, and this was expected to result in improved accuracy 
with faster computing. Table 2 shows the comparison 
among the various parameters under observation for all the 
three models that have tested. 

The above-mentioned results validate that CNNs yield 
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results with high specificity and sensitive values on being 
trained with even a medium-sized data set. The novelty of 
the approach lies in the high accuracy obtained, in spite of 
the absence of specifications of lesion-based features and a 
homogenous data set. The images used in this work do not 
belong to the same source or size or format. 

 
5. CONCLUSION AND FUTURE WORK 

 
This paper suggests three distinct (VGG16, DenseNet12, 

and ProspectNet) glaucoma detection architectures. Our 
method has the benefit of not requiring any particular 
feature selection, which is one of its benefits. The majority 
of currently used approaches rely on optic cup and disc-
based factors such cup to disc ratio. These methods are 
sensitive to the fundus image quality. Such methods may not 
be able to handle visual noise, raising concerns about their 
security we introduced a novel approach of glaucoma 
classification utilizing deep CNNs using colour fundus 
images. 

The three networks were examined using a variety of 
performance measures and computing time on a specific 
dataset. It is undeniably evident that the VGG16 model is 
unable to deliver useful results for the used data set. 
Although DenseNet121 is only marginally less contextually 
superior to ProspectNet, it is necessary to consider 
processing time and complexity when deciding whether 
method is superior. Since DenseNet121 includes 121 pre-
trained layers, the algorithm using it is unquestionably much 
more computationally complex. As can be shown from 
Table 2, ProspectNet performs better in terms of glaucoma 
classification accuracy and specificity, as well as processing 
efficiency. 

The limiting factor for this study is that it has a huge 

dependency on the availability of labelled data. The success 
of deep neural networks in giving out huge amount of 
accuracy is largely relied on labelled dataset which posses a 
difficulty for us as annotation of eye images is very much 
time consuming and expensive. Additionally, the algorithm 
is limited to binary classification, which can be improved to 
be able to do multi class classification. Another scope for 
future improvements would be to add more advanced 
transfer learning approaches for improved classification 
results. 

The use of deep learning methods to large-scale fundus 
photo benchmarks appears to be a promising topic for future 
research in this field. Additionally, it has been noticed that 
there aren't many openly available image benchmarks, and 
most researchers use their own fundus image benchmarks to 
judge the quality of their own work. It is required to create 
a substantial, readily available image standard in order to 
evaluate future research in this field. This can help create an 
effective CAD for glaucoma detection and will be useful in 
identifying the best performance of future studies evaluated 
on the same data set. 
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(a) 

 
(b) 

 
(c) 

Fig. 7. (a) ROC curve for VGG16 (b) ROC curve for Densenet121 (c) ROC curve for ProspectNet 
 

Table 2. Summary of the performance parameters and model attributes of the different CNNs incorporated 
Algorithm Accuracy AUC Precision Specificity Sensitivity Computational time 

VGG16 (Simonyan and Zisserman, 2014) 82.02% 0.892 0.79 0.79 0.851 417 s 
DenseNet121 (Huang et al., 2017) 96.25% 0.990 0.96 0.96 0.96 509 s 

ProspectNet (Proposed) 96.63% 0.991 0.98 0.98 0.95 337 s 
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