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ABSTRACT 
 

Developing a whole kidney model is important for effective diagnostic procedures and 
treating kidney diseases. The modeling of a multi-nephron network aids in developing 
the whole kidney model. The key aspect of any nephron model is understanding the 
pressure dynamics. The governing equations for pressure dynamics in the kidney depend 
on the number of nephrons and their interactions. There are mathematical models to 
analyze the local and global behaviors of single and coupled nephrons. It is difficult to 
formulate governing equations for a whole kidney model. This necessitates the 
development of simulation models. Even the simulation models have only been 
developed for 72 nephrons. The complexity is involved in incorporating both local and 
global behaviors of nephrons. In this paper, a cellular automata (CA) framework has been 
proposed to study the global behavior of nephrons. The advantage of the proposed CA 
framework is its scalability and its ability to capture global dynamics without formulating 
the corresponding governing equations. The limitation of the CA framework is its 
inability to compare point-to-point local behavior. But the clinical findings suggest that 
global behavior gives significant information about the kidney. We have developed CA 
rules for 8-nephron, 16-nephron, 72-nephron and 100-nephron network models 
considering both rigid and compliance tubules. The CA rules with various initialization 
schemes produce different evolutionary patterns similar to the emergent dynamical 
behavior of nephrons obtained from experimental and numerical findings. Evolutionary 
patterns of the CA framework are related to normotensive and hypertensive pressure 
dynamics. The in-phase and out-of-phase synchronizations have also been observed in 
the CA evolutionary patterns. The irregular rhythm of the cardiovascular system may 
give rise to shock waves in the pressure dynamics of the kidney. This behavior has also 
been observed in the proposed CA framework.  

 
Keywords: Nephron-network, Cellular automata, Hypertension, Emergent properties. 
 

 
1. INTRODUCTION 
 

The kidney has a hierarchical physical composition, with the nephrons and arteries as 
pyramids. Nephrons are grouped and interact with the neighborhoods (Marsh et al., 
2007). The functional structure of the kidney is closely related to its physical structure 
based on the arrangement of the nephron tubule with the tubuloglomerular feedback 
(TGF) mechanism and exhibits a similar hierarchy functional behavior. Hierarchy is a 
property of many complex systems (Ravasz and Barabási, 2003). Therefore, it would be 
desirable to capture this hierarchy explicitly in our model to existing nephron models, 
which only capture hierarchy implicitly (Thomas, 2016). 

The expansion of nephron network models produces valid behavior in individual and 
multi-nephron systems. This hierarchical model has investigated the properties of 
coupling and interaction between nephrons. The dynamical behavioral examination into 
the study of multi-nephron systems focused on the whole kidney and its classified  
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properties rather than the properties of the single nephron. 
As part of this examination, the dynamical behavior of a 
complex 72-nephron system has been analyzed the system 
significantly to the larger than existing multi-nephron 
models (Moss et al., 2009; Thomas, 2016; Kanzaki et al., 
2020; Khouhak et al., 2020; Layton, 2021). 

Larger multi-nephron models have been developed as 
extensions of single and paired nephron models. Marsh et al. 
(2007) simulated 22 nephrons attached to a single 
distributing artery, demonstrating that nephrons with a 
sufficiently different loop of Henle lengths will not 
synchronize under realistic vascular coupling conditions. 
Marsh et al. (2013) simulated 16 nephrons connected via a 
branching structure of arteries, considering TGF in the 
nephrons, vascular coupling between nephrons, and 
myogenic response in the arteries. Moss et al. (2009) have 
simulated 72 nephrons using a network model that avoids 
the use of coupled differential equations. The model by 
Moss et al. has included only six lumped parameter 
nephrons but uses a significantly more detailed glomerulus 
and medulla structure to reproduce water and sodium urine 
formation from the rat over a range of experimental 
conditions (Laugesen, 2011; Moss and Thomas, 2014; 
Thomas, 2016; Khouhak et al., 2019; Marsh et al., 2019). 

In particular, many kidneys physiological models are 
based on coupled non-linear differential equations, which 
require small time step sizes and become increasingly 
difficult to solve as the system of differential equations 
becomes more prominent in models containing more 
components. Network models, where the model consists of 
components that communicate at each time step, do not 
have this limitation on their size. Moss et al. (2009) and 
Marsh et al. (2013) have presented network-based kidney 
physiology models. Moss et al. (2009) showed theoretical 
scaling, indicating that the network modeling approach can 
simulate kidneys with 72 nephrons, as found in a human, 
but did not carry out such large-scale simulations.  

Network nephron models have been developed using 
various analogies such as graph automata and resistance-
current sources. The proposed paper develops the nephron 
network model considering up to 100 nephrons using the 
CA framework. The developed model uses the CA rules of 
the single nephron and coupled nephrons to get the original 
characteristics of the model (Kesu and Ramasangu, 2021a; 
b; 2022). 

Mathematical models have also been developed using CA 
(Tokihiro et al., 1996; Matsuya and Murata, 2013). The 
construction of the CA model from the discrete model is a 
systematic procedure with the help of ultradiscretization 
(UD) (Tokihiro et al., 1996; Kesu and Ramasangu, 2021a).  

The ultradiscretization procedure preserves the 
characteristics of the original governing equations (Murata, 
2013). This made the revolution in the mathematical models 
get more interest in converting UD equations. The UD 
equations involve max-plus algebra, min-plus algebra, and 
mini-max algebra (Tokihiro et al., 1996; Isojima et al., 2006; 
Ohmori and Yamazaki, 2015).  

CA framework is a discrete dynamical system. The basic 
unit of the CA is the cell. A cell, 𝐶𝐶(𝑘𝑘,𝑛𝑛) is a discrete block 
in a spatio-temporal region where “k” and “n” refer to kth 
discrete block in space and nth discrete block in time 
respectively. Both spatial and temporal dimensions are 
discretized. Each cell has two possible values, either 0 as 
white or 1 as black. The cell value at the next time instant, 
𝐶𝐶(𝑘𝑘,𝑛𝑛 + 1) , depends on 𝐶𝐶(𝑘𝑘 − 1,𝑛𝑛),𝐶𝐶(𝑘𝑘,𝑛𝑛)  and 𝐶𝐶(𝑘𝑘 +
1,𝑛𝑛).  

In the elementary cellular automata (ECA), there are 256 
rules of evolution ranging from rule number 0 to rule 
number 255. The patterns of evolution of ECA exhibit a 
wide range of dynamical system behavior. The CA patterns 
are known to characterize dynamical systems of varied 
nature. Wolfram has divided the emergent behavior of ECA 
into four classes of dynamical systems. The fixed and 
homogeneous state is categorized under class I. The pattern 
consists of separated periodic regions grouped under class 
II. The Class III group shows a chaotic and aperiodic pattern. 
The class IV group shows complex and localized structures 
(Wolfram and Mallinckrodt, 1995; Wolfram, 2002).  

The rule of evolution for CA rule 178 is 𝐶𝐶(𝑘𝑘,𝑛𝑛 + 1) =
𝐶𝐶(𝑘𝑘 − 1,𝑛𝑛)𝐶𝐶(𝑘𝑘,𝑛𝑛)��������� + 𝐶𝐶(𝑘𝑘,𝑛𝑛)𝐶𝐶(𝑘𝑘 + 1,𝑛𝑛)�������������� + 𝐶𝐶(𝑘𝑘 +
1,𝑛𝑛)𝐶𝐶(𝑘𝑘 − 1,𝑛𝑛) . In CA rule number 206, 𝐶𝐶(𝑘𝑘,𝑛𝑛 + 1) =
𝐶𝐶(𝑘𝑘 − 1,𝑛𝑛)𝐶𝐶(𝑘𝑘 + 1,𝑛𝑛)�������������� + 𝐶𝐶(𝑘𝑘,𝑛𝑛) is the rule of evolution. 
The rule of evolution for CA rule 226 is 𝐶𝐶(𝑘𝑘,𝑛𝑛 + 1) =
𝐶𝐶(𝑘𝑘 − 1,𝑛𝑛) 𝐶𝐶(𝑘𝑘,𝑛𝑛) + 𝐶𝐶(𝑘𝑘 + 1,𝑛𝑛)𝐶𝐶(𝑘𝑘,𝑛𝑛)��������� . The rule of 
evolution for CA rule 238 is 𝐶𝐶(𝑘𝑘,𝑛𝑛 + 1) = 𝐶𝐶(𝑘𝑘,𝑛𝑛) +
𝐶𝐶(𝑘𝑘 + 1,𝑛𝑛). 

CAs are used in modeling biological systems such as the 
spread of disease (Matsuya and Murata, 2015). The 
advantages of the CA framework are the study of dynamical 
systems through their emergent properties, and simplicity in 
the rules of evolution. This is the aspect that has been used 
while modeling a dynamical system using the CA 
framework. In this work, the CA framework has been 
applied to study the emergent properties of pressure 
dynamics in multi-nephron network models. 

The pressure perturbations from the cardiovascular 
system change the pressure in the kidney. The 
autoregulatory mechanism controls the pressure oscillations 
and keeps them in stable mode. The change in the 
autoregulatory mechanism leads to normotensive to 
hypertensive behavior. These global properties have been 
explicitly captured in the CA multi-nephron network model.  

The pressure flow analysis in the single nephron model 
and interacting analysis in coupled nephron model has 
limited to capturing the complete behavior analysis of the 
kidney model. In this paper, we have modeled multi-
nephrons interacting with each other, which produces 
various types of pressure oscillations with the TGF 
mediation. CA rules have been developed with the 
necessary assumptions for the nephron network model. The 
solutions from the CA model have been analyzed and 
compared with the experimental findings to understand 
pathological and physiological behavior. This dynamical 
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analysis gives a clear understanding of pressure oscillations 
while interacting with many nephrons and their 
autoregulatory mechanism. Multi-scale modeling of the 
multi-nephron model is a novel attempt using CA 
framework that captures the global emergent behavior of the 
multi-nephron interaction system. 

 
2. MULTI-NEPHRON MODEL USING 

SINGLE NEPHRON AND COUPLED 
NEPHRON MODEL GOVERNING 
EQUATIONS 
 
This modeling approach has considered the governing 

equations for glomerulus and nephron tubule. The 
governing equations of nephron tubule are formed using 
fluid pressure; flow rate; tubular radius, and solute 
concentration as dependent variables (Keener and Sneyd, 
1998; Beard and Mescam, 2012; Layton and Edwards, 2014; 
Moss and Layton, 2014; Moss and Thomas, 2014; Ryu, 
2014). 

The governing equation, Equation 1, is the advective 
diffusion equation which describes tubular fluid flow 
pressure P(x,t), nephron tubular radius R(x, t), and flow rate 
of the fluid Q(x,t). The nephron inflow pressure and the 
outflow pressure are considered boundary conditions 
(Layton and Edwards, 2014). The partial differential 
equations of the nephron tubule model are 

 
∂P(x,t)
∂t

= R3(x,t)

16μdRdP

∂2P(x,t)
∂x2

+ R2(x,t)

4μdRdP

∂R(x,t)
∂x

∂P(x,t)
∂x

                        (1) 

 
∂
∂t

(πR2(x, t)C(x, = − ∂
∂x

Q(x, t)C(x, t) −

2πRss(x)(Vmax(x)C(x,t)
KM+C(x,t)

+ κ(C(x, t) − Ce(x)))                      (2) 
 
Equation 2, represents solute concentration in TAL. In 

proximal tubule (PT), 60% to 75% of water is reabsorbed 
into the interstitium, and Distil Tubule (DT) diffuses the 
water into the interstitium. In this paper we have assumed 
glomerulus, PT and DT as pre-ascending limb (Ryu, 2014). 
TAL is the major part in the active and passive transport 
mechanism. It is used to regulate the pressure and solute 
concentration. The time independent interstitial solute 
concentration is represented as C𝑒𝑒(𝑥𝑥). The active transport 
mechanism is incorporated through maximum active 
transport rate Vmax(𝑥𝑥)  (Michaelis-Menten-like kinetics) 
and Michaelis constant 𝐾𝐾M . The transepithelial solute 
diffusion is denoted by back leak permeability κ. The solute 
transport mechanism in TAL is independent of R(x, t) and is 
directly proportional to the steady state TAL radius 𝑅𝑅𝑠𝑠𝑠𝑠(𝑥𝑥). 
The boundary condition C(0, t) means that the fluid entering 
into the TAL has a constant solute concentration (Layton 
and Edwards, 2014). 

 
R(x, t) = α(P(x, t) − Pe) + β(x)                                       (3) 

Interstitial pressure is represented as Pe, degree of tubular 
compliance of the nephron tubule is represented as α, and 
unpressurized TAL radius is represented as β(x) along with 
the TAL. 

 
P0(t) = P0(1 + K1tanh(K2((Cop − C(L, t − τ))))           (4) 

 
Equations 3 and 4 represent the autoregulatory 

mechanism such as myogenic and TGF mechanism for the 
single nephron tubular model respectively. The initial 
condition when t = 0 is denoted by C(L, t − τ) = Cop. Half 
range of pressure variation P0(t)  is taken as K1  and TGF 
sensitivity as K2. steady state TAL solute concentration at 
MD is Cop . solute concentration along MD is C(L, t − τ) , 
where TGF delay is τ (Ryu, 2014). 

The governing equations for the coupled nephron model 
are outlined. The flow pressure equation of the one nephron 
has been influenced by the other nephron, whereas the 
solute concentration equation within the nephron tubule is 
not affecting the other nephron. 
 
∂P(x,t)
∂t

= R3(x,t)

16μdRdP

∂2P(x,t)
∂x2

 +  R
2(x,t)

4μdRdP

∂R(x,t) 
∂x

 ∂P(x,t)
∂x

− Φ(x,t)

2πRdRdP
      (5) 

 
α = dR

dP
  

 
∂P(x,t)
∂t

= R3(x,t)
16μα

∂2P(x,t)
∂x2

+ R2(x,t)
4μα

∂R(x,t)
∂x

∂P(x,t)
∂x

− Φ(x,t)
2πRα

            (6) 
 
P0(t) = P0 + K1tanh(K2(Cop − C1(2L, t − τ))) +
∑ ϕK1tanh(K2(Cop − C2(2L, t − τ)))                              (7) 

 
The ϕ is the coupling effect in the Equation 7 gives the 

interaction between the two nephrons, which shows the in-
phase and antiphase oscillations. The Equation 7 provides 
the autoregulatory mechanism of the nephron influenced by 
the other nephron. 
 
3. CELLULAR AUTOMATA FRAMEWORK 

FOR MULTI NEPHRON NETWORK 
MODEL 
 
The proposed nephron network model is shown in Fig. 1. 

Single nephron and coupled nephron have been modeled 
using CA. Nephron network models have been developed 
based on analyzing the CA rules developed from single and 
coupled nephron models. The CA rules for n-nephron have 
been arrived at based on Boolean, algebraic, neighborhood, 
and mathematical algorithms. The details for single nephron 
to n-nephron kidney models have been outlined. 

The governing equations for the single nephron have been 
ultra-discretized using Cole-Hopf transformations and 
tropical discretization. CA rules for nephron tubules have 
been developed based on assumptions for the pressure and 
solute concentration parameters. The CA rules have been 
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developed for the pressure equation, considering the 
nephron tubule as rigid and compliance. The CA model 
parameter values N and M are lower and upper thresholds. 

The single nephron tubular model as rigid tubular model 
considering radius of the tubule 𝑅𝑅1(x, t) = 0  and 
parameters N ≪ M. The ultradiscretized equation, Equation 
8, is obtained from Equation 1 (refer Kesu and Ramasangu 
(2021b) for the detailed derivation).  
 
P1(x, t + 1) = P1(x − 1, t) + max[0, P1(x, t) +
−M, P1((x + 1, t) − N] − max[0, P1(x − 1, t) −
 M, P1(x, t) − N]                                                                 (8) 

 
CA Rule 178 has been obtained for the ultradiscretized 

Equation 8 for single nephron rigid tubular model refer 
Kesu and Ramasangu (2021a). 

The single nephron tubular model as compliance tubular 
model considering radius the tubule 𝑅𝑅1(𝑥𝑥, 𝑡𝑡) = P1(𝑥𝑥, 𝑡𝑡) and 
parameters N ≪ M. The ultradiscretized equation, Equation 
9, is obtained from Equation 1 (refer Kesu and Ramasangu 
(2022) for the detailed derivation).  

The CA rule 206 has been obtained for the single neprhon 
complaince tubular model ultradiscretized pressure 
Equation 9 refer Kesu and Ramasangu (2022). 

 
 

P1(x, t + 1) = P1(x − 1, t) + 2P1(x, t) +
max[2P1(x, t),4P1(x, t) − M, 2P1(x + 1, t) − N] − 2P1(x −
1, t) − max[2P1(x − 1, t),4P1(x − 1, t) − M, 2P1(x, t) − N] 

(9) 
 
The consider coupled nephron tubular model as 

compliance tubular model when resitivity of the tubule 
𝑅𝑅1(𝑥𝑥, 𝑡𝑡) = 0  and parameters 𝑁𝑁 >> 𝑀𝑀 , 𝐵𝐵3 + 𝐺𝐺 − 𝐿𝐿1 ≃ 𝑁𝑁 , 
𝐵𝐵2 ≃ 𝑀𝑀  and 𝐵𝐵1  is very small value. The ultradiscretized 
equation, Equation 10, is obtained from Equation 6 (refer 
(Kesu and Ramasangu, 2021a) for the detailed derivation).  

 
P1(x, t + 1) = [P1(x − 1, t) + B1 + max[P1(x, t) −
M, P1(x + 1, t) + max[B2 − N, B3 + G − L1 − N]] −
max[P1(x − 1, t) − M, P1(x, t)  + max[B2 − N, B3 + G −
L1 − N]                                                                              (10) 
 

The CA rule 226 has been obtained for the coupled 
neprhon rigid tubular model ultradiscretized pressure 
Equation 10 refer Kesu and Ramasangu (2021b). 

The coupled nephron tubular model as compliance 
tubular model considering radius of the tubule 𝑅𝑅1(𝑥𝑥, 𝑡𝑡) =
P1(𝑥𝑥, 𝑡𝑡)  and parameters 𝑁𝑁 >> 𝑀𝑀 , 𝐵𝐵3 + 𝐺𝐺 − 𝐿𝐿1 ≃ 𝑁𝑁 , 𝐵𝐵2 ≃
𝑀𝑀 and 𝐵𝐵1 is very small value. The ultradiscretized equation, 
Equation 11, is obtained from Equation 6 (refer Kesu and 
Ramasangu (2021) for the detailed derivation). 

 

 
Fig. 1. Multi-nephron network model algorithm 
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P1(x, t + 1) = [P1(x − 1, t) + B1 + 3R(x, t) + max[0 +
P1(x, t) − M, P1(x + 1, t) + max[B2 − N + R1(x + 1, t) −
R1(x, t), B3 + G − L1 − N]] − max[0 + P1(x − 1, t) −
M, P1(x, t) + max[B2 − N + R1(x, t) − R1(x − 1, t), B3 +
G − L1 − N]]                                                                  (11) 

 
The CA rule 238 has been obtained for the coupled 

neprhon compliance tubular model ultradiscretized pressure 
Equation 11 refer Kesu and Ramasangu (2021b)  

The CA rules obtained from the single nephron model and 
coupled nephron model have been analyzed. The arrival of 
the CA rule of coupled nephron model from the single 
nephron model has been analyzed based on the Boolean 
algebraic, neighborhood, and equivalent rules. The 
proposed cumulative algorithm using additive CA by 
Voorhees (1996) and modular arithmetic by Voorhees (2012) 
has been developed for getting the CA rules for the n-
nephron model based on the various parameters shown in 
Fig. 1. The incremental CA rule obtained for the rigid 
tubular nephron network model is 48  based on the 
cumulative algorithm. In the compliance tubular model, The 
incremental CA rule obtained for the nephron network 
model is 32. 

Table 1 shows the CA rules for an n-nephron network 
model obtained from the developed algorithm. The CA rules 
for up to 100 nephrons have been calculated. Table 1 shows 
the CA rules and the number of nephrons for a kidney model. 
The patterns have been analyzed in the next sections. 

 
Table 1. CA rules for multi-nephron model 

Sl no Nephron number Rigid model Compliance model 
1 8 4 175 
2 10 100 239 
3 16 133 176 
4 72 16 183 
5 100 56 85 

 

4. RESULT AND DISCUSSION ON 
PRESSURE IN NEPHRON NETWORK 
MODEL FROM CELLULAR AUTOMATA 
MODEL 
 
This section has been described the various nephron 

network models for the rigid and compliance tubule using 
CA. The behavior of pressure dynamics from the graphs has 
been compared with the behavior of pressure dynamics 
from evolutionary patterns obtained from CA rules as 
depicted in Table 2. The experimental data is not available 
as the clinical experiments have not been conducted. There 
is no access to the experimental data from previous 
experimental findings. Hence, the only way to validate the 
proposed CA framework is to compare the obtained results 
with that of the graphs published by the researchers who did 
the clinical experiments. 

It has been compared with similar models of Moss (2009) 
and Thomas (2016). The results have been analyzed based 
on the Wolfram CA properties. The results from nephron 
network models of 8, 16 and 72 nephrons are presented and 
are compared with similar models of nephrons.  
In the CA, the evolution takes place in a spatiotemporal grid. 
The origin cell is the left topmost cell. The spatial increment 
along the length of the tubule is along the X-axis (towards 
the right), and the temporal increment is along the Y-axis 
(towards the down). The dynamic state of cells is 
represented by white (0) and black (1), where black 
represents the cell value above the threshold and white 
represents the cell value below the threshold. The 
parameters in the ultradiscretized equations have to be 
considered for extreme case low and high for the analysis. 
The black represents for the cell value related to high and 
the white represents the cell value low. During the evolution 
of pressure dynamics, the threshold is necessary to 
differentiate from low value to high value. This threshold is 
more symbolic than the actual pressure dynamics threshold. 
Hence the specific threshold value is not required for CA 
evolution. 

 
Table 2. CA behavior analysis of multi-nephron network model for rigid and compliance tubules in comparison with 

experimental findings 

Sl No Observed behavior in CA 
evolution 

Equivalent dynamical 
behavior (Flake, 2000; 

Wolfram, 2018) 

Wolfram class 
(Wolfram, 2002; 
Wolfram, 2018) 

Observed experimental behavior 
from experimental findings (Moss, 

2009; Niels-Henrik Holstein-
Rathlou, 2011; Thomas, 2016) 

1 
Few pulses are 

propagating, and few are 
vanishing behavior 

Simple, separated, and 
periodic in time and space 
and limit cycle oscillations 

II Period doubling (Out-of-phase 
synchronization) 

2 Pulses have vanished Fixed and limit point I Regular (In-phase synchronization) 

3 
Few pulses are propagating 
irregularly, and few pulses 

are sustained 

Pseudo-random, aperiodic, 
and chaotic manner. Irregular III Irregular oscillations (Out-of-phase 

synchronization) 

4 Pulses are propagating 
irregularly 

Pseudo-random, aperiodic 
and chaotic manner. Irregular III Irregular oscillations (Out-of-phase 

synchronization) 
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Initialization in CA means assigning black cells in the 
first two rows. The initialization means there is a pressure 
perturbation as black in the initial section of the tubule for 
the TGF-inhibited case. The pressure perturbation has been 
initialized with black cells in the first layer, and perturbation 
as black has been initiated in the second layer below the 
previous section for the TGF-activated case. The evolved 
patterns have been analyzed and are shown to exhibit the 
emergent global properties of the physiological behavior of 
the nephron tubule. The evolutionary patterns from the CA 
rules have been categorized and compared with the Wolfram 
CA class framework. 

Autoregulatory conditions for P (x, t + 1) in the evolution 
of the CA rule as physiological properties of TGF in multi-
nephron with in-phase synchronization are depicted in Table 
3. The next stage goes low if the feedback signal is high for 
all eight possibilities, irrespective of input perturbation. If 
the feedback signal is low for all eight possibilities, the next 
state follows the CA rule for input perturbation.  

 
Table 3. CA rule with TGF and in-phase synchronization 
P (x, t-1) P (x-1, t) P (x, t) P (x+1, t) P (x, t+1) 

1 (0) 0 0 0 0 (1st bit of CA rule) 
1 (0) 0 0 1 0 (2nd bit of CA rule) 
1 (0) 0 1 0 0 (3rd bit of CA rule) 
1 (0) 0 1 1 0 (4th bit of CA rule) 
1 (0) 1 0 0 0 (5th bit of CA rule) 
1 (0) 1 0 1 0 (6th bit of CA rule) 
1 (0) 1 1 0 0 (7th bit of CA rule) 
1 (0) 1 1 1 0 (8th bit of CA rule) 
 
Autoregulatory conditions for P (x, t + 1) in the evolution 

of the CA rule as physiological properties of TGF with out-
of-phase synchronization in multi-nephron are depicted in 
Table 4. The next stage goes low if the feedback signal is 
low for all eight possibilities, irrespective of input 
perturbation. If the feedback signal is high for all eight 
possibilities, the next state follows the CA rule for input 
perturbation. 
 

Table 4. CA rule with TGF and out-of-phase 
synchronization 

P (x, t - 1) P (x - 1, t) P (x, t) P (x + 1, t) P (x, t + 1) 
1 (0) 0 0 0 1st bit of CA rule (0) 
1 (0) 0 0 1 2nd bit of CA rule (0) 
1 (0) 0 1 0 3rd bit of CA rule (0) 
1 (0) 0 1 1 4th bit of CA rule (0) 
1 (0) 1 0 0 5th bit of CA rule (0) 
1 (0) 1 0 1 6th bit of CA rule (0) 
1 (0) 1 1 0 7th bit of CA rule (0) 
1 (0) 1 1 1 8th bit of CA rule (0) 

 
The pulses vanish after initializing the black cell in the 

evolutionary pattern called pulse annihilation. It comes 
under Wolfram class I dynamical behavior of emergent 
properties. This type of behavior is observed when all the 

nephrons are in-phase synchronization. The sustained and 
irregular pulse propagations in the evolutionary patterns 
have been categorized as Wolfram class II and III groups 
respectively. These behaviors have been observed when the 
nephrons in the multi-nephron network model are in out-of-
phase synchronizations equivalent to irregular oscillations 
from the experimental findings. The CA rules have been 
derived when nephrons are considered rigid tubule (no 
change in tubular radius w.r.t pressure) and compliance 
tubule (change in tubular radius w.r.t pressure). 
 
4.1. Nephron Network Model for N = 8 Nephrons 

Fig. 2 (a) shows the pressure variations in a rigid nephron 
network model with the random initial state. This 
evolutionary pattern depicts the Pulse annihilation behvaior. 
The evaluation shown from Fig. 2 (a) comes under the group 
of class I in Wolfram dynamical class behvaior. The 
initialized pulses have been annihilated in the time 
evolution. This leads to regular normal pulse propagation. 
The eight nephron model with in-phase oscillations 
produces normal stable conditions in the functioning of the 
kidney.  

Fig. 2 (b) shows the pressure variations in a rigid nephron 
network model with random initial states. The pulse 
produced on the left side has been propagated at the same 
space over the next iteration. This type of evolutionary 
pattern comes under class II group of Wolfram CA rules. 
The pulses will be continuously developed when nephrons 
are not synchronized. 
 

 
(a) 

 
(b) 

Fig. 2. Pressure variations in rigid nephron network model 
for CA rule 4 (a) with in-phase random initial states. (b) 

with out-of-phase random initial states for CA rule 4 
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Fig. 3 (a) shows the pressure variations in the compliance 
nephron network model with random initial states. The 
random initialization of the pulses develops the irregular 
pulse propagation in further iterations based on observation 
from the pattern evolution. This evolution pattern comes 
under class III from the Wolfram ECA rules group. The 
pulse propagated in the eight nephrons compliance model 
produces period-doubling oscillations. The pulses are 
moved from period doubling to chaotic oscillations when 
we trigger the pulses as perturbations at the time of 
initialization. 

Fig. 3 (b) shows the pressure variations in the compliance 
nephron network model with random initial states. It 
exhibits the irregular pulse generation at the time evolution 
observed from the pattern. It comes under the class III group 
of Wolfram ECA rules. The observations have been made 
from the figure as the pulses show the shock wave 
oscillations. However, the pulse initialized at the starting 
space length is stable in further time iteration. The 8-
nephron compliance multi-nephron network model depicts 
the clinical property as anti-phase oscillation among the 
nephrons produces chaotic oscillations. 

 

 
(a) 

 
(b) 

Fig. 3. Pressure variations in compliance nephron network 
model for CA rule 175 (a) with in-phase random initial 

states. (b) with out-of-phase random initial states 
 

4.2. Nephron Network Model for N = 10 Nephrons 
Fig. 4 (a) shows the pressure variations in a rigid nephron 

network model with the random initial state exhibits the 
pulse annihilation property. The evaluationary pattern 
comes under class I group of Wolfram CA properties. The 

ten nephron model illustartes the behvaior as in-phase 
oscillations produces normal stable conditions in the 
functioning of the kidney even in this random initialization. 
The perturbations have been settled down in a very short 
period of time and 10-nephron network model is in healthy 
condition.  

Fig. 4 (b) shows the pressure variations in the rigid 
nephron network model with random initial states in the first 
row and second row. The observation made from the figure 
shows that the mixed propagation of the pulses which comes 
under class II group. The pulse is high and constant in some 
discrete space, and other discrete space produces suppressed 
oscillations. The ten nephrons rigid model with out-of-
phase oscillations produces regular oscillations. 

 

 
(a) 

 
(b) 

Fig. 4. Pressure variations in rigid nephron network model 
for CA rule 100 (a) with in-phase random initial states. (b) 

with out-of-phase random initial states 
 

Fig. 5 (a) shows the pressure variations in compliance 
nephron network model with random initial states. The 
regular pulse propagation has been observed in the initial 
space length. The random initialization of the pulses 
produces irregular oscillations in the compliance ten 
nephron model for further iterations. These irregular and 
unstable oscillations have become normal over a period of 
time. This pattern has been observed in the class III group 
of Wolfram CA rules. 

Fig. 5 (b) shows the pressure variations in the compliance 
nephron network model with random initial states. It 
exhibits irregular pulse generation at the time of evolution. 
It shows chaotic pulse propagation when there are random 
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perturbations have been applied. This type of irregular pulse 
can be settled to normally high-pressure pulses and causes 
hypertensive pressure variations. The ten nephrons 
compliance tubule model with anti-phase oscillations 
produces asynchronous pulse propagations.  

 

 
(a) 

 
(b) 

Fig. 5. Pressure variations in compliance nephron network 
model for CA rule 239 (a) with in-phase random initial 

states. (b) with out-of-phase random initial states 
 

4.3. Nephron Network Model for N = 16 Nephrons 
Fig. 6 (a) shows the pressure variations in a rigid nephron 

network model with the random initial state. The pulse 
produced initially is constant at the same space over the 
evolution of the rule. The perturbation applied to the 16 
nephron network model shows the pulses are high at the 
same space over time. The evaluation comes from Fig. 6 (a) 
shows class II Wolfram properties. Even in this random 
initialization, the 16 nephron network model with in-phase 
oscillations produces normal stable conditions slightly 
above the threshold in the functioning of the kidney.  

Fig. 6 (b) shows the pressure variations in the rigid 
nephron network model with random initial states in the first 
and second rows. The observation made from the figure 
shows the mixed propagation of the pulses. The pulse is 
high and constant in some discrete space, and other discrete 
space produces suppressed oscillations. The 16 nephrons 
rigid model with out-of-phase oscillations produces 
irregular oscillations. 
 

 
(a) 

 
(b) 

Fig. 6. Pressure variations in rigid nephron network 
model for CA rule 133 (a) with in-phase random initial 

states. (b) with out-of-phase random initial states 
 
Fig. 7 (a) shows the pressure variations in the compliance 

nephron network model with random initial states. Regular 
pulse propagation has been observed in the initial space 
length. The random initialization of the pulses produces 
regular oscillations in the compliance 16 nephron network 
model for further iterations. These regular and stable 
oscillations have become normal over a period of time. This 
pattern has been observed in the class II group of Wolfram 
CA rules. The distortion produced from the perturbations 
has been settled and shifted towards the right. 

Fig. 7 (b) shows the pressure variations in the compliance 
nephron network model with random initial states. It 
exhibits regular pulse generation at the time of evolution. It 
shows that stable pulse propagation, even though there are 
random perturbations, has been applied. The 16 nephron 
compliance tubule model with anti-phase oscillations 
produces stable regular pulse propagations. 
 
4.4. Nephron Network Model for N = 72 Nephrons 

Fig. 8 (a) shows the pressure variations in a rigid nephron 
network model with random initial states. The random 
initialization of the perturbations in the model shows that 
the pulses propagated toward the right and vanished. It has 
been observed that the model is stable with regular 
oscillations. Fig. 8 (b) shows the pressure variations in a 
rigid nephron network model with random initial states. The 
random initialization of the perturbations in the model 
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shows that the pulses propagated toward the right and 
vanished. It has been observed that the model is stable with 
regular oscillations. The impact of antiphase oscillations 
among the neighboring nephrons is very low. 
 

 
(a) 

 
(b) 

Fig. 7. Pressure variations in compliance nephron network 
model for CA rule 176 (a) with in-phase random initial 

states. (b) with out-of-phase random initial states 
 
Fig. 9(a) shows the pressure variations in the compliance 

nephron network model with random initial states. Regular 
pulse propagation has been observed in the initial space 
length. However, the random initialization of the pulses 
produces irregular oscillations in the compliance 72 
nephron model for further iterations. These irregular and 
unstable oscillations have become normal over a period of 
time. This pattern has been observed in the class III group 
of Wolfram CA rules. shows the pressure variations in the 
compliance nephron network model with random initial 
states. The regular pulse propagation has been observed in 
the initial space length. The random initialization of the 
pulses produces irregular oscillations in the compliance 72 
nephron model for further iterations. These irregular and 
unstable oscillations have become normal over a period of 
time. This pattern has been observed in the class III group 
of Wolfram CA rules. 

Fig. 9 (b) shows the pressure variations in the compliance 
nephron network model with random initial states. The 
regular pulse propagation has been observed in the initial 
space length. The random initialization of the pulses 
produces irregular oscillations in the compliance 72 
nephron model for further iterations. These irregular and 
unstable oscillations have become normal over a period of 

time. This pattern has been observed in the class III group 
of Wolfram CA rules. 
 

 
(a) 

 
(b) 

Fig. 8. Pressure variations in rigid nephron network model 
for CA rule 16 (a) with in-phase random initial states. (b) 

with out-of-phase random initial states 
 

 
(a) 

 
(b) 

Fig. 9. Pressure variations in compliance nephron network 
model for CA rule 183 (a) with in-phase random initial 

states. (b) with out-of-phase random initial states 
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4.5. Nephron Network Model for N = 100 Nephrons 
Fig. 10 (a) shows the pressure variations in a rigid 

nephron network model with the random initial state. The 
evolution pattern depicts irregular pulse propagation 
followed by regular pulse propagations. The irregular pulse 
propagation has been shifted towards the right. The in-phase 
oscillatory model for 100 nephrons depicts the unstable 
regular pulses.  

Fig. 10 (b) shows the pressure variations in a rigid 
nephron network model with random initial states. The 
evolution pattern depicts irregular pulse propagation 
followed by regular pulse propagations. The irregular pulse 
propagation has been shifted towards the right. The anti-
phase oscillatory model for 100 nephrons depicts the 
unstable pulses propagations. 

 

 
(a) 

 
(b) 

Fig. 10. Pressure variations in compliance nephron 
network model for CA rule 59 (a) with in-phase random 
initial states. (b) with out-of-phase random initial states 

 
Fig. 11 (a) shows the pressure variations in the 

compliance nephron network model with random initial 
states. It exhibits pulse propagation towards the left. The 
irregular pulse propagation has been observed in the pattern 
evolution. The random initialization of the pulses produces 
irregular oscillations in the compliance 100 nephrons 
kidney model for further iterations. These irregular and 
unstable oscillations have become abnormal over a period 
of time. This pattern has been observed in the class III group 
of Wolfram CA rules. 

Fig. 11 (b) shows the pressure variations in the 
compliance nephron network model with random initial 

states. The pulse propagation observed within 100 nephrons 
compliance kidney model exhibits the performance of 
irregular pulse propagations. If the initialization of the pulse 
is in the middle, the pulse distorts the stable propagation and 
is constant for further iterations. It comes under class III 
property from Wolfram ECA rules. The evolution pattern 
over a period of time produces irregular oscillations. This 
model is unstable and produces irregular oscillations when 
it is distorted over further iterations. 

 

 
(a) 

 
(b) 

Fig. 11. Pressure variations in compliance nephron 
network model for CA rule 85 (a) with in-phase random 
initial states. (b) with out-of-phase random initial states 

 
5. DISCUSSION 

 
The oscillations observed in the multi-nephron network 

model are regular, periodic, and chaotic, which was also 
observed in the single nephron model in experimental 
analysis. In addition, the in-phase and out of 
synchronizations have been observed in the synchronization 
phenomena between interconnected nephrons. The 
emergent behavior that has been captured from the CA 
model is based on the necessary assumptions by adjusting 
the TGF gain in the nephron. The initialization of the current 
and previous states of the cells has achieved this adjustment 
of the TGF gain. 

The pulses are continuous and above the threshold 
produced throughout the time evolution, causing the 
hypertensive pressure to have been observed in the out-of-
phase oscillatory 8 and 10 nephrons, rigid network model. 
The normal stable period-doubling pulses propagated along 
the nephron network model have been observed in the in-
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phase oscillatory 8 and 10 nephrons compliance network 
model. The unstable period-doubling pulses propagated 
along the nephron network model. These pulses are 
continuous pulses above the threshold. They are irregular 
and produced throughout evolution, causing hypertensive 
and chaotic pressure. It has been observed in the out-of-
phase synchronization 8, 10, nephron compliance network 
model and in the in-phase 100 nephron compliance network 
model. 

The normal stable period-doubling pulses propagated 
along the nephron network model produce a high pulse 
throughout the evolution when the perturbation is applied in 
the initial stages. These pulses are continuous above the 
threshold produced throughout evolution, causing 
hypertensive pressure. The pattern leads to irregular and 
complex behavior. It has been observed in the in-phase and 
anti-phase oscillatory 72 nephron compliance network 
model. It has been observed in the out-of-phase 
synchronization 100 nephrons, rigid network model. 

Using the 8, 16 and 72 nephron models, we have 
established the model's validity, methods, and results 
compared to other multi-nephron simulations. These 
simpler models have also been helpful in developing an 
interpretation of the causes for behaviors that are expected 
to be seen in the simulation results from larger models. The 
eight-nephron system has been used to analyze the 
interaction between the competing coupling mechanisms of 
hemodynamic coupling and vascular signaling and 
investigate the stability of the pressure oscillations 
maintained by multiple loops of Henle in a kidney system. 
A 72-nephron system has been analyzed to increase the 
degree of vascular signaling in this system, resulting in 
higher-frequency pressure oscillations. 

The emergent properties captured from the CA nephron 
network model clearly illustrate the behavior of the nephron 
that has been captured from the experimental analysis and 
numerical analysis. In-phase and out-of-phase 
synchronizations have been mainly observed from the CA 
model with various CA rules for the nephron network model 
under various TGF gains. Regular, periodic doubling and 
chaotic oscillations have been explicitly captured in the 
nephron network model along with the coupling behavior 
such as hemodynamic and vascular coupling. The evolution 
of the shock wave oscillations depicted in Fig. 3 (b) has been 
observed explicitly from the ECA rules in the nephron 
network model. The developed CA multi nephron model has 
been mimicking the functionality of the multi nephron from 
experimental findings under various pathological and 
physiological conditions. 
 
6. CONCLUSION 

 
The proposed CA framework for the nephron network 

model has demonstrated the study of emergent pressure 
flow using modular arithmetic and additive CA. The CA 
rules for multi-nephron network models for 8-nephron, 16-

nephron, 72-nephron and 100-nephron have been developed. 
The emergent properties of the CA multi-nephron network 
model have been compared with experimental analysis. By 
varying the TGF gains and the CA rules, we have observed 
the normotensive and hypertensive pressure-flow behavior 
with regular, periodic doubling, irregular oscillations, in-
phase synchronization, and out-of-phase synchronization. 
The shock wave pulse propagation has been observed as 
global property from the evolutionary pattern. The multi-
nephron network model developed with CA rules is able to 
capture the emergent dynamics of the kidney due to 
perturbations. The pressure dynamical behavior of a kidney 
is dependent on factors such as rigidity of the nephron 
tubule, interaction between nephrons, etc. As we increase 
the number of nephrons, the scope of the analysis is wider 
and offers numerous possibilities for different conditions of 
the kidney. The present paper has attempted to increase the 
number of nephrons, and has investigated the scalability 
problems that arise in the CA framework. This enables a 
path for simulating the whole kidney which has about one 
million nephrons. 
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