
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202309_20(3).009 Vol.20(3) 2023097

OPEN ACCESS

Received: April 23, 2023
Revised: May 28, 2023
Accepted: June 11, 2023

Corresponding Author:
Chao-Tang Tseng
cttseng@cyut.edu.tw

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

Heuristics for parallel machine scheduling with GoS
eligibility constraints

Chao-Tang Tseng*, Shu-Fu Zhang

Department of Industrial Engineering and Management, Chaoyang University of

Technology, Taichung City 413310, Taiwan

ABSTRACT

The parallel machine scheduling problem with the consideration of GoS (grade of
service) constraints originates from the service provision of different membership levels
in the service industry. This scheduling problem has been widely found in industrial
manufacturing and sustainable manufacturing practices. For example, in a sustainable
manufacturing production line, multiple machines are set up as parallel machines to
support each other to achieve shared manufacturing. However, the machines still have
processing constraints with different service level constraints and do not support all jobs.
This study investigates this parallel machine scheduling problem and uses the total
completion time as the objective criterion. This criterion has not been studied in the
literature for this scheduling problem. Several heuristics are proposed to solve the two-
machine and multi-machine scheduling problems. The structure of these heuristics is
mainly divided into two stages: the SPT rule and the insertion method. In addition, a fast
method for calculating the total completion time is developed from the insertion method.
The experimental results prove that the proposed heuristics are effective in solving this
scheduling problem. For both small- and large-size problems, the proposed heuristics can
obtain good solutions quickly and are potentially suitable for practical use.

Keywords: Eligibility constraints, Heuristic, Parallel machine, Scheduling, Total
completion time.

1. INTRODUCTION

The problem of conventional parallel machine scheduling has been extensively studied,
and in practice, eligibility constraints often arise (Berthier et al., 2022; Maecker et al.,
2023). This means that job is restricted to certain machines. In recent years, the types of
eligibility constraints commonly considered in parallel machine scheduling problems are
general, interval, nested, grade of service (GoS), etc. (Lim, 2010; Leung and Li, 2016;
Bektur and Saraç, 2019; Li et al., 2021; Mecler et al., 2022). In terms of GoS constraints,
many practical examples can be found in service industries, industrial manufacturing,
and sustainable manufacturing, as shown in Table 1, indicating the growing importance
of this issue. The following is a detailed description.

Table 1. The practical cases of GoS constraints

Service industry Industrial manufacturing Sustainable manufacturing

Bank
(Hwang et al., 2004)

Credit card
(Hwang et al., 2004)

Online antivirus
(Tseng et al., 2017)

Flour mill
(Glass and Kellerer, 2007)
Loading/unloading cranes

(Ou et al., 2008)
Painting processing
(Mateo et al., 2018)

Sugarcane unloading systems
(Kusoncum et al., 2021)

Tempered glass processing
(Liu et al., 2020)

Shared manufacturing
(Ji et al., 2022)

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 2

The research on GoS constraints started with the
scheduling problem in the service industry. The service
industry provides different services according to customer
membership levels (Hwang et al., 2004). In practice,
companies classify customers into different classes and set
up multiple identical service windows for each class. For
example, airlines divide their customers into economy class
and business class and above. Check-in counters are also
divided into counters for economy class passengers and
business class passengers and above, with multiple counters
for each class. Economy class passengers will check in at
the economy class counter, while passengers of business
class and above will check in at the business class counter
to ensure better service. However, when the business class
counters are available, economy class passengers may be
directed to the business class counters by service personnel.
Passengers and counters are subject to a specific service
level constraint. This is a typical parallel flight scheduling
problem that takes into account GoS constraints. It is noted
that this flight scheduling problem is only an example to
illustrate GoS constraints. This scheduling problem
considers the different arrival times of customers and the
random processing time, which is not considered in this
study, as detailed in the following research limitations.
Similar GoS constraints are often found in other service
industries, such as banking, credit card services, and online
real-time anti-virus services (Tseng et al., 2017).

GoS constraints are also applied in sustainable
manufacturing. In sustainable manufacturing, energy-
efficient PPC (production planning and control) is an
important issue, especially for scheduling (Akbar and
Irohara, 2018). Scheduling in sustainable manufacturing,
which is called the sustainable scheduling, considers the
sustainable manufacturing indicator as a criterion. Akbar
and Irohara (2018) reviewed sustainable scheduling
research and found that three types of objectives are
considered: economic-oriented, environment-oriented, and
social-oriented objectives. The research on sustainable
scheduling with the GoS constraint has focused on an
environment-oriented objective. Liu et al. (2020) proposed
the power consumption as a scheduling criterion, which is
an environment-oriented objective. They examined the
three-stage process of tempered glass: cutting, printing, and
tempering, which are composed of high-energy-consuming
machines. From a sustainability perspective, the GoS
constraint arises, where different machines have processing
constraints in terms of glass thickness conditions and
different power consumptions. The GoS constraint is used
to meet the environment-oriented objective. Ji et al. (2022)
investigated the problem of shared manufacturing schedules
with the concept of sustainable manufacturing. Each job can
be processed in a set of machine sets, and such a new
constraint is called a processing set. And the GoS constraint
is one of its special cases. This scheduling problem applies
the GoS constraint to achieve capacity utility maximization,
which is an environment-oriented objective. Therefore, in
the above literature, the GoS constraint has been

implemented in the service industry, industrial
manufacturing, and even in the future of sustainable
manufacturing.

The parallel machine scheduling environment with GoS
constraints is described as follows: There are 𝑚𝑚 machines
(𝑀𝑀𝑖𝑖; 𝑖𝑖 = 1,2, . . . ,𝑚𝑚), and each machine 𝑀𝑀𝑖𝑖 has its service
level 𝑔𝑔(𝑀𝑀𝑖𝑖). Here the service level is 1 for the highest level,
2 for the second level, and so on. There are 𝑛𝑛 jobs (𝐽𝐽𝑗𝑗; 𝑗𝑗 =
1,2, . . . ,𝑛𝑛) and each job 𝐽𝐽𝑗𝑗 has its service level 𝑔𝑔(𝐽𝐽𝑗𝑗) and
processing time 𝑝𝑝𝑗𝑗 . Job 𝐽𝐽𝑗𝑗 is assigned to a machine that
satisfies the condition 𝑔𝑔(𝐽𝐽𝑗𝑗) ≥ 𝑔𝑔(𝑀𝑀𝑖𝑖). For an example of 2
jobs, 2 machines, and 2 GoS levels, assume that 𝑔𝑔(𝐽𝐽1) = 1,
𝑔𝑔(𝐽𝐽2) = 2, 𝑔𝑔(𝑀𝑀1) = 1, and 𝑔𝑔(𝑀𝑀2) = 2. Job 1 can only be
machined on Machine 1 because it satisfies the condition
𝑔𝑔(𝐽𝐽1) ≥ 𝑔𝑔(𝑀𝑀1). Machine 2 is a machine with a lower GoS
level that cannot process Job 1 with a higher GoS level, i.e.,
it cannot satisfy the condition 𝑔𝑔(𝐽𝐽1) ≥ 𝑔𝑔(𝑀𝑀2). Conversely,
if job 2 is a lower GoS level job, then both machines 1 and
2 can be machined. Also, the research limitations are to:
1. All the processing time and number of jobs are known

and deterministic.
2. All jobs arrive at the same time, and we do not consider

on-line scheduling model.
3. The process time 𝑝𝑝𝑗𝑗 that job 𝐽𝐽𝑗𝑗 spends on any machine is

the same.
4. Job 𝐽𝐽𝑗𝑗 requires a single operation and may be processed

on any one of the 𝑚𝑚 machine that belongs to a given
subset.

5. Once a job on a machine has started, it cannot be stopped
until it is completed.
There is no study in the literature that uses the

minimization of total completion time as a criterion, i.e.,
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. To the best of our knowledge, this study is the
first paper to investigate this scheduling problem. For
1||∑𝐶𝐶𝑗𝑗, the shortest processing time (SPT) rule can be used
to obtain the optimal solution. For 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗, the SPT rule
can also be used to obtain the optimal solution. However,
the problem 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 becomes an NP-hard problem by
adding constraints such as the GoS constraint (Mokotoff,
2001). The main contributions and innovations of this study
are to:
1. A new scheduling problem of minimizing total

completion time on parallel machines with GoS
constraint is considered.

2. Effective heuristics are proposed to solve the considered
problem.

3. A fast method for calculating the total completion time is
developed from the insertion method.

4. All proposed heuristics outperform the metaheuristic in
literature and are potentially suitable for practical use.
This study is organized as follows. Section 2 presents a

review of the literature. In Sections 3 and 4, the heuristics
are developed to solve the two- and multi-machine
problems. Section 5 evaluates the performance of these
heuristics. Finally, conclusions are provided in Section 6.

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 3

2. LITERATURE REVIEW

Most of the studies on the above parallel machine

scheduling environment take minimizing makespan as the
objective function, which can be denoted as Pm|GoS|Cmax,
and it is an NP-hard (as shown in Table 2). Since the
development of heuristics by Hwang et al. (2004) and Glass
and Kellerer (2007), researchers have started to propose a
series of related polynomial time approximation schemes
(PTAS) (Ji and Cheng, 2008; Ou et al., 2008; Li and Zhang,
2009; Woeginger, 2009). Besides, some literature refers to
the GoS constraint as inclusive processing set restriction
(Ou et al, 2008), both of which have the same meaning. In
addition, more complex scheduling contexts have been
studied, such as the inclusion of start time constraints (Huo
et al., 2009; Li and Wang, 2010; Li and Li, 2015) or uniform
parallel machine environments (Epstein and Levin, 2011).
Literature reviews are presented in Leung and Li (2008),
Lim (2010), Leung and Li (2016), and they also review
studies that consider online and semi-online contexts.

In recent years, studies on GoS constraints have focused
on exploring different parallel machine scheduling
environments or minimizing other objectives. For different
parallel machine scheduling environments, Li (2017)
developed two fast algorithms for parallel batch machine
scheduling with start time constraints and even proposed
PTAS as well. Leung and Ng (2017), on the other hand,
extended the study of uniform parallel machine scheduling
to improve the PTAS proposed by Epstein and Levin (2011).
For minimizing other objectives, Ou et al. (2016) solved the

bi-objective parallel machine scheduling problem of
minimizing the penalty cost of makespan and exiting jobs,
and developed PTAS. Later, researchers started to use
metaheuristics to solve parallel machine scheduling
problems with different objectives. Tseng et al. (2017)
proposed an electromagnetic-like algorithm to efficiently
solve the parallel machine scheduling problem that
minimizes the total weighted tardiness. Liu et al. (2020)
used difference algorithm to solve sustainable scheduling
problems with bi-objective of minimizing makespan and
total electricity cost. Liao et al. (2020) considered
outsourcing cases to minimize makespan and outsourcing
costs and proposed VNS-NKEA algorithm to solve it.
Kusoncum et al. (2021) developed the VaNSAS algorithm
to solve the GoS unrelated parallel machine scheduling
problem under more constraints.

3. TWO-MACHINE PROBLEM

This section examines the case of two machines with two

service levels 𝑃𝑃2|𝐺𝐺𝐺𝐺𝐺𝐺 = 2|∑𝐶𝐶𝑗𝑗. Without loss of generality,
it is assumed that Machine 1 (𝑀𝑀1) provides a high service
level (𝑔𝑔(𝑀𝑀1) = 1) and Machine 2 (𝑀𝑀2) provides a low
service level (𝑔𝑔(𝑀𝑀2) = 2). Two heuristics are proposed to
solve this scheduling problem, as detailed below.

3.1 SPT-I

The proposed first heuristic called SPT-I uses a two-stage
approach.

Table 2. Summary of the GoS papers

Type Criterion Constraint Method Sources

Pm Makespan x Heuristic Hwang et al. (2004); Glass and
Kellerer (2007)

Pm Makespan x PTAS
Ji and Cheng (2008); Ou et al.
(2008); Li and Zhang (2009);

Woeginger (2009)

Pm Makespan Start time
Preemptions Algorithm Huo et al. (2009)

Pm Makespan Start time PTAS Li and Wang (2010)

Pm Makespan Start time
Process Algorithm Li and Li (2015)

Qm Makespan x PTAS Epstein and Levin (2011)
Bm Makespan Start time PTAS Li (2017)
Qm Makespan x PTAS Leung and Ng (2017)

Pm Makespan
Cost x PTAS Ou et al. (2016)

Pm Total tardiness x Metaheuristic Tseng et al. (2017)

HFS Makespan
Total electricity cost x Metaheuristic Liu et al. (2020)

Pm Makespan
Outsourcing cost Group Metaheuristic Liao et al. (2020)

Rm Makespan Setup time Metaheuristic Kusoncum et al. (2021)
Pm Total completion time x Heuristic This study

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 4

In Stage 1, each job is assigned to the machine
corresponding to GoS according to the GoS constraint, and
the SPT rule is used to find the optimal solution for
minimizing the total completion time of a single machine,
so the jobs of both machines are used to find the total
completion time in Stage 1 according to the SPT rule. There
are other dispatching rules, such as the EDD rule (the
earliest due date), but those rules are not suitable for use in
this scheduling problem. For 1||∑𝐶𝐶𝑗𝑗 or 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 , the SPT
rule can be used to obtain the optimal solution. Here, the
local optimal solution is used as a good initial solution in
the proposed heuristic for the considered scheduling
problem. For the ∑𝐶𝐶𝑗𝑗 criterion, other dispatching rules
cannot obtain better initial solutions than the SPT rule
(Pinedo, 2002). Therefore, the first stage of all proposed
heuristics uses the SPT rule. In Stage 2, each job from the
low service level machine is tried to be inserted into the high
service level machine to reduce the total completion time.
The detailed steps are as follows.

Stage 1: SPT
Step 1.1: Let 𝐺𝐺1 be the set of jobs on machine 𝑀𝑀1 with high

service level and 𝐺𝐺2 be the set of jobs on machine
𝑀𝑀2 with low service level. Put all jobs into 𝐺𝐺1 and
𝐺𝐺2 respectively according to the service level.

Step 1.2: Arrange the jobs in 𝐺𝐺1 and 𝐺𝐺2 in descending order
of processing time, and calculate the total
completion time.

Stage 2: Insertion
Step 2.1: Let 𝑍𝑍 be the unscheduled sets of jobs, 𝑘𝑘 = 1, 𝑍𝑍 =

𝐺𝐺2 and 𝑛𝑛2 be the number of jobs in 𝑍𝑍.
Step 2.2: Select the job in the 𝑘𝑘th position of 𝑍𝑍 and insert it

into 𝐺𝐺1 according to the order of SPT rule.
Step 2.3: Recalculate the total completion time. If the total

completion time improves, remove the job from
𝐺𝐺2 and insert it into 𝐺𝐺1. Otherwise, do not insert it.

Step 2.4: Consider the next job 𝑘𝑘 = 𝑘𝑘 + 1 and go back to
Step 2.2 until 𝑘𝑘 = 𝑛𝑛2 and the algorithm stops.

Stage 1 is to arrange the corresponding service level jobs

on the machine according to the SPT rule. First, in Step 1.1,
the jobs are divided into two groups according to the service
levels and assigned to the corresponding machines. High
service level machines process high service level jobs and
low service level machines process low service level jobs.
Due to the classification, the scheduling problem for each
of the two machines becomes a single machine scheduling
problem with minimizing total completion time (1||∑𝐶𝐶𝑗𝑗).
In Step 1.2, the SPT rule is used to find the optimal solution
for each machine. Finally, the total completion time of the
two machines is summed and this is the optimal solution in
the case of the classification.

Next, 𝑀𝑀1 is a high service level machine that can machine
not only high service level jobs but also low service level
jobs. Stage 2 tries to insert the job from the low service level
machine into the high service level machine to check if the

total completion time can be reduced. In Step 2.1, let 𝑘𝑘 = 1
and start selecting jobs from the first position on machine
𝑀𝑀2 and do not stop until 𝑛𝑛2 jobs. In Step 2.2, the jobs
selected on machine 𝑀𝑀2 are inserted into 𝐺𝐺1 . Since the
optimal solution can be obtained by the SPT rule on this
machine, the selected insertion position must also be
inserted into the corresponding position in 𝐺𝐺1 by
maintaining the SPT rule. It is noted that there is no
condition that must be met first before inserting the selected
job into the corresponding position. This is because the
processing time and number of jobs are known. In Step 2.3,
the total completion time is recalculated, and if it improves,
it is inserted, otherwise it is not inserted. In Step 2.4, Steps
2.2-2.3 are repeated until all jobs in 𝑍𝑍 are considered to
reduce the total completion time, and the algorithm stops.

This heuristic is illustrated by an example of 7 jobs, 2
machines, and 2 service levels. The relevant information is
shown in Table 3, where 𝑝𝑝𝑗𝑗 and 𝑔𝑔(𝐽𝐽𝑗𝑗) represent the
processing time and service level of job 𝐽𝐽𝑗𝑗. 𝑔𝑔(𝑀𝑀1) = 1 and
𝑔𝑔(𝑀𝑀2) = 2 . The steps of the heuristic are described as
follows.

Table 3. Job data for example

𝐽𝐽𝑗𝑗 1 2 3 4 5 6 7
𝑝𝑝𝑗𝑗 7 5 15 12 3 20 18

𝑔𝑔(𝐽𝐽𝑗𝑗) 1 1 2 2 2 1 2

Stage 1: SPT
Step 1.1: According to the service level of the job, 𝐺𝐺1 =

{𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5, 𝐽𝐽7} can be obtained.
Step 1.2: The jobs in 𝐺𝐺1 and 𝐺𝐺2 can be obtained as 𝐺𝐺1 =

{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽4, 𝐽𝐽3, 𝐽𝐽7} according to the
SPT rule. As shown in Fig. 1, the total completion
time of Machine 𝑀𝑀1 is 49, the total completion
time of Machine 𝑀𝑀2 is 96, and the total
completion time of the objective function is 145.

Fig. 1. Schedule after Phase 1

Stage 2: Insertion
Step 2.1: Let 𝑘𝑘 = 1, 𝑍𝑍 = {𝐽𝐽5, 𝐽𝐽4, 𝐽𝐽3, 𝐽𝐽7} and 𝑛𝑛2 = 4
Step 2.2: Select the job 𝐽𝐽5 at the first position in 𝑍𝑍. Next,

insert 𝐽𝐽5 before 𝐽𝐽2 in 𝐺𝐺1 , as the best total
completion time for the machine is obtained by
following the SPT rule. If 𝐽𝐽5 is inserted in another
position, the total completion time is not shorter.

Step 2.3: Recalculate the total completion time and find that
the total completion time of 𝑀𝑀1 is 61, the total
completion time of machine 𝑀𝑀2 is 84, and the
total completion time of the objective function is

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 5

145. the total completion time is not improved, so
the selected job is not inserted.

Step 2.4: Go back to step 2.2 if 𝑘𝑘 = 2.
Step 2.2: Select the job 𝐽𝐽4 at the second position in 𝑍𝑍. Next,

insert 𝐽𝐽4 between 𝐽𝐽1 and 𝐽𝐽6 in 𝐺𝐺1 according to the
SPT rule.

Step 2.3: Recalculate the total completion time, which is 85
for machine 𝑀𝑀1, 57 for machine 𝑀𝑀2, and 142 for
the objective function, and improve the total
completion time by removing job 𝐽𝐽4 from 𝐺𝐺2 and
inserting it into 𝐺𝐺1 . Therefore, the new 𝐺𝐺1 =
{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽4, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽3, 𝐽𝐽7}.

Step 2.4: Go back to Step 2.2 if 𝑘𝑘 = 3
 ⋮

Finally, neither the insertion of 𝐽𝐽3 nor 𝐽𝐽7 can improve the

total completion time. As shown in Fig. 2, 𝐺𝐺1 =
{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽4, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽3, 𝐽𝐽7} can be obtained, and the
total completion time for the objective function is 143.

Fig. 2. Final schedule

3.2 SPT-FI
The proposed second heuristic, called SPT-FI, mainly

accelerates the calculation speed of the SPT-I heuristic. In
Step 2.3 of the SPT-I heuristic in the previous section, the
job insertion requires recalculation of the total completion
time of both machines. This section discusses the
characteristics of insertion and removal and proposes a fast
calculation method that can reduce the calculation time by
a significant amount. It is divided into two parts to illustrate:
(1) the change of the selected job after its removal from
machine 𝑀𝑀2 and (2) the change of the selected job after its
insertion into machine 𝑀𝑀1.

First, discuss the change in the total completion time after
the selected jobs are moved out of the machine 𝑀𝑀2. Assume
that 𝑀𝑀2 has 𝑎𝑎 jobs. Let 𝐺𝐺2 =
{𝐽𝐽[1], . . . , 𝐽𝐽[𝑘𝑘−1], 𝐽𝐽[𝑘𝑘], 𝐽𝐽[𝑘𝑘+1], . . . , 𝐽𝐽[𝑎𝑎]} is the schedule of 𝑀𝑀2 ,
where 𝐽𝐽[𝑘𝑘] means the job of the 𝑘𝑘th position and is selected
to move out of the job. Let 𝐶𝐶[𝑘𝑘] and 𝑝𝑝[𝑘𝑘] represent the
completion time and machining time of 𝐽𝐽[𝑘𝑘] . The total
completion time ∑ 𝐶𝐶[𝑖𝑖]

𝑎𝑎
𝑖𝑖=1 of 𝑀𝑀2 is calculated and the

formula is developed as follows.

𝐶𝐶[1] = 𝑝𝑝[1]
𝐶𝐶[2] = 𝑝𝑝[1] + 𝑝𝑝[2]

𝐶𝐶[3] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3]
⋮

𝐶𝐶[𝑘𝑘−1] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1]
𝐶𝐶[𝑘𝑘] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘]

𝐶𝐶[𝑘𝑘+1] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑘𝑘+1]
⋮

𝐶𝐶[𝑎𝑎] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑘𝑘+1] ⋯
+ 𝑝𝑝[𝑎𝑎]

Expanding from the above equation, it can be seen that

after moving out 𝐽𝐽[𝑘𝑘] , the total completion time will be
reduced by 𝐶𝐶[𝑘𝑘] , the completion time of 𝐽𝐽[𝑘𝑘] , and (𝑎𝑎 − 𝑘𝑘)
times 𝑝𝑝[𝑘𝑘], the processing time of 𝐽𝐽[𝑘𝑘], as follows.

𝐶𝐶[𝑘𝑘] + (𝑎𝑎 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘] (1)

Then, the change in the total completion time after

inserting the selected job into the machine 𝑀𝑀1 is discussed.
Assume that 𝑀𝑀1 has 𝑏𝑏 jobs. Let 𝐺𝐺1 =
{𝐽𝐽[1], . . . , 𝐽𝐽[𝑖𝑖], 𝐽𝐽[𝑗𝑗], . . . , 𝐽𝐽[𝑏𝑏]} be the schedule of 𝑀𝑀1 . Further,
assume that 𝐽𝐽[𝑘𝑘] is inserted between 𝐽𝐽[𝑖𝑖] and 𝐽𝐽[𝑗𝑗] on 𝑀𝑀2. The
equation for the total completion time ∑ 𝐶𝐶[𝑖𝑖]

𝑏𝑏
𝑖𝑖=1 after the

insertion of 𝐽𝐽[𝑘𝑘] on 𝑀𝑀1 is expanded as follows.

𝐶𝐶[1] = 𝑝𝑝[1]
𝐶𝐶[2] = 𝑝𝑝[1] + 𝑝𝑝[2]

⋮
𝐶𝐶[𝑖𝑖] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖]

𝐶𝐶[𝑘𝑘]
′ = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘]

𝐶𝐶[𝑗𝑗] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑗𝑗]
⋮

𝐶𝐶[𝑏𝑏] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑗𝑗] ⋯+ 𝑝𝑝[𝑏𝑏]

Expanding from the above equation, the total completion

time after inserting 𝐽𝐽[𝑘𝑘] will increase 𝐶𝐶[𝑘𝑘]
′ , the completion

time of 𝐽𝐽[𝑘𝑘], and (𝑏𝑏 − 𝑘𝑘) times 𝑝𝑝[𝑘𝑘], the processing time of
𝐽𝐽[𝑘𝑘], as follows.

𝐶𝐶[𝑘𝑘]
′ + (𝑏𝑏 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘] (2)

Finally, this study integrates the reduction in Equation (1)

and the increase in Equation (2) into the following equation.

𝛥𝛥 = [𝐶𝐶[𝑘𝑘]
′ + (𝑏𝑏 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]] − [𝐶𝐶[𝑘𝑘] + (𝑎𝑎 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]] (3)

where 𝛥𝛥indicates the change in the total completion time.
Therefore, Step 2.3 in SPT-I is completely recalculated and
the total completion time is changed to the following.

Step 2.3: Equation (3) is calculated, and if 𝛥𝛥 < 0 , it

means the total completion time is improved, then remove
the job from 𝐺𝐺2 and insert it into 𝐺𝐺1 . Otherwise, it is not
inserted.

In this step, instead of recalculating the total completion
time of the two machines, the new total completion time can

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 6

be calculated quickly according to Equation (3) to
determine whether to insert or not. We call this heuristic
SPT-FI.

4. MULTI-MACHINE PROBLEM

This section examines the case of multiple machines with

multiple service levels 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. Assume that there are
𝑚𝑚 machines and 𝑔𝑔 service levels. This scheduling problem
becomes more complicated when there are more than 2
machines at each service level. The concepts of the two
heuristic algorithms in the previous section will be applied
to solve this problem. The details are as follows.

4.1 mSPT-I

The difference with SPT-I in Section 3.1 is that there are
multiple machines at a given service level and the selected
job can be inserted into a larger selection of machines. In
Stage 1 of the heuristic, jobs are assigned to the appropriate
set of service level machines according to the service level
constraints. Each set forms the 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 problem. The
optimal solution is found for each set according to the SPT
rule. In Stage 2, we try to insert each job from the low
service level set into each service level set higher than it.
The most improved solution is chosen from each insertion
solution. The detailed steps are as follows.

Stage 1: SPT
Step 1.1: Let 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 be the set of service levels

1,2, . . . ,𝑔𝑔. Put all jobs into 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔
according to their service levels.

Step 1.2: Arrange the jobs in 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 in descending
order of processing time.

Step 1.3: Assign the jobs in 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 to the earliest idle
machine under each service level according to the
processing order, and calculate the total
completion time.

Stage 2: Insertion
Step 2.1: Let 𝑙𝑙 = 𝑔𝑔
Step 2.1.1: Let 𝑍𝑍 be the unscheduled sets of jobs, 𝑘𝑘 = 1 ,

𝑍𝑍 = 𝐺𝐺𝑙𝑙 , and 𝑛𝑛 be the number of jobs in 𝑍𝑍
Step 2.1.2: Select the job at the 𝑘𝑘th position of 𝑍𝑍
Step 2.1.3: Evaluate the different insertion solutions. Try to

insert the selected job 𝐽𝐽[𝑘𝑘] into the solutions
𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑗𝑗−1 according to the SPT rule and
calculate the total completion time for each
solution. Select the solution with the shortest
total completion time.

Step 2.1.4: If the selected insertion solution can improve the
total completion time, update the service level
sets, otherwise, leave them unchanged.

Step 2.1.5: Consider the next job, 𝑘𝑘 = 𝑘𝑘 + 1. Return to Step
2.1.2 until 𝑘𝑘 = 𝑛𝑛. Go to the next step.

Step 2.2: 𝑙𝑙 = 𝑙𝑙 − 1, go back to Step 2.1.1 until 𝑙𝑙 = 1, and
the algorithm stops.

First, in Stage 1, the jobs are assigned to the machines
according to the SPT rule. In Step 1.1, each job is placed in
the service level sets 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 according to its service
level. In Step 1.2, the jobs in each set are arranged according
to the SPT rule. Since the jobs in each set are processed on
multiple parallel machines, Step 1.3 assigns the jobs to the
machines in the order of the sets using the ASAP (as soon
as possible) method. Finally, the total completion time is
calculated.

Secondly, Stage 2 starts the improvement of scheduling
using the insertion method. In Step 2.1, the jobs are
considered to be moved from the lowest service level set 𝐺𝐺𝑔𝑔
to the higher service level sets. In Steps 2.1.1 to 2.1.2, the
number of jobs in the selected service level set is confirmed,
and the next step is performed starting with the job at the
first position. In Step 2.1.3, the total completion time of each
solution for the selected jobs 𝐽𝐽[𝑘𝑘] is evaluated for insertion
into the higher service level sets, and the optimal solution is
selected. Since there are multiple parallel machines in a set,
the jobs are reassigned to the machines according to the new
machining sequence and ASAP method. Therefore, the total
completion time has to be recalculated. In Step 2.1.4, if an
improvement solution can be found, then the change will be
made, otherwise, it will remain unchanged. In Step 2.1.5,
Steps 2.1.2-2.1.4 are repeated until all jobs in the selected
set have been considered before proceeding to the next step.
In step 2.2, the next higher service level set is considered
until the highest service level is reached and the algorithm
is stopped.

4.2 mSPT-FI

In the previous section, mSPT-I cannot be directly
applied to Equation (3) in Section 3.2 to speed up the
calculation of the new total completion time when the
processing order in a set changes, because Equation (3) is
limited to the case where each set is a single machine.
mSPT-I is used to consider the case where each set is a
parallel machine, and when the processing order in a set
changes, it is necessary to follow the ASAP method, and the
jobs may be assigned to the machines with the original
processing order. The machines to which the jobs are
assigned will be changed and the calculation has to be done
again.

To improve the computational performance of the
heuristic with the use of Equation (3), the Insertion steps of
mSPT-I in Section 3.1 are changed to evaluate different
insertion solutions based on a single machine. The heuristic
starts with the same step as Step 1 of mSPT-I and generates
a schedule according to the SPT rule. To save time in
calculating the new total completion time and to achieve a
better solution search, Steps 2.1.3-2.1.4 of mSPT-I are
changed to the following.

Step 2.1.3: Evaluate the different insertion solutions. Try to

insert the selected job 𝐽𝐽[𝑘𝑘] into each machine
that satisfies 𝑔𝑔(𝑀𝑀𝑖𝑖) ≤ 𝑔𝑔(𝐽𝐽[𝑘𝑘]) as a solution.

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 7

Apply Equation (3) and calculate the change in
total completion time for each solution. Select
the solution with the best improvement.

Step 2.1.4: If the selected insertion solution can improve the
total completion time, update the scheduling
and service level sets on the machine, otherwise
do not change them.

There are two main differences between mSPT-FI in this

section and mSPT-I in the previous section: (1) mSPT-FI
uses accelerated computation; (2) mSPT-FI is inserted based
on the machine, while mSPT-I is based on the service level
set.

5. RESULTS AND DISCUSSION

To test the performance of the proposed heuristics, this

study conducts comparative experiments on a series of
problems. The experimental examples are generated by
referring to the way Tseng et al. (2017) generated the
benchmark instances for 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 . The processing
time and GoS level of each job are randomly generated from
the uniform distribution of 𝑈𝑈[1,100] and 𝑈𝑈[1,𝐺𝐺]. Tseng et
al. (2017) also developed an Electromagnetism-like
Mechanism (EM) algorithm that proved to be effective in
solving 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 problems. Therefore, this study
applies the EM proposed by Tseng et al. (2017) to solve
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 and compare it with the proposed heuristics to
verify their performance. All algorithms were coded using
Visual C ++ and executed on an Intel®Core™ i7-3687U
CPU 2.10GHz PC with 8GB RAM memory. The following
experimental results for a series of problems are described
as follows.

5.1 Two-machine Problem

In the case of considering 2 machines and 2 service levels,
one machine is at a high service level and the other is at a
low service level. The experiments are structured on 6 sets
of job numbers (𝑛𝑛 = 20, 50, 100, 200, 500 and 1000).
According to Tseng et al. (2017), 20 instances are randomly
generated for each set of jobs, for a total of 120 instances.
The performance is measured using the Relative Percentage
Increase (RPI) index with the following formula.

𝐻𝐻𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗) /𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗) × 100 (4)

𝐻𝐻𝑖𝑖 denotes the total completion time generated by

Algorithm i. 𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗) denotes the minimum value
among all compared algorithms. The compared algorithms
are SPT, SPT-I, SPT-FI and the EM proposed by Tseng et al.
(2017), where SPT is the Stage 1 solution in SPT-I/SPT-FI,
and EM denotes the EM proposed by Tseng et al. (2017) that
has been shown to effectively solve the problem of
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 . Their EM is modified here to solve the
problem considered in this study. EM is an algorithm with

random search properties. Therefore, the same instance EM
is run for 10 trials, and the smallest total completion time is
selected as the comparative solution. The parameters of EM
are set using the settings of Tseng et al. (2017). The
experimental results are shown in Table 4, presenting the
average RPI (MRPI) and average computation time (CT) of
the four algorithms. The results of SPT-I and SPT-FI are
considered the same here. Since the proposed SPT-I and
SPT-FI produce the same solution considering two
machines and two service levels, the difference in CT is also
small enough to be negligible.

First, it can be seen from Table 4 that the proposed SPT-
I/SPT-FI is competitive. Its MRPI is all 0 from small-size to
large size jobs, which means that the solution of SPT-I/SPT-
FI is the best for all problems and instances. Secondly, SPT
in the table is the method of SPT-I/SPT-FI in Stage 1. By
comparing the MRPI values of SPT with those of SPT-
I/SPT-FI, the improved performance of SPT-I/SPT-FI in the
Stage 2 method can be seen. In Table 3, the MRPI values for
SPT are slightly larger for small-size jobs than for large size
jobs. This shows that SPT performs less well on small-size
jobs. In other words, it is implied that the SPT-I/SPT-FI in
Stage 2 works better for small-size jobs. On the contrary,
from the MRPI values, SPT performs very well for large
size jobs, and the effect of Stage 2 is very small, especially
for jobs of 1000.

Thirdly, EM has been able to obtain very good
performance in solving similar problems, which is a good
basis for comparison. By observing the MRPI of EM and
SPT-I/SPT-FI, we can understand the performance of SPT-
I/SPT-FI. In Table 4, the MRPI of EM increases with the
number of jobs, indicating that the performance of EM in
solving with larger numbers of jobs is not good. Although
EM can already obtain good performance in solving similar
problems, this result also implies that SPT-I/SPT-FI
performs better for large jobs. The MRPI of EM is 58.4%
for a job number of 1000. In other words, the SPT-I/SPT-FI
performance is better than the EM performance of 58.4%.
Overall, the SPT-I/SPT-FI average performance is better
than the EM average performance of 38.4%. In terms of
execution time, SPT-I/SPT-FI also has a considerable
advantage. When the number of jobs is 1000, EM takes 16.5
sec, while SPT-I/SPT-FI takes only 0.037 sec. In the next
section, more machines and more service levels are
considered to further understand if the performances of the
proposed heuristics are different.

5.2 Multi-machine Problem

To further validate the performance of the proposed
heuristics at multi-machine and multi-service levels, small-
size and large size job experiments are constructed. For the
first group, experimental data of small-size jobs was directly
used from the benchmark instances proposed by Tseng et al.
(2017). There are three job numbers (𝑛𝑛 = 20, 50 and 100),
two machine numbers (𝑚𝑚 = 4 and 10), and two service level
numbers (GoS = 2 and 3), for a total of 12 combinations.

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 8

Each combination has 80 instances, for a total of 960
instances. For the second group, experimental data of large
jobs is constructed on the job numbers (𝑛𝑛 = 200, 500 and
1000). The combinations of machine numbers and service
level numbers are considered the same as the first group of
small job experiments. Since there is no benchmark instance
for the large size jobs, each instance in this study is
randomly generated using the method of Tseng et al. (2017).
There are 80 instances for each combination, totaling 960
instances.

5.2.1 Small-size Job Experiment

First, as shown in Table 5, the average MRPIs of mSPT-I
and mSPT-FI are 0.438% and 0.471% respectively, which
means that the performances of the proposed mSPT-I and
mSPT-FI are significantly better than those of SPT and EM.
Furthermore, the performances of mSPT-I and mSPT-FI are
compared in detail. In Table 5, mSPT-I has the best
performance for a GoS of 2, regardless of the number of jobs
and the number of machines. The results of mSPT-FI at GoS
of 3, however, are mostly the best performance except for
50/10/3 and 100/10/3. Therefore, the small-size job
experiments show that mSPT-I has a greater advantage in
solving the GoS of 2, while mSPT-FI has a greater
advantage in solving the GoS of 3.

Table 6 presents the number of instances won by

comparing the solutions of mSPT-I and mSPT-FI. Tie
indicates that the solutions of mSPT-I and mSPT-FI are the
same. For example, for a 20/4/2 problem with 80 instances,
mSPT-I has 33 better solutions, and 44 ties, and mSPT-IF
has only 3 better solutions. In terms of the number of
instances, the results of the overall and individual
performances of mSPT-I are consistent with the results in
Table 5, but it is observed that there is a difference in mSPT-
FI. Table 5 shows that mSPT-FI performs better in 20/4/3,
20/10/3, 50/4/3 and 100/4/3, but in Table 6, mSPT-FI does
not get more good solutions than mSPT-I. This shows that
although the number of better instances for mSPT-FI is
small, the good solutions are much better than those for
mSPT-I, which allows the values in Table 5 to be relatively
low. This shows that SPT-FI is very effective in solving
certain sets of problems. In terms of execution time, SPT-FI
outperforms SPT-I as shown in Table 5.

Then, the performance of mSPT-I/mSPT-FI in Stage 1
can be obtained by observing the performance of SPT. In
Table 5, the STPs of 20/4/2 and 20/4/3 are 14.1% and 9.84%,
while the STPs of 20/10/2 and 20/10/3 are 4.76% and 12.1%
for a job number of 20. The results show that the SPT
performance is better when there are fewer machines/higher
GoS or more machines/lower GoS. In other words, it is
implied that the performance of mSPT-I/mSPT-FI in Stage
2 is worse when the numbers of machines and GoS are in
this particular condition.

Table 4. Relative performance of different algorithms for two-machine problems

 SPT SPT-I/SPT-FI EM
n/m/G MRPI% CT MRPI% CT MRPI% CT
20/2/2 1.90 0.0008 0 0.0015 12.0 0.644
50/2/2 0.914 0.0015 0 0.0022 24.0 0.933

100/2/2 0.106 0.0015 0 0.0037 36.9 1.72
200/2/2 0.018 0.0022 0 0.0037 45.3 3.16
500/2/2 0.048 0.0045 0 0.0120 53.8 7.49

1000/2/2 0.012 0.0113 0 0.0370 58.4 16.5
Mean 0.500 0.0036 0 0.0100 38.4 5.08

Table 5. Relative performance of different algorithms for small-size problems

 SPT mSPT-I mSPT-FI EM
n/m/G MRPI% CT MRPI% CT MRPI% CT MRPI% CT
20/4/2 14.1 0.0013 1.05 0.0019 1.22 0.0015 2.21 0.753
20/4/3 9.84 0.0008 1.40 0.0017 1.02 0.0015 2.94 0.755

20/10/2 4.76 0.0009 0.389 0.0017 0.567 0.0009 0.147 0.654
20/10/3 12.1 0.0009 1.19 0.0015 1.16 0.0008 0.333 0.694
50/4/2 8.33 0.0008 0.008 0.0015 0.093 0.0013 11.7 1.26
50/4/3 6.55 0.0008 0.388 0.0015 0.247 0.0011 14.5 1.19

50/10/2 6.42 0.0013 0.011 0.0013 0.222 0.0009 6.77 1.29
50/10/3 8.00 0.0006 0.277 0.0009 0.374 0.0009 6.95 1.38
100/4/2 6.57 0.0036 0.005 0.0049 0.014 0.0032 21.1 2.20
100/4/3 4.60 0.0036 0.323 0.0042 0.196 0.0038 25.8 2.07
100/10/2 3.16 0.0028 0.001 0.0040 0.154 0.0036 16.9 2.49
100/10/3 6.99 0.0026 0.206 0.0034 0.388 0.0013 18.6 2.65

Mean 7.62 0.0017 0.438 0.0024 0.471 0.0017 10.7 1.45

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 9

Table 6. Comparison with mSPT-I and mSPT-FI for small-
size problems

n/m/G mSPT-I Tie mSPT-FI
20/4/2 33 44 3
20/4/3 23 38 19

20/10/2 17 58 5
20/10/3 26 38 16
50/4/2 35 40 5
50/4/3 34 31 15

50/10/2 28 44 8
50/10/3 43 16 21
100/4/2 24 42 14
100/4/3 28 28 24

100/10/2 35 40 5
100/10/3 48 15 17

Total 374 434 152

The same results are obtained for job numbers 50 and 100
as for job number 20. In addition, overall, the SPT
performance is better as the job number increases.

In Table 5, most of the MRPI values for EM are higher
than the proposed heuristics, and the values increase as the
number of jobs increases. This result shows that the average
performance of EM is worse than the average performance
of the other algorithms, and the performance is even worse
for large jobs. However, the MRPI of EM is the lowest of
all the algorithms with 20 jobs and 10 machines, which
means that the EM performance is the best performance
under this condition. Overall, the average performance of
mSPT-I/mSPT-FI is better than the average performance of
EM. In terms of execution time, mSPT-I/mSPT-FI is also
better than EM.

5.2.2 Large-size Job Experiment

As shown in Table 7, the average MRPI of mSPT-I and
mSPT-FI are 0.119% and 0.191%, respectively. This means
that the proposed mSPT-I and mSPT-FI have significantly
better performance than SPT and EM. Compared with the

results in Section 5.2.1, it can be found that mSPT-I and
mSPT-FI have better performance in large-size jobs. Further,
comparing the performance of mSPT-I and mSPT-FI in
detail, mSPT-I has the best performance except for 200/4/3,
500/4/3 and 1000/4/3. The mSPT-FI has a greater advantage
in solving the 𝑚𝑚 = 4/GoS = 3 problem. Table 8 shows that
the number of instances with better solutions for mSPT-FI
does not always exceed the number of instances for mSPT-
I. This result is also consistent with the conclusion in
Section 5.2.1, which shows that mSPT-FI is effective in
solving certain sets of problems. In terms of execution time,
mSPT-FI outperforms mSPT-I as shown in Table 7.

For the performance of SPT, the results in Table 7 show
the same results as in Section 5.2.1 that the SPT
performance is better when there are fewer machines/higher
GoS or more machines/lower GoS. Overall, the SPT
performance is better as the number of jobs increases. For
the performance of EM, the MRPI value of EM is much
larger than the proposed algorithm, and the value increases
as the number of jobs increases. This result proves that the
performance of mSPT-I/mSPT-FI for large-size jobs is quite
good and better than the average performance of EM. The
mSPT-I/mSPT-FI is also very efficient in terms of execution
time.

5.3 Discussion

The most related studies of 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem in this
study are 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 , 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶 and 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗
problems as shown in Table 9. First, the comparison of the
proposed heuristics and the SPT rule is discussed. 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗
problem is not an NP-hard problem. The SPT rule can be
used to obtain the optimal solution. (Conway et al., 1967;
Pinedo, 2002). The SPT rule is also a dispatching rule,
which is used in practice, for NP-hard scheduling problems.
It can be used quickly and simply to obtain an acceptable
solution, especially for different scheduling problems of
∑𝐶𝐶𝑗𝑗criterion (Planinić et al., 2022).

Table 7. Relative performance of different algorithms for large-size problems

 SPT mSPT-I mSPT-FI EM
n/m/G MRPI% CT MRPI% CT MRPI% CT MRPI% CT

200/4/2 8.01 0.0023 0.001 0.0032 0.011 0.0024 29.6 3.99
200/4/3 4.97 0.0023 0.391 0.0038 0.124 0.0034 35.1 3.77
200/10/2 6.85 0.0028 0.000 0.0047 0.162 0.0026 28.1 4.97
200/10/3 12.7 0.0028 0.357 0.0053 0.544 0.0013 29.4 5.17
500/4/2 6.70 0.0062 0.000 0.0120 0.001 0.0058 40.0 9.24
500/4/3 4.07 0.0058 0.172 0.0133 0.140 0.0064 48.4 8.85
500/10/2 3.52 0.0062 0.000 0.0128 0.154 0.0054 40.9 12.0
500/10/3 9.68 0.0053 0.195 0.0139 0.364 0.0062 43.5 12.3
1000/4/2 7.71 0.0113 0.000 0.0338 0.000 0.0135 46.4 17.8
1000/4/3 4.02 0.0115 0.195 0.0432 0.135 0.0135 56.9 16.9

1000/10/2 3.00 0.0141 0.000 0.0377 0.181 0.0120 48.2 23.8
1000/10/3 9.89 0.0124 0.111 0.0428 0.477 0.0131 53.3 24.9

Mean 6.76 0.0070 0.119 0.0189 0.191 0.0071 41.6 12.0

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 10

Table 8. Comparison with mSPT-I and mSPT-FI for large-
size problems

n/m/G SPT-I Tie SPT-FI
200/4/2 36 37 7
200/4/3 23 26 31

200/10/2 31 43 6
200/10/3 44 15 21
500/4/2 23 40 17
500/4/3 32 27 21

500/10/2 34 42 4
50/010/3 55 6 19
1000/4/2 28 38 14
1000/4/3 31 27 22

1000/10/2 39 40 1
1000/10/3 59 8 13

Total 435 349 176

𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem is a NP-hard problem. Therefore, the
SPT rule is applied in all proposed heuristics to obtain a
good initial solution. Quick and effective methods are then
developed to improve the initial solution. The structure of
proposed heuristics is quick and simple, which is similar to
the dispatching rule. The results show that the proposed
heuristics outperform the SPT rule in all experiments. In
terms of execution time, the FI-series heuristics and the SPT
rule are the same. The average computation times in small-
size and large-size problems are 0.0017 and 0.0071 sec,
respectively. The proposed heuristics can be used quickly
and simply to obtain acceptable solutions.

Next, similar scheduling problems and methods from past
are discussed to explore the solution quality of the proposed
heuristics. As shown in Table 9, the polynomial time
approximation scheme (PTAS) is proposed to obtain the
approximate solution for 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶 (Ji and Cheng,
2008; Ou et al., 2008; Li and Zhang, 2009; Woeginger,
2009). PTAS cannot be applied to solve the considered
problem (𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗). EM, which is a metaheuristic, has
been able to obtain very good performance in solving
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 problem (Tseng et al., 2017). Metaheuristic
is better than SPT rule, but is more complex and time-
consuming (Xie et al., 2022). EM can be easily modified to
solve 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. The results of modified EM and EM by
Tseng et al. (2017) have the same pattern. When 𝑚𝑚 = 10,
they perform well. All proposed heuristics are compared
with the modified EM (denoted EM) in this study. For multi-
machine problem, the experiments were conducted on three
job numbers (𝑛𝑛 =20, 50 and 100) and two machine numbers

(𝑚𝑚 = 4 and 10). The results show that the proposed
heuristics perform better than EM and require only the same
execution time as the SPT rule. The average MRPIs of
mSPT-I, mSPT-FI and EM are 0.438%, 0.471% and 10.7%,
respectively.

Sensitivity analysis in scheduling problems is usually
performed by changing two parameters (number of jobs or
machines) to demonstrate the robustness of the proposed
methods. It is performed by changing the parameter 𝑛𝑛
(number of jobs). The experiments were conducted on three
job numbers (𝑛𝑛 = 200, 500 and 1000). The large-size job
experiments have not been explored in previous studies.
Three comparative experiments are detailed in Section 5.2.2:
(1) mSPT-I and mSPT-FI; (2) mSPT-I/mSPT-FI and SPT; (3)
mSPT-I/mSPT-FI and EM. The results show that all
proposed heuristics are consistent with the conclusions in
small-size job experiments. In addition, the performances of
the proposed mSPT-I and mSPT-FI are significantly better
than those of EM. Their execution times are similar to the
SPT rule. The proposed heuristics can be used to converge
to a very good solution by using a similar execution time for
the SPT rule.

From the above discussion, we describe the comparison
of the proposed heuristics with other methods and explain
research gaps in Table 9. In summary, the considered
problem in this study is a new NP-hard scheduling problem.
The proposed heuristics have the quick and simple
characteristics of the SPT rule and have the effect of solving
the considered problem. Other methods may be too
cumbersome for practical use, and heuristics provide faster
solution times for near-optimal solutions (ReVelle et al.,
2008; Zhao et al., 2019). The proposed heuristics
demonstrate their effectiveness and efficiency and,
therefore, their potential suitability for practical use.

6. CONCLUSIONS

This study investigates the 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem. To the

best of our knowledge, this scheduling problem has not been
addressed in the literature. Two heuristics, SPT-I and SPT-
FI, are proposed to solve this problem based on a two-stage
design for two machines and two service levels. Stage 1
applies the SPT rule to assign jobs to the machine. Stage 2
applies the insertion method to insert jobs from a particular
machine to a specific machine to reduce the total completion
time. The major difference between the two heuristics is that
SPT-FI is an accelerated insertion.

Table 9. The most related studies of 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem

Problem NP-hard Method Solution Method characteristic
𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 No SPT rule Optimal solution Quick and simple

𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶 Yes PTAS Approximate solution Quick and complex
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 Yes Metaheuristic Near-optimal solution Time consuming and complex
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 Yes The proposed heuristics Near-optimal solution Quick and simple

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 11

That is, after the insertion, it can be calculated using the
derived equation without recalculating the total completion
time to speed up the calculation time. Second, to extend the
problem conditions to multiple machines and multiple
service levels, two heuristics, mSPT-I and mSPT-FI, are
proposed based on the above design. The insertion method
of the two heuristics is different, as the former is based on a
set of service levels and the latter is based on machines. In
addition, mSPT-FI uses an accelerated insertion calculation.

All the proposed heuristics are compared with the EM
algorithm in a series of experiments, which is an algorithm
that has been proven to be effective in solving the
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 problem. For the experiment with two-
machine problem, the results show that the average
performance of SPT-I/SPT-FI is better than the average
performance of EM by 38.4%. In terms of execution time,
SPT-I/SPT-FI also has a considerable advantage. In terms of
the number of jobs 1000, SPT-I/SPT-FI takes only 0.037 sec,
while EM takes 16.5 sec. For the experiment with multi-
machine problem, the proposed mSPT-I and mSPT-FI have
significantly better performance than EM. They are more
efficient than the experiments with two-machine problem in
terms of execution time. The performance of mSPT-I and
mSPT-FI is further compared. In the small-size job
experiment, mSPT-I performs better for the GoS = 2
problem, while mSPT-FI performs better for the GoS = 3
problem. In the large-size job experiment, mSPT-FI has
better performance for the problem with 𝑚𝑚 = 4/GoS = 3,
and mSPT-I is superior for the remaining problems.
Therefore, the proposed mSPT-I and mSPT-FI can support
each other's problems with different sizes of jobs and
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 can be solved efficiently. Therefore, the
proposed heuristics are effective and potentially suitable for
practical use.

From the perspective of research limitations in Section 1,
scheduling criterion, and solution methods, future research
directions can further explore the following: (1) Relaxing
the limits of processing time becomes a stochastic
scheduling problem; (2) Online scheduling problem is
considered and on-line heuristic is developed, that is, the
jobs come in at different times and randomly; (3) It is also
worthwhile to investigate other types of parallel machines
under the same constraint and criterion, e.g., unrelated
parallel machine; (4) The preemptions are allowed; (5) The
scheduling criterion of total weighted completion time can
further be investigated; (6) The proposed heuristics may be
applied in a metaheuristic as a good initial solution for other
similar scheduling problems.

REFERENCES

Akbar, M., Irohara, T. 2018. Scheduling for sustainable

manufacturing: A review. Journal of Cleaner Production,
205, 866–833.

Bektur, G., Saraç, T. 2019. A mathematical model and
heuristic algorithms for an unrelated parallel machine

scheduling problem with sequence-dependent setup
times, machine eligibility restrictions and a common
server. Computers & Operations Research, 103, 46–63.

Berthier, A., Yalaoui, A., Chehade, H., Yalaoui, F., Amodeo,
L., Bouillot, C. 2022. Unrelated parallel machines
scheduling with dependent setup times in textile industry.
Computers & Industrial Engineering, 174, 108736.

Conway, R.W., Maxwell, W.L., Miller, L.W. 1967. Theory
of scheduling. Addison-Wesley Reading. Massachusetts.
U.S.A.

Epstein, L., Levin, A. 2011. Scheduling with processing set
restrictions: PTAS results for several variants.
International Journal of Production Economics, 133,
586–595.

Glass, C.A., Kellerer, H. 2007. Parallel machine scheduling
with job assignment restrictions. Naval Research
Logistics, 54, 250–257.

Huo, Y., Leung, J.Y.T., Wang, X. 2009. A fast preemptive
scheduling algorithm with release times and inclusive
processing set restrictions. Discrete Optimization, 6,
292–298.

Hwang, H.C., Chang, S.Y., Lee, K. 2004. Parallel machine
scheduling under a grade of service provision. Computers
& Operations Research, 31, 2055–2061.

Ji, M., Cheng, T.C.E. 2008. An FPTAS for parallel-machine
scheduling under a grade of service provision to
minimize makespan. Information Processing Letters, 108,
171–174.

Ji, M., Ye, X., Qian, F., Cheng, T.C.E., Jiang, Y. 2022.
Parallel-machine scheduling in shared manufacturing.
Journal of Industrial and Management Optimization, 18,
681–691.

Kusoncum, C., Sethanan, K., Pitakaso, R., Hartl, R.F. 2021.
Heuristics with novel approaches for cyclical multiple
parallel machine scheduling in sugarcane unloading
systems. International Journal of Production Research, 59,
2479–2497.

Leung, J.Y.T., Li, C.L. 2008. Scheduling with processing set
restrictions: A survey. International Journal of Production
Economics, 116, 251–262.

Leung, J.Y.T., Li, C.L. 2016. Scheduling with processing set
restrictions: A literature update. International Journal of
Production Economics, 175, 1–11.

Leung, J.Y.T., Ng, C.T. 2017. Fast approximation
algorithms for uniform machine scheduling with
processing set restrictions. European Journal of
Operational Research, 260, 507–513.

Li, S. 2017. Parallel batch scheduling with inclusive
processing set restrictions and non-identical capacities to
minimize makespan. European Journal of Operational
Research, 260, 12–20.

Li, W., Li, J., Zhang, T. 2009. Approximation schemes for
scheduling on parallel machines with GoS levels. Lecture
Notes in Operations Research and Its Applications, 10,
53–60.

Li, C.L., Wang, X. 2010. Scheduling parallel machines with
inclusive processing set restrictions and job release times.

International Journal of Applied Science and Engineering

Tseng and Zhang, International Journal of Applied Science and Engineering, 20(3), 2023097

https://doi.org/10.6703/IJASE.202309_20(3).009 12

European Journal of Operational Research, 200, 702–710.
Li, C.L., Li, Q. 2015. Scheduling jobs with release dates,

equal processing times, and inclusive processing set
restrictions. Journal of the Operational Research Society,
66, 516–523.

Li, D., Wang, J., Qiang, R., Chiong, R. 2021. A hybrid
differential evolution algorithm for parallel machine
scheduling of lace dyeing considering colour families,
sequence-dependent setup and machine eligibility.
International Journal of Production Research, 59, 2722–
2738.

Liao, B., Song, Q., Pei, J., Yang, S., Pardalos, P.M. 2020.
Parallel-machine group scheduling with inclusive
processing set restrictions, outsourcing option and serial-
batching under the effect of step-deterioration. Journal of
Global Optimization, 78, 717–742.

Lim, K. 2010. Parallel machines scheduling with GoS
eligibility constraints: A survey. Journal of the Korean
Institute of Industrial Engineers, 36, 248–254.

Liu, M., Yang, X., Chu, F., Zhang, J., Chu, C. 2020. Energy-
oriented bi-objective optimization for the tempered glass
scheduling. Omega, 90, 101995.

Maecker, S., Shen, L., Mönch, L. 2023. Unrelated parallel
machine scheduling with eligibility constraints and
delivery times to minimize total weighted tardiness.
Computers & Operations Research, 149, 105999.

Mateo, M., Teghem, J., Tuyttens, D. 2018. A bi-objective
parallel machine problem with eligibility, release dates
and delivery times of the jobs. International Journal of
Production Research, 56, 1030–1053.

Mecler, D., Abu-Marrul, V., Martinelli, R., Hoff, A. 2022.
Iterated greedy algorithms for a complex parallel
machine scheduling problem. European Journal of
Operational Research, 300, 545–560.

Mokotoff, E. 2001. Parallel machine scheduling problems:
A survey. Asia-Pacific Journal of Operational Research,
18, 193–242.

Ou, J., Leung, J.Y.T., Li, C.L. 2008. Scheduling parallel
machines with inclusive processing set restrictions. Naval
Research Logistics, 55, 328–338.

Ou, J., Zhong, X., Qi, X. 2016. Scheduling parallel
machines with inclusive processing set restrictions and
job rejection. Naval Research Logistics, 63, 667–681.

Pinedo, M. 2002. Scheduling: Theory, algorithm, and
system. Second Ed. Prentice-Hall Press. New Jersey.
U.S.A.

Planinić, L., Backović, H., Đurasević, M., Jakobović, D.
2022. A comparative study of dispatching rule
representations in evolutionary algorithms for the
dynamic unrelated machines environment. IEEE Access,
10, 22886–22901.

ReVelle, C., Scholssberg, M., Williams, J. 2008. Solving the
maximal covering location problem with heuristic
concentration. Computers & Operations Research, 35,
427–435.

Tseng, C.T., Lee, C.H., Chiu, Y.S.P., Lu, W.T. 2017. A
discrete electromagnetism-like mechanism for parallel

machine scheduling under a grade of service provision.
International Journal of Production Research, 55, 3149–
3163.

Woeginger, G.J. 2009. A comment on parallel-machine
scheduling under a grade of service provision to
minimize makespan. Information Processing Letters, 109,
341–342.

Xie, Y., Sheng, Y., Qiu, M., Gui, F. 2022. An adaptive
decoding biased random key genetic algorithm for cloud
workflow scheduling. Engineering Applications of
Artificial Intelligence, 112, 104879.

Zhao, G., Liu, J., Tang, L., Zhao, R., Dong, Y. 2019. Model
and heuristic solutions for the multiple double-load crane
scheduling problem in slab yards. IEEE Transactions on
Automation Science and Engineering, 17, 1307–1319.

	Heuristics for parallel machine scheduling with GoS eligibility constraints
	ABSTRACT
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. TWO-MACHINE PROBLEM
	3.1 SPT-I
	3.2 SPT-FI

	4. MULTI-MACHINE PROBLEM
	4.1 mSPT-I
	4.2 mSPT-FI

	5. RESULTS AND DISCUSSION
	5.1 Two-machine Problem
	5.2 Multi-machine Problem
	5.2.1 Small-size Job Experiment
	5.2.2 Large-size Job Experiment
	5.3 Discussion

	6. CONCLUSIONS
	REFERENCES

