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ABSTRACT 
 

The parallel machine scheduling problem with the consideration of GoS (grade of 
service) constraints originates from the service provision of different membership levels 
in the service industry. This scheduling problem has been widely found in industrial 
manufacturing and sustainable manufacturing practices. For example, in a sustainable 
manufacturing production line, multiple machines are set up as parallel machines to 
support each other to achieve shared manufacturing. However, the machines still have 
processing constraints with different service level constraints and do not support all jobs. 
This study investigates this parallel machine scheduling problem and uses the total 
completion time as the objective criterion. This criterion has not been studied in the 
literature for this scheduling problem. Several heuristics are proposed to solve the two-
machine and multi-machine scheduling problems. The structure of these heuristics is 
mainly divided into two stages: the SPT rule and the insertion method. In addition, a fast 
method for calculating the total completion time is developed from the insertion method. 
The experimental results prove that the proposed heuristics are effective in solving this 
scheduling problem. For both small- and large-size problems, the proposed heuristics can 
obtain good solutions quickly and are potentially suitable for practical use. 

 
Keywords: Eligibility constraints, Heuristic, Parallel machine, Scheduling, Total 
completion time. 
 

 
1. INTRODUCTION 
 

The problem of conventional parallel machine scheduling has been extensively studied, 
and in practice, eligibility constraints often arise (Berthier et al., 2022; Maecker et al., 
2023). This means that job is restricted to certain machines. In recent years, the types of 
eligibility constraints commonly considered in parallel machine scheduling problems are 
general, interval, nested, grade of service (GoS), etc. (Lim, 2010; Leung and Li, 2016; 
Bektur and Saraç, 2019; Li et al., 2021; Mecler et al., 2022). In terms of GoS constraints, 
many practical examples can be found in service industries, industrial manufacturing, 
and sustainable manufacturing, as shown in Table 1, indicating the growing importance 
of this issue. The following is a detailed description. 

 
Table 1. The practical cases of GoS constraints 

Service industry Industrial manufacturing Sustainable manufacturing 

Bank 
(Hwang et al., 2004) 

Credit card 
(Hwang et al., 2004) 

Online antivirus 
(Tseng et al., 2017) 

Flour mill 
(Glass and Kellerer, 2007) 
Loading/unloading cranes 

(Ou et al., 2008) 
Painting processing 
(Mateo et al., 2018) 

Sugarcane unloading systems 
(Kusoncum et al., 2021) 

Tempered glass processing 
(Liu et al., 2020) 

Shared manufacturing 
(Ji et al., 2022) 

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en
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The research on GoS constraints started with the 
scheduling problem in the service industry. The service 
industry provides different services according to customer 
membership levels (Hwang et al., 2004). In practice, 
companies classify customers into different classes and set 
up multiple identical service windows for each class. For 
example, airlines divide their customers into economy class 
and business class and above. Check-in counters are also 
divided into counters for economy class passengers and 
business class passengers and above, with multiple counters 
for each class. Economy class passengers will check in at 
the economy class counter, while passengers of business 
class and above will check in at the business class counter 
to ensure better service. However, when the business class 
counters are available, economy class passengers may be 
directed to the business class counters by service personnel. 
Passengers and counters are subject to a specific service 
level constraint. This is a typical parallel flight scheduling 
problem that takes into account GoS constraints. It is noted 
that this flight scheduling problem is only an example to 
illustrate GoS constraints. This scheduling problem 
considers the different arrival times of customers and the 
random processing time, which is not considered in this 
study, as detailed in the following research limitations. 
Similar GoS constraints are often found in other service 
industries, such as banking, credit card services, and online 
real-time anti-virus services (Tseng et al., 2017). 

GoS constraints are also applied in sustainable 
manufacturing. In sustainable manufacturing, energy-
efficient PPC (production planning and control) is an 
important issue, especially for scheduling (Akbar and 
Irohara, 2018). Scheduling in sustainable manufacturing, 
which is called the sustainable scheduling, considers the 
sustainable manufacturing indicator as a criterion. Akbar 
and Irohara (2018) reviewed sustainable scheduling 
research and found that three types of objectives are 
considered: economic-oriented, environment-oriented, and 
social-oriented objectives. The research on sustainable 
scheduling with the GoS constraint has focused on an 
environment-oriented objective. Liu et al. (2020) proposed 
the power consumption as a scheduling criterion, which is 
an environment-oriented objective. They examined the 
three-stage process of tempered glass: cutting, printing, and 
tempering, which are composed of high-energy-consuming 
machines. From a sustainability perspective, the GoS 
constraint arises, where different machines have processing 
constraints in terms of glass thickness conditions and 
different power consumptions. The GoS constraint is used 
to meet the environment-oriented objective. Ji et al. (2022) 
investigated the problem of shared manufacturing schedules 
with the concept of sustainable manufacturing. Each job can 
be processed in a set of machine sets, and such a new 
constraint is called a processing set. And the GoS constraint 
is one of its special cases. This scheduling problem applies 
the GoS constraint to achieve capacity utility maximization, 
which is an environment-oriented objective. Therefore, in 
the above literature, the GoS constraint has been 

implemented in the service industry, industrial 
manufacturing, and even in the future of sustainable 
manufacturing. 

The parallel machine scheduling environment with GoS 
constraints is described as follows: There are 𝑚𝑚 machines 
(𝑀𝑀𝑖𝑖; 𝑖𝑖 = 1,2, . . . ,𝑚𝑚 ), and each machine 𝑀𝑀𝑖𝑖  has its service 
level 𝑔𝑔(𝑀𝑀𝑖𝑖). Here the service level is 1 for the highest level, 
2 for the second level, and so on. There are 𝑛𝑛 jobs (𝐽𝐽𝑗𝑗; 𝑗𝑗 =
1,2, . . . ,𝑛𝑛 ) and each job 𝐽𝐽𝑗𝑗  has its service level 𝑔𝑔(𝐽𝐽𝑗𝑗)  and 
processing time 𝑝𝑝𝑗𝑗 . Job 𝐽𝐽𝑗𝑗  is assigned to a machine that 
satisfies the condition 𝑔𝑔(𝐽𝐽𝑗𝑗) ≥ 𝑔𝑔(𝑀𝑀𝑖𝑖). For an example of 2 
jobs, 2 machines, and 2 GoS levels, assume that 𝑔𝑔(𝐽𝐽1) = 1, 
𝑔𝑔(𝐽𝐽2) = 2, 𝑔𝑔(𝑀𝑀1) = 1, and 𝑔𝑔(𝑀𝑀2) = 2. Job 1 can only be 
machined on Machine 1 because it satisfies the condition 
𝑔𝑔(𝐽𝐽1) ≥ 𝑔𝑔(𝑀𝑀1). Machine 2 is a machine with a lower GoS 
level that cannot process Job 1 with a higher GoS level, i.e., 
it cannot satisfy the condition 𝑔𝑔(𝐽𝐽1) ≥ 𝑔𝑔(𝑀𝑀2). Conversely, 
if job 2 is a lower GoS level job, then both machines 1 and 
2 can be machined. Also, the research limitations are to: 
1. All the processing time and number of jobs are known 

and deterministic. 
2. All jobs arrive at the same time, and we do not consider 

on-line scheduling model. 
3. The process time 𝑝𝑝𝑗𝑗 that job 𝐽𝐽𝑗𝑗 spends on any machine is 

the same.  
4. Job 𝐽𝐽𝑗𝑗 requires a single operation and may be processed 

on any one of the 𝑚𝑚  machine that belongs to a given 
subset.  

5. Once a job on a machine has started, it cannot be stopped 
until it is completed. 
There is no study in the literature that uses the 

minimization of total completion time as a criterion, i.e., 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. To the best of our knowledge, this study is the 
first paper to investigate this scheduling problem. For 
1||∑𝐶𝐶𝑗𝑗, the shortest processing time (SPT) rule can be used 
to obtain the optimal solution. For 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗, the SPT rule 
can also be used to obtain the optimal solution. However, 
the problem 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗  becomes an NP-hard problem by 
adding constraints such as the GoS constraint (Mokotoff, 
2001). The main contributions and innovations of this study 
are to:  
1. A new scheduling problem of minimizing total 

completion time on parallel machines with GoS 
constraint is considered. 

2. Effective heuristics are proposed to solve the considered 
problem.  

3. A fast method for calculating the total completion time is 
developed from the insertion method. 

4. All proposed heuristics outperform the metaheuristic in 
literature and are potentially suitable for practical use.  
This study is organized as follows. Section 2 presents a 

review of the literature. In Sections 3 and 4, the heuristics 
are developed to solve the two- and multi-machine 
problems. Section 5 evaluates the performance of these 
heuristics. Finally, conclusions are provided in Section 6. 
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2. LITERATURE REVIEW 
 
Most of the studies on the above parallel machine 

scheduling environment take minimizing makespan as the 
objective function, which can be denoted as Pm|GoS|Cmax, 
and it is an NP-hard (as shown in Table 2). Since the 
development of heuristics by Hwang et al. (2004) and Glass 
and Kellerer (2007), researchers have started to propose a 
series of related polynomial time approximation schemes 
(PTAS) (Ji and Cheng, 2008; Ou et al., 2008; Li and Zhang, 
2009; Woeginger, 2009). Besides, some literature refers to 
the GoS constraint as inclusive processing set restriction 
(Ou et al, 2008), both of which have the same meaning. In 
addition, more complex scheduling contexts have been 
studied, such as the inclusion of start time constraints (Huo 
et al., 2009; Li and Wang, 2010; Li and Li, 2015) or uniform 
parallel machine environments (Epstein and Levin, 2011). 
Literature reviews are presented in Leung and Li (2008), 
Lim (2010), Leung and Li (2016), and they also review 
studies that consider online and semi-online contexts. 

In recent years, studies on GoS constraints have focused 
on exploring different parallel machine scheduling 
environments or minimizing other objectives. For different 
parallel machine scheduling environments, Li (2017) 
developed two fast algorithms for parallel batch machine 
scheduling with start time constraints and even proposed 
PTAS as well. Leung and Ng (2017), on the other hand, 
extended the study of uniform parallel machine scheduling 
to improve the PTAS proposed by Epstein and Levin (2011). 
For minimizing other objectives, Ou et al. (2016) solved the 

bi-objective parallel machine scheduling problem of 
minimizing the penalty cost of makespan and exiting jobs, 
and developed PTAS. Later, researchers started to use 
metaheuristics to solve parallel machine scheduling 
problems with different objectives. Tseng et al. (2017) 
proposed an electromagnetic-like algorithm to efficiently 
solve the parallel machine scheduling problem that 
minimizes the total weighted tardiness. Liu et al. (2020) 
used difference algorithm to solve sustainable scheduling 
problems with bi-objective of minimizing makespan and 
total electricity cost. Liao et al. (2020) considered 
outsourcing cases to minimize makespan and outsourcing 
costs and proposed VNS-NKEA algorithm to solve it. 
Kusoncum et al. (2021) developed the VaNSAS algorithm 
to solve the GoS unrelated parallel machine scheduling 
problem under more constraints. 

 
3. TWO-MACHINE PROBLEM 

 
This section examines the case of two machines with two 

service levels 𝑃𝑃2|𝐺𝐺𝐺𝐺𝐺𝐺 = 2|∑𝐶𝐶𝑗𝑗. Without loss of generality, 
it is assumed that Machine 1 (𝑀𝑀1) provides a high service 
level (𝑔𝑔(𝑀𝑀1) = 1 ) and Machine 2 (𝑀𝑀2 ) provides a low 
service level (𝑔𝑔(𝑀𝑀2) = 2). Two heuristics are proposed to 
solve this scheduling problem, as detailed below. 

 
3.1 SPT-I 

The proposed first heuristic called SPT-I uses a two-stage 
approach. 

 
Table 2. Summary of the GoS papers 

Type Criterion Constraint Method Sources 

Pm Makespan x Heuristic Hwang et al. (2004); Glass and 
Kellerer (2007) 

Pm Makespan x PTAS 
Ji and Cheng (2008); Ou et al. 
(2008); Li and Zhang (2009); 

Woeginger (2009) 

Pm Makespan Start time 
Preemptions Algorithm Huo et al. (2009) 

Pm Makespan Start time PTAS Li and Wang (2010) 

Pm Makespan Start time 
Process Algorithm Li and Li (2015) 

Qm Makespan x PTAS Epstein and Levin (2011) 
Bm Makespan Start time PTAS Li (2017) 
Qm Makespan x PTAS Leung and Ng (2017) 

Pm Makespan 
Cost x PTAS Ou et al. (2016) 

Pm Total tardiness x Metaheuristic Tseng et al. (2017) 

HFS Makespan 
Total electricity cost x Metaheuristic Liu et al. (2020) 

Pm Makespan 
Outsourcing cost Group Metaheuristic Liao et al. (2020) 

Rm Makespan Setup time Metaheuristic Kusoncum et al. (2021) 
Pm Total completion time x Heuristic This study 
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In Stage 1, each job is assigned to the machine 
corresponding to GoS according to the GoS constraint, and 
the SPT rule is used to find the optimal solution for 
minimizing the total completion time of a single machine, 
so the jobs of both machines are used to find the total 
completion time in Stage 1 according to the SPT rule. There 
are other dispatching rules, such as the EDD rule (the 
earliest due date), but those rules are not suitable for use in 
this scheduling problem. For 1||∑𝐶𝐶𝑗𝑗 or 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 , the SPT 
rule can be used to obtain the optimal solution. Here, the 
local optimal solution is used as a good initial solution in 
the proposed heuristic for the considered scheduling 
problem. For the ∑𝐶𝐶𝑗𝑗  criterion, other dispatching rules 
cannot obtain better initial solutions than the SPT rule 
(Pinedo, 2002). Therefore, the first stage of all proposed 
heuristics uses the SPT rule. In Stage 2, each job from the 
low service level machine is tried to be inserted into the high 
service level machine to reduce the total completion time. 
The detailed steps are as follows. 

 
Stage 1: SPT 
Step 1.1: Let 𝐺𝐺1 be the set of jobs on machine 𝑀𝑀1 with high 

service level and 𝐺𝐺2 be the set of jobs on machine 
𝑀𝑀2 with low service level. Put all jobs into 𝐺𝐺1 and 
𝐺𝐺2 respectively according to the service level. 

Step 1.2: Arrange the jobs in 𝐺𝐺1 and 𝐺𝐺2 in descending order 
of processing time, and calculate the total 
completion time. 

Stage 2: Insertion 
Step 2.1: Let 𝑍𝑍 be the unscheduled sets of jobs, 𝑘𝑘 = 1, 𝑍𝑍 =

𝐺𝐺2 and 𝑛𝑛2 be the number of jobs in 𝑍𝑍. 
Step 2.2: Select the job in the 𝑘𝑘th position of 𝑍𝑍 and insert it 

into 𝐺𝐺1 according to the order of SPT rule. 
Step 2.3: Recalculate the total completion time. If the total 

completion time improves, remove the job from 
𝐺𝐺2 and insert it into 𝐺𝐺1. Otherwise, do not insert it. 

Step 2.4: Consider the next job 𝑘𝑘 = 𝑘𝑘 + 1 and go back to 
Step 2.2 until 𝑘𝑘 = 𝑛𝑛2 and the algorithm stops. 

 
Stage 1 is to arrange the corresponding service level jobs 

on the machine according to the SPT rule. First, in Step 1.1, 
the jobs are divided into two groups according to the service 
levels and assigned to the corresponding machines. High 
service level machines process high service level jobs and 
low service level machines process low service level jobs. 
Due to the classification, the scheduling problem for each 
of the two machines becomes a single machine scheduling 
problem with minimizing total completion time (1||∑𝐶𝐶𝑗𝑗). 
In Step 1.2, the SPT rule is used to find the optimal solution 
for each machine. Finally, the total completion time of the 
two machines is summed and this is the optimal solution in 
the case of the classification. 

Next, 𝑀𝑀1 is a high service level machine that can machine 
not only high service level jobs but also low service level 
jobs. Stage 2 tries to insert the job from the low service level 
machine into the high service level machine to check if the 

total completion time can be reduced. In Step 2.1, let 𝑘𝑘 = 1 
and start selecting jobs from the first position on machine 
𝑀𝑀2  and do not stop until 𝑛𝑛2  jobs. In Step 2.2, the jobs 
selected on machine 𝑀𝑀2  are inserted into 𝐺𝐺1 . Since the 
optimal solution can be obtained by the SPT rule on this 
machine, the selected insertion position must also be 
inserted into the corresponding position in 𝐺𝐺1  by 
maintaining the SPT rule. It is noted that there is no 
condition that must be met first before inserting the selected 
job into the corresponding position. This is because the 
processing time and number of jobs are known.  In Step 2.3, 
the total completion time is recalculated, and if it improves, 
it is inserted, otherwise it is not inserted. In Step 2.4, Steps 
2.2-2.3 are repeated until all jobs in 𝑍𝑍  are considered to 
reduce the total completion time, and the algorithm stops. 

This heuristic is illustrated by an example of 7 jobs, 2 
machines, and 2 service levels. The relevant information is 
shown in Table 3, where 𝑝𝑝𝑗𝑗  and 𝑔𝑔(𝐽𝐽𝑗𝑗)  represent the 
processing time and service level of job 𝐽𝐽𝑗𝑗. 𝑔𝑔(𝑀𝑀1) = 1 and 
𝑔𝑔(𝑀𝑀2) = 2 . The steps of the heuristic are described as 
follows. 

 
Table 3. Job data for example 

𝐽𝐽𝑗𝑗 1 2 3 4 5 6 7 
𝑝𝑝𝑗𝑗 7 5 15 12 3 20 18 

𝑔𝑔(𝐽𝐽𝑗𝑗) 1 1 2 2 2 1 2 
 

Stage 1: SPT 
Step 1.1: According to the service level of the job, 𝐺𝐺1 =

{𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5, 𝐽𝐽7} can be obtained. 
Step 1.2: The jobs in 𝐺𝐺1  and 𝐺𝐺2  can be obtained as 𝐺𝐺1 =

{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽4, 𝐽𝐽3, 𝐽𝐽7} according to the 
SPT rule. As shown in Fig. 1, the total completion 
time of Machine 𝑀𝑀1  is 49, the total completion 
time of Machine 𝑀𝑀2  is 96, and the total 
completion time of the objective function is 145. 

 

 
Fig. 1. Schedule after Phase 1 

 
Stage 2: Insertion 
Step 2.1: Let 𝑘𝑘 = 1, 𝑍𝑍 = {𝐽𝐽5, 𝐽𝐽4, 𝐽𝐽3, 𝐽𝐽7} and 𝑛𝑛2 = 4 
Step 2.2: Select the job 𝐽𝐽5 at the first position in 𝑍𝑍. Next, 

insert 𝐽𝐽5  before 𝐽𝐽2  in 𝐺𝐺1 , as the best total 
completion time for the machine is obtained by 
following the SPT rule. If 𝐽𝐽5 is inserted in another 
position, the total completion time is not shorter. 

Step 2.3: Recalculate the total completion time and find that 
the total completion time of 𝑀𝑀1  is 61, the total 
completion time of machine 𝑀𝑀2  is 84, and the 
total completion time of the objective function is 
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145. the total completion time is not improved, so 
the selected job is not inserted. 

Step 2.4: Go back to step 2.2 if 𝑘𝑘 = 2. 
Step 2.2: Select the job 𝐽𝐽4 at the second position in 𝑍𝑍. Next, 

insert 𝐽𝐽4 between 𝐽𝐽1 and 𝐽𝐽6 in 𝐺𝐺1 according to the 
SPT rule. 

Step 2.3: Recalculate the total completion time, which is 85 
for machine 𝑀𝑀1, 57 for machine 𝑀𝑀2, and 142 for 
the objective function, and improve the total 
completion time by removing job 𝐽𝐽4 from 𝐺𝐺2 and 
inserting it into 𝐺𝐺1 . Therefore, the new 𝐺𝐺1 =
{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽4, 𝐽𝐽6} and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽3, 𝐽𝐽7}. 

Step 2.4: Go back to Step 2.2 if 𝑘𝑘 = 3 
 ⋮ 
 
Finally, neither the insertion of 𝐽𝐽3 nor 𝐽𝐽7 can improve the 

total completion time. As shown in Fig. 2, 𝐺𝐺1 =
{𝐽𝐽2, 𝐽𝐽1, 𝐽𝐽4, 𝐽𝐽6}  and 𝐺𝐺2 = {𝐽𝐽5, 𝐽𝐽3, 𝐽𝐽7}  can be obtained, and the 
total completion time for the objective function is 143. 

 

Fig. 2. Final schedule 
 

3.2 SPT-FI 
The proposed second heuristic, called SPT-FI, mainly 

accelerates the calculation speed of the SPT-I heuristic. In 
Step 2.3 of the SPT-I heuristic in the previous section, the 
job insertion requires recalculation of the total completion 
time of both machines. This section discusses the 
characteristics of insertion and removal and proposes a fast 
calculation method that can reduce the calculation time by 
a significant amount. It is divided into two parts to illustrate: 
(1) the change of the selected job after its removal from 
machine 𝑀𝑀2 and (2) the change of the selected job after its 
insertion into machine 𝑀𝑀1. 

First, discuss the change in the total completion time after 
the selected jobs are moved out of the machine 𝑀𝑀2. Assume 
that 𝑀𝑀2  has 𝑎𝑎  jobs. Let 𝐺𝐺2 =
{𝐽𝐽[1], . . . , 𝐽𝐽[𝑘𝑘−1], 𝐽𝐽[𝑘𝑘], 𝐽𝐽[𝑘𝑘+1], . . . , 𝐽𝐽[𝑎𝑎]}  is the schedule of 𝑀𝑀2 , 
where 𝐽𝐽[𝑘𝑘] means the job of the 𝑘𝑘th position and is selected 
to move out of the job. Let 𝐶𝐶[𝑘𝑘]  and 𝑝𝑝[𝑘𝑘]  represent the 
completion time and machining time of 𝐽𝐽[𝑘𝑘] . The total 
completion time ∑ 𝐶𝐶[𝑖𝑖]

𝑎𝑎
𝑖𝑖=1   of 𝑀𝑀2  is calculated and the 

formula is developed as follows. 
 

𝐶𝐶[1] = 𝑝𝑝[1] 
𝐶𝐶[2] = 𝑝𝑝[1] + 𝑝𝑝[2] 

𝐶𝐶[3] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] 
⋮ 

𝐶𝐶[𝑘𝑘−1] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] 
𝐶𝐶[𝑘𝑘] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘] 

𝐶𝐶[𝑘𝑘+1] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑘𝑘+1] 
⋮ 

𝐶𝐶[𝑎𝑎] = 𝑝𝑝[1] + 𝑝𝑝[2] + 𝑝𝑝[3] ⋯+ 𝑝𝑝[𝑘𝑘−1] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑘𝑘+1] ⋯
+ 𝑝𝑝[𝑎𝑎] 

 
Expanding from the above equation, it can be seen that 

after moving out 𝐽𝐽[𝑘𝑘] , the total completion time will be 
reduced by 𝐶𝐶[𝑘𝑘] , the completion time of 𝐽𝐽[𝑘𝑘] , and (𝑎𝑎 − 𝑘𝑘) 
times 𝑝𝑝[𝑘𝑘], the processing time of 𝐽𝐽[𝑘𝑘], as follows. 

 
𝐶𝐶[𝑘𝑘] + (𝑎𝑎 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]                                                                          (1) 

 
Then, the change in the total completion time after 

inserting the selected job into the machine 𝑀𝑀1 is discussed. 
Assume that 𝑀𝑀1 has 𝑏𝑏  jobs. Let 𝐺𝐺1 = 
{𝐽𝐽[1], . . . , 𝐽𝐽[𝑖𝑖], 𝐽𝐽[𝑗𝑗], . . . , 𝐽𝐽[𝑏𝑏]}  be the schedule of 𝑀𝑀1 . Further, 
assume that 𝐽𝐽[𝑘𝑘] is inserted between 𝐽𝐽[𝑖𝑖] and 𝐽𝐽[𝑗𝑗] on 𝑀𝑀2. The 
equation for the total completion time ∑ 𝐶𝐶[𝑖𝑖]

𝑏𝑏
𝑖𝑖=1   after the 

insertion of 𝐽𝐽[𝑘𝑘] on 𝑀𝑀1 is expanded as follows. 
 

𝐶𝐶[1] = 𝑝𝑝[1] 
𝐶𝐶[2] = 𝑝𝑝[1] + 𝑝𝑝[2] 

⋮ 
𝐶𝐶[𝑖𝑖] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] 

𝐶𝐶[𝑘𝑘]
′ = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘] 

𝐶𝐶[𝑗𝑗] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑗𝑗] 
⋮ 

𝐶𝐶[𝑏𝑏] = 𝑝𝑝[1] + 𝑝𝑝[2] ⋯+ 𝑝𝑝[𝑖𝑖] + 𝑝𝑝[𝑘𝑘] + 𝑝𝑝[𝑗𝑗] ⋯+ 𝑝𝑝[𝑏𝑏] 
 
Expanding from the above equation, the total completion 

time after inserting 𝐽𝐽[𝑘𝑘]  will increase 𝐶𝐶[𝑘𝑘]
′  , the completion 

time of 𝐽𝐽[𝑘𝑘], and (𝑏𝑏 − 𝑘𝑘) times 𝑝𝑝[𝑘𝑘], the processing time of 
𝐽𝐽[𝑘𝑘], as follows. 
 
𝐶𝐶[𝑘𝑘]
′ + (𝑏𝑏 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]                                                                          (2) 
 
Finally, this study integrates the reduction in Equation (1) 

and the increase in Equation (2) into the following equation. 
 

𝛥𝛥 = [𝐶𝐶[𝑘𝑘]
′ + (𝑏𝑏 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]] − [𝐶𝐶[𝑘𝑘] + (𝑎𝑎 − 𝑘𝑘) × 𝑝𝑝[𝑘𝑘]]      (3) 

 
where 𝛥𝛥indicates the change in the total completion time. 
Therefore, Step 2.3 in SPT-I is completely recalculated and 
the total completion time is changed to the following. 

 
Step 2.3: Equation (3) is calculated, and if 𝛥𝛥 < 0 , it 

means the total completion time is improved, then remove 
the job from 𝐺𝐺2  and insert it into 𝐺𝐺1 . Otherwise, it is not 
inserted. 

In this step, instead of recalculating the total completion 
time of the two machines, the new total completion time can 
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be calculated quickly according to Equation (3) to 
determine whether to insert or not. We call this heuristic 
SPT-FI. 

 
4. MULTI-MACHINE PROBLEM 

 
This section examines the case of multiple machines with 

multiple service levels 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. Assume that there are 
𝑚𝑚 machines and 𝑔𝑔 service levels. This scheduling problem 
becomes more complicated when there are more than 2 
machines at each service level. The concepts of the two 
heuristic algorithms in the previous section will be applied 
to solve this problem. The details are as follows. 

 
4.1 mSPT-I 

The difference with SPT-I in Section 3.1 is that there are 
multiple machines at a given service level and the selected 
job can be inserted into a larger selection of machines. In 
Stage 1 of the heuristic, jobs are assigned to the appropriate 
set of service level machines according to the service level 
constraints. Each set forms the 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗  problem. The 
optimal solution is found for each set according to the SPT 
rule. In Stage 2, we try to insert each job from the low 
service level set into each service level set higher than it. 
The most improved solution is chosen from each insertion 
solution. The detailed steps are as follows. 
 
Stage 1: SPT 
Step 1.1: Let 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔  be the set of service levels 

1,2, . . . ,𝑔𝑔.  Put all jobs into 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 
according to their service levels. 

Step 1.2: Arrange the jobs in 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔  in descending 
order of processing time. 

Step 1.3: Assign the jobs in 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 to the earliest idle 
machine under each service level according to the 
processing order, and calculate the total 
completion time. 

Stage 2: Insertion 
Step 2.1: Let 𝑙𝑙 = 𝑔𝑔 
Step 2.1.1: Let 𝑍𝑍  be the unscheduled sets of jobs, 𝑘𝑘 = 1 , 

𝑍𝑍 = 𝐺𝐺𝑙𝑙 , and 𝑛𝑛 be the number of jobs in 𝑍𝑍 
Step 2.1.2: Select the job at the 𝑘𝑘th position of 𝑍𝑍 
Step 2.1.3: Evaluate the different insertion solutions. Try to 

insert the selected job 𝐽𝐽[𝑘𝑘]  into the solutions 
𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑗𝑗−1  according to the SPT rule and 
calculate the total completion time for each 
solution. Select the solution with the shortest 
total completion time. 

Step 2.1.4: If the selected insertion solution can improve the 
total completion time, update the service level 
sets, otherwise, leave them unchanged. 

Step 2.1.5: Consider the next job, 𝑘𝑘 = 𝑘𝑘 + 1. Return to Step 
2.1.2 until 𝑘𝑘 = 𝑛𝑛. Go to the next step. 

Step 2.2: 𝑙𝑙 = 𝑙𝑙 − 1, go back to Step 2.1.1 until 𝑙𝑙 = 1, and 
the algorithm stops. 

First, in Stage 1, the jobs are assigned to the machines 
according to the SPT rule. In Step 1.1, each job is placed in 
the service level sets 𝐺𝐺1, 𝐺𝐺2, . . . , 𝐺𝐺𝑔𝑔 according to its service 
level. In Step 1.2, the jobs in each set are arranged according 
to the SPT rule. Since the jobs in each set are processed on 
multiple parallel machines, Step 1.3 assigns the jobs to the 
machines in the order of the sets using the ASAP (as soon 
as possible) method. Finally, the total completion time is 
calculated. 

Secondly, Stage 2 starts the improvement of scheduling 
using the insertion method. In Step 2.1, the jobs are 
considered to be moved from the lowest service level set 𝐺𝐺𝑔𝑔 
to the higher service level sets. In Steps 2.1.1 to 2.1.2, the 
number of jobs in the selected service level set is confirmed, 
and the next step is performed starting with the job at the 
first position. In Step 2.1.3, the total completion time of each 
solution for the selected jobs 𝐽𝐽[𝑘𝑘] is evaluated for insertion 
into the higher service level sets, and the optimal solution is 
selected. Since there are multiple parallel machines in a set, 
the jobs are reassigned to the machines according to the new 
machining sequence and ASAP method. Therefore, the total 
completion time has to be recalculated. In Step 2.1.4, if an 
improvement solution can be found, then the change will be 
made, otherwise, it will remain unchanged. In Step 2.1.5, 
Steps 2.1.2-2.1.4 are repeated until all jobs in the selected 
set have been considered before proceeding to the next step. 
In step 2.2, the next higher service level set is considered 
until the highest service level is reached and the algorithm 
is stopped. 

 
4.2 mSPT-FI 

In the previous section, mSPT-I cannot be directly 
applied to Equation (3) in Section 3.2 to speed up the 
calculation of the new total completion time when the 
processing order in a set changes, because Equation (3) is 
limited to the case where each set is a single machine. 
mSPT-I is used to consider the case where each set is a 
parallel machine, and when the processing order in a set 
changes, it is necessary to follow the ASAP method, and the 
jobs may be assigned to the machines with the original 
processing order. The machines to which the jobs are 
assigned will be changed and the calculation has to be done 
again. 

To improve the computational performance of the 
heuristic with the use of Equation (3), the Insertion steps of 
mSPT-I in Section 3.1 are changed to evaluate different 
insertion solutions based on a single machine. The heuristic 
starts with the same step as Step 1 of mSPT-I and generates 
a schedule according to the SPT rule. To save time in 
calculating the new total completion time and to achieve a 
better solution search, Steps 2.1.3-2.1.4 of mSPT-I are 
changed to the following. 

 
Step 2.1.3: Evaluate the different insertion solutions. Try to 

insert the selected job 𝐽𝐽[𝑘𝑘]  into each machine 
that satisfies 𝑔𝑔(𝑀𝑀𝑖𝑖) ≤ 𝑔𝑔(𝐽𝐽[𝑘𝑘])  as a solution. 
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Apply Equation (3) and calculate the change in 
total completion time for each solution. Select 
the solution with the best improvement. 

Step 2.1.4: If the selected insertion solution can improve the 
total completion time, update the scheduling 
and service level sets on the machine, otherwise 
do not change them. 

 
There are two main differences between mSPT-FI in this 

section and mSPT-I in the previous section: (1) mSPT-FI 
uses accelerated computation; (2) mSPT-FI is inserted based 
on the machine, while mSPT-I is based on the service level 
set. 

 
5. RESULTS AND DISCUSSION 

 
To test the performance of the proposed heuristics, this 

study conducts comparative experiments on a series of 
problems. The experimental examples are generated by 
referring to the way Tseng et al. (2017) generated the 
benchmark instances for 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗 . The processing 
time and GoS level of each job are randomly generated from 
the uniform distribution of 𝑈𝑈[1,100] and 𝑈𝑈[1,𝐺𝐺]. Tseng et 
al. (2017) also developed an Electromagnetism-like 
Mechanism (EM) algorithm that proved to be effective in 
solving 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗  problems. Therefore, this study 
applies the EM proposed by Tseng et al. (2017) to solve 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 and compare it with the proposed heuristics to 
verify their performance. All algorithms were coded using 
Visual C ++ and executed on an Intel®Core™ i7-3687U 
CPU 2.10GHz PC with 8GB RAM memory. The following 
experimental results for a series of problems are described 
as follows. 

 
5.1 Two-machine Problem 

In the case of considering 2 machines and 2 service levels, 
one machine is at a high service level and the other is at a 
low service level. The experiments are structured on 6 sets 
of job numbers (𝑛𝑛 = 20, 50, 100, 200, 500 and 1000). 
According to Tseng et al. (2017), 20 instances are randomly 
generated for each set of jobs, for a total of 120 instances. 
The performance is measured using the Relative Percentage 
Increase (RPI) index with the following formula. 
 
𝐻𝐻𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗) /𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗) × 100                             (4) 

 
𝐻𝐻𝑖𝑖   denotes the total completion time generated by 

Algorithm i. 𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻𝑗𝑗 ,∀𝑗𝑗)  denotes the minimum value 
among all compared algorithms. The compared algorithms 
are SPT, SPT-I, SPT-FI and the EM proposed by Tseng et al. 
(2017), where SPT is the Stage 1 solution in SPT-I/SPT-FI, 
and EM denotes the EM proposed by Tseng et al. (2017) that 
has been shown to effectively solve the problem of 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗  . Their EM is modified here to solve the 
problem considered in this study. EM is an algorithm with 

random search properties. Therefore, the same instance EM 
is run for 10 trials, and the smallest total completion time is 
selected as the comparative solution. The parameters of EM 
are set using the settings of Tseng et al. (2017). The 
experimental results are shown in Table 4, presenting the 
average RPI (MRPI) and average computation time (CT) of 
the four algorithms. The results of SPT-I and SPT-FI are 
considered the same here. Since the proposed SPT-I and 
SPT-FI produce the same solution considering two 
machines and two service levels, the difference in CT is also 
small enough to be negligible. 

First, it can be seen from Table 4 that the proposed SPT-
I/SPT-FI is competitive. Its MRPI is all 0 from small-size to 
large size jobs, which means that the solution of SPT-I/SPT-
FI is the best for all problems and instances. Secondly, SPT 
in the table is the method of SPT-I/SPT-FI in Stage 1. By 
comparing the MRPI values of SPT with those of SPT-
I/SPT-FI, the improved performance of SPT-I/SPT-FI in the 
Stage 2 method can be seen. In Table 3, the MRPI values for 
SPT are slightly larger for small-size jobs than for large size 
jobs. This shows that SPT performs less well on small-size 
jobs. In other words, it is implied that the SPT-I/SPT-FI in 
Stage 2 works better for small-size jobs. On the contrary, 
from the MRPI values, SPT performs very well for large 
size jobs, and the effect of Stage 2 is very small, especially 
for jobs of 1000. 

Thirdly, EM has been able to obtain very good 
performance in solving similar problems, which is a good 
basis for comparison. By observing the MRPI of EM and 
SPT-I/SPT-FI, we can understand the performance of SPT-
I/SPT-FI. In Table 4, the MRPI of EM increases with the 
number of jobs, indicating that the performance of EM in 
solving with larger numbers of jobs is not good. Although 
EM can already obtain good performance in solving similar 
problems, this result also implies that SPT-I/SPT-FI 
performs better for large jobs. The MRPI of EM is 58.4% 
for a job number of 1000. In other words, the SPT-I/SPT-FI 
performance is better than the EM performance of 58.4%. 
Overall, the SPT-I/SPT-FI average performance is better 
than the EM average performance of 38.4%. In terms of 
execution time, SPT-I/SPT-FI also has a considerable 
advantage. When the number of jobs is 1000, EM takes 16.5 
sec, while SPT-I/SPT-FI takes only 0.037 sec. In the next 
section, more machines and more service levels are 
considered to further understand if the performances of the 
proposed heuristics are different. 

 
5.2 Multi-machine Problem 

To further validate the performance of the proposed 
heuristics at multi-machine and multi-service levels, small-
size and large size job experiments are constructed. For the 
first group, experimental data of small-size jobs was directly 
used from the benchmark instances proposed by Tseng et al. 
(2017). There are three job numbers (𝑛𝑛 = 20, 50 and 100), 
two machine numbers (𝑚𝑚 = 4 and 10), and two service level 
numbers (GoS = 2 and 3), for a total of 12 combinations. 
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Each combination has 80 instances, for a total of 960 
instances. For the second group, experimental data of large 
jobs is constructed on the job numbers (𝑛𝑛 = 200, 500 and 
1000). The combinations of machine numbers and service 
level numbers are considered the same as the first group of 
small job experiments. Since there is no benchmark instance 
for the large size jobs, each instance in this study is 
randomly generated using the method of Tseng et al. (2017). 
There are 80 instances for each combination, totaling 960 
instances. 

 
5.2.1 Small-size Job Experiment 

First, as shown in Table 5, the average MRPIs of mSPT-I 
and mSPT-FI are 0.438% and 0.471% respectively, which 
means that the performances of the proposed mSPT-I and 
mSPT-FI are significantly better than those of SPT and EM. 
Furthermore, the performances of mSPT-I and mSPT-FI are 
compared in detail. In Table 5, mSPT-I has the best 
performance for a GoS of 2, regardless of the number of jobs 
and the number of machines. The results of mSPT-FI at GoS 
of 3, however, are mostly the best performance except for 
50/10/3 and 100/10/3. Therefore, the small-size job 
experiments show that mSPT-I has a greater advantage in 
solving the GoS of 2, while mSPT-FI has a greater 
advantage in solving the GoS of 3.  

Table 6 presents the number of instances won by 

comparing the solutions of mSPT-I and mSPT-FI. Tie 
indicates that the solutions of mSPT-I and mSPT-FI are the 
same. For example, for a 20/4/2 problem with 80 instances, 
mSPT-I has 33 better solutions, and 44 ties, and mSPT-IF 
has only 3 better solutions. In terms of the number of 
instances, the results of the overall and individual 
performances of mSPT-I are consistent with the results in 
Table 5, but it is observed that there is a difference in mSPT-
FI. Table 5 shows that mSPT-FI performs better in 20/4/3, 
20/10/3, 50/4/3 and 100/4/3, but in Table 6, mSPT-FI does 
not get more good solutions than mSPT-I. This shows that 
although the number of better instances for mSPT-FI is 
small, the good solutions are much better than those for 
mSPT-I, which allows the values in Table 5 to be relatively 
low. This shows that SPT-FI is very effective in solving 
certain sets of problems. In terms of execution time, SPT-FI 
outperforms SPT-I as shown in Table 5. 

Then, the performance of mSPT-I/mSPT-FI in Stage 1 
can be obtained by observing the performance of SPT. In 
Table 5, the STPs of 20/4/2 and 20/4/3 are 14.1% and 9.84%, 
while the STPs of 20/10/2 and 20/10/3 are 4.76% and 12.1% 
for a job number of 20. The results show that the SPT 
performance is better when there are fewer machines/higher 
GoS or more machines/lower GoS. In other words, it is 
implied that the performance of mSPT-I/mSPT-FI in Stage 
2 is worse when the numbers of machines and GoS are in 
this particular condition.  

 
Table 4. Relative performance of different algorithms for two-machine problems 

 SPT SPT-I/SPT-FI EM 
n/m/G MRPI% CT MRPI% CT MRPI% CT 
20/2/2 1.90 0.0008 0 0.0015 12.0 0.644 
50/2/2 0.914 0.0015 0 0.0022 24.0 0.933 

100/2/2 0.106 0.0015 0 0.0037 36.9 1.72 
200/2/2 0.018 0.0022 0 0.0037 45.3 3.16 
500/2/2 0.048 0.0045 0 0.0120 53.8 7.49 

1000/2/2 0.012 0.0113 0 0.0370 58.4 16.5 
Mean 0.500 0.0036 0 0.0100 38.4 5.08 

 
Table 5. Relative performance of different algorithms for small-size problems 

 SPT mSPT-I mSPT-FI EM 
n/m/G MRPI% CT MRPI% CT MRPI% CT MRPI% CT 
20/4/2 14.1 0.0013 1.05 0.0019 1.22 0.0015 2.21 0.753 
20/4/3 9.84 0.0008 1.40 0.0017 1.02 0.0015 2.94 0.755 

20/10/2 4.76 0.0009 0.389 0.0017 0.567 0.0009 0.147 0.654 
20/10/3 12.1 0.0009 1.19 0.0015 1.16 0.0008 0.333 0.694 
50/4/2 8.33 0.0008 0.008 0.0015 0.093 0.0013 11.7 1.26 
50/4/3 6.55 0.0008 0.388 0.0015 0.247 0.0011 14.5 1.19 

50/10/2 6.42 0.0013 0.011 0.0013 0.222 0.0009 6.77 1.29 
50/10/3 8.00 0.0006 0.277 0.0009 0.374 0.0009 6.95 1.38 
100/4/2 6.57 0.0036 0.005 0.0049 0.014 0.0032 21.1 2.20 
100/4/3 4.60 0.0036 0.323 0.0042 0.196 0.0038 25.8 2.07 
100/10/2 3.16 0.0028 0.001 0.0040 0.154 0.0036 16.9 2.49 
100/10/3 6.99 0.0026 0.206 0.0034 0.388 0.0013 18.6 2.65 

Mean 7.62 0.0017 0.438 0.0024 0.471 0.0017 10.7 1.45 
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Table 6. Comparison with mSPT-I and mSPT-FI for small-
size problems 

n/m/G mSPT-I Tie mSPT-FI 
20/4/2 33 44 3 
20/4/3 23 38 19 

20/10/2 17 58 5 
20/10/3 26 38 16 
50/4/2 35 40 5 
50/4/3 34 31 15 

50/10/2 28 44 8 
50/10/3 43 16 21 
100/4/2 24 42 14 
100/4/3 28 28 24 

100/10/2 35 40 5 
100/10/3 48 15 17 

Total 374 434 152 
 

The same results are obtained for job numbers 50 and 100 
as for job number 20. In addition, overall, the SPT 
performance is better as the job number increases. 

In Table 5, most of the MRPI values for EM are higher 
than the proposed heuristics, and the values increase as the 
number of jobs increases. This result shows that the average 
performance of EM is worse than the average performance 
of the other algorithms, and the performance is even worse 
for large jobs. However, the MRPI of EM is the lowest of 
all the algorithms with 20 jobs and 10 machines, which 
means that the EM performance is the best performance 
under this condition. Overall, the average performance of 
mSPT-I/mSPT-FI is better than the average performance of 
EM. In terms of execution time, mSPT-I/mSPT-FI is also 
better than EM. 

 
5.2.2 Large-size Job Experiment 

As shown in Table 7, the average MRPI of mSPT-I and 
mSPT-FI are 0.119% and 0.191%, respectively. This means 
that the proposed mSPT-I and mSPT-FI have significantly 
better performance than SPT and EM. Compared with the 

results in Section 5.2.1, it can be found that mSPT-I and 
mSPT-FI have better performance in large-size jobs. Further, 
comparing the performance of mSPT-I and mSPT-FI in 
detail, mSPT-I has the best performance except for 200/4/3, 
500/4/3 and 1000/4/3. The mSPT-FI has a greater advantage 
in solving the 𝑚𝑚 = 4/GoS = 3 problem. Table 8 shows that 
the number of instances with better solutions for mSPT-FI 
does not always exceed the number of instances for mSPT-
I. This result is also consistent with the conclusion in 
Section 5.2.1, which shows that mSPT-FI is effective in 
solving certain sets of problems. In terms of execution time, 
mSPT-FI outperforms mSPT-I as shown in Table 7. 

For the performance of SPT, the results in Table 7 show 
the same results as in Section 5.2.1 that the SPT 
performance is better when there are fewer machines/higher 
GoS or more machines/lower GoS. Overall, the SPT 
performance is better as the number of jobs increases. For 
the performance of EM, the MRPI value of EM is much 
larger than the proposed algorithm, and the value increases 
as the number of jobs increases. This result proves that the 
performance of mSPT-I/mSPT-FI for large-size jobs is quite 
good and better than the average performance of EM. The 
mSPT-I/mSPT-FI is also very efficient in terms of execution 
time. 

 
5.3 Discussion 

The most related studies of 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem in this 
study are 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 , 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶  and 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗  
problems as shown in Table 9. First, the comparison of the 
proposed heuristics and the SPT rule is discussed. 𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗 
problem is not an NP-hard problem. The SPT rule can be 
used to obtain the optimal solution. (Conway et al., 1967; 
Pinedo, 2002). The SPT rule is also a dispatching rule, 
which is used in practice, for NP-hard scheduling problems. 
It can be used quickly and simply to obtain an acceptable 
solution, especially for different scheduling problems of 
∑𝐶𝐶𝑗𝑗criterion (Planinić et al., 2022). 

 
Table 7. Relative performance of different algorithms for large-size problems 

 SPT mSPT-I mSPT-FI EM 
n/m/G MRPI% CT MRPI% CT MRPI% CT MRPI% CT 

200/4/2 8.01 0.0023 0.001 0.0032 0.011 0.0024 29.6 3.99 
200/4/3 4.97 0.0023 0.391 0.0038 0.124 0.0034 35.1 3.77 
200/10/2 6.85 0.0028 0.000 0.0047 0.162 0.0026 28.1 4.97 
200/10/3 12.7 0.0028 0.357 0.0053 0.544 0.0013 29.4 5.17 
500/4/2 6.70 0.0062 0.000 0.0120 0.001 0.0058 40.0 9.24 
500/4/3 4.07 0.0058 0.172 0.0133 0.140 0.0064 48.4 8.85 
500/10/2 3.52 0.0062 0.000 0.0128 0.154 0.0054 40.9 12.0 
500/10/3 9.68 0.0053 0.195 0.0139 0.364 0.0062 43.5 12.3 
1000/4/2 7.71 0.0113 0.000 0.0338 0.000 0.0135 46.4 17.8 
1000/4/3 4.02 0.0115 0.195 0.0432 0.135 0.0135 56.9 16.9 

1000/10/2 3.00 0.0141 0.000 0.0377 0.181 0.0120 48.2 23.8 
1000/10/3 9.89 0.0124 0.111 0.0428 0.477 0.0131 53.3 24.9 

Mean 6.76 0.0070 0.119 0.0189 0.191 0.0071 41.6 12.0 
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Table 8. Comparison with mSPT-I and mSPT-FI for large-
size problems 

n/m/G SPT-I Tie SPT-FI 
200/4/2 36 37 7 
200/4/3 23 26 31 

200/10/2 31 43 6 
200/10/3 44 15 21 
500/4/2 23 40 17 
500/4/3 32 27 21 

500/10/2 34 42 4 
50/010/3 55 6 19 
1000/4/2 28 38 14 
1000/4/3 31 27 22 

1000/10/2 39 40 1 
1000/10/3 59 8 13 

Total 435 349 176 
 

𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem is a NP-hard problem. Therefore, the 
SPT rule is applied in all proposed heuristics to obtain a 
good initial solution. Quick and effective methods are then 
developed to improve the initial solution. The structure of 
proposed heuristics is quick and simple, which is similar to 
the dispatching rule. The results show that the proposed 
heuristics outperform the SPT rule in all experiments. In 
terms of execution time, the FI-series heuristics and the SPT 
rule are the same. The average computation times in small-
size and large-size problems are 0.0017 and 0.0071 sec, 
respectively. The proposed heuristics can be used quickly 
and simply to obtain acceptable solutions.  

Next, similar scheduling problems and methods from past 
are discussed to explore the solution quality of the proposed 
heuristics. As shown in Table 9, the polynomial time 
approximation scheme (PTAS) is proposed to obtain the 
approximate solution for 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶  (Ji and Cheng, 
2008; Ou et al., 2008; Li and Zhang, 2009; Woeginger, 
2009). PTAS cannot be applied to solve the considered 
problem (𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗). EM, which is a metaheuristic, has 
been able to obtain very good performance in solving 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗  problem (Tseng et al., 2017). Metaheuristic 
is better than SPT rule, but is more complex and time-
consuming (Xie et al., 2022). EM can be easily modified to 
solve 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗. The results of modified EM and EM by 
Tseng et al. (2017) have the same pattern. When 𝑚𝑚 = 10, 
they perform well. All proposed heuristics are compared 
with the modified EM (denoted EM) in this study. For multi-
machine problem, the experiments were conducted on three 
job numbers (𝑛𝑛 =20, 50 and 100) and two machine numbers 

( 𝑚𝑚 =  4 and 10). The results show that the proposed 
heuristics perform better than EM and require only the same 
execution time as the SPT rule. The average MRPIs of 
mSPT-I, mSPT-FI and EM are 0.438%, 0.471% and 10.7%, 
respectively.  

Sensitivity analysis in scheduling problems is usually 
performed by changing two parameters (number of jobs or 
machines) to demonstrate the robustness of the proposed 
methods. It is performed by changing the parameter 𝑛𝑛 
(number of jobs). The experiments were conducted on three 
job numbers (𝑛𝑛 = 200, 500 and 1000). The large-size job 
experiments have not been explored in previous studies. 
Three comparative experiments are detailed in Section 5.2.2: 
(1) mSPT-I and mSPT-FI; (2) mSPT-I/mSPT-FI and SPT; (3) 
mSPT-I/mSPT-FI and EM. The results show that all 
proposed heuristics are consistent with the conclusions in 
small-size job experiments. In addition, the performances of 
the proposed mSPT-I and mSPT-FI are significantly better 
than those of EM. Their execution times are similar to the 
SPT rule. The proposed heuristics can be used to converge 
to a very good solution by using a similar execution time for 
the SPT rule.  

From the above discussion, we describe the comparison 
of the proposed heuristics with other methods and explain 
research gaps in Table 9. In summary, the considered 
problem in this study is a new NP-hard scheduling problem. 
The proposed heuristics have the quick and simple 
characteristics of the SPT rule and have the effect of solving 
the considered problem. Other methods may be too 
cumbersome for practical use, and heuristics provide faster 
solution times for near-optimal solutions (ReVelle et al., 
2008; Zhao et al., 2019). The proposed heuristics 
demonstrate their effectiveness and efficiency and, 
therefore, their potential suitability for practical use. 

 
6. CONCLUSIONS 

 
This study investigates the 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem. To the 

best of our knowledge, this scheduling problem has not been 
addressed in the literature. Two heuristics, SPT-I and SPT-
FI, are proposed to solve this problem based on a two-stage 
design for two machines and two service levels. Stage 1 
applies the SPT rule to assign jobs to the machine. Stage 2 
applies the insertion method to insert jobs from a particular 
machine to a specific machine to reduce the total completion 
time. The major difference between the two heuristics is that 
SPT-FI is an accelerated insertion. 

 
Table 9. The most related studies of 𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗 problem 

Problem NP-hard Method Solution Method characteristic 
𝑃𝑃𝑚𝑚||∑𝐶𝐶𝑗𝑗  No SPT rule Optimal solution Quick and simple 

𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|𝐶𝐶𝑚𝑚𝑎𝑎𝐶𝐶  Yes PTAS Approximate solution Quick and complex 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗   Yes Metaheuristic Near-optimal solution Time consuming and complex 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗  Yes The proposed heuristics Near-optimal solution Quick and simple 
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That is, after the insertion, it can be calculated using the 
derived equation without recalculating the total completion 
time to speed up the calculation time. Second, to extend the 
problem conditions to multiple machines and multiple 
service levels, two heuristics, mSPT-I and mSPT-FI, are 
proposed based on the above design. The insertion method 
of the two heuristics is different, as the former is based on a 
set of service levels and the latter is based on machines. In 
addition, mSPT-FI uses an accelerated insertion calculation. 

All the proposed heuristics are compared with the EM 
algorithm in a series of experiments, which is an algorithm 
that has been proven to be effective in solving the 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝑊𝑊𝑗𝑗𝑇𝑇𝑗𝑗   problem. For the experiment with two-
machine problem, the results show that the average 
performance of SPT-I/SPT-FI is better than the average 
performance of EM by 38.4%. In terms of execution time, 
SPT-I/SPT-FI also has a considerable advantage. In terms of 
the number of jobs 1000, SPT-I/SPT-FI takes only 0.037 sec, 
while EM takes 16.5 sec. For the experiment with multi-
machine problem, the proposed mSPT-I and mSPT-FI have 
significantly better performance than EM. They are more 
efficient than the experiments with two-machine problem in 
terms of execution time. The performance of mSPT-I and 
mSPT-FI is further compared. In the small-size job 
experiment, mSPT-I performs better for the GoS = 2 
problem, while mSPT-FI performs better for the GoS = 3 
problem. In the large-size job experiment, mSPT-FI has 
better performance for the problem with 𝑚𝑚 = 4/GoS = 3, 
and mSPT-I is superior for the remaining problems. 
Therefore, the proposed mSPT-I and mSPT-FI can support 
each other's problems with different sizes of jobs and 
𝑃𝑃𝑚𝑚|𝐺𝐺𝐺𝐺𝐺𝐺|∑𝐶𝐶𝑗𝑗  can be solved efficiently. Therefore, the 
proposed heuristics are effective and potentially suitable for 
practical use.  

From the perspective of research limitations in Section 1, 
scheduling criterion, and solution methods, future research 
directions can further explore the following: (1) Relaxing 
the limits of processing time becomes a stochastic 
scheduling problem; (2) Online scheduling problem is 
considered and on-line heuristic is developed, that is, the 
jobs come in at different times and randomly; (3) It is also 
worthwhile to investigate other types of parallel machines 
under the same constraint and criterion, e.g., unrelated 
parallel machine; (4) The preemptions are allowed; (5) The 
scheduling criterion of total weighted completion time can 
further be investigated; (6) The proposed heuristics may be 
applied in a metaheuristic as a good initial solution for other 
similar scheduling problems. 
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