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ABSTRACT 
 

The identification of timber species is highly important worldwide due to their global 
trade and the arising requirement of controlling, regulating and monitoring illegal 
logging. Peru has an important timber trade due to extensive forest resources in the 
Peruvian Amazon. This context makes it necessary to have technological tools for timber 
species identification using tree leaves, in an attempt to control deforestation in the 
Amazon forests. Current identification methods require manual labor, are subjective and 
inefficient regarding time, cost and precision. Moreover, the scientific literature does not 
include electronic devices nor algorithms which exclusively identify Peruvian timber 
species. With this in mind, this work proposes a portable electronic equipment that 
detects 11 timber species from the Peruvian jungle, based on image processing 
techniques and convolutional neural networks (CNN). The device consists of a carbon 
fiber structure, a keyboard, a 7-inch display, internal lighting and a tray for the leaf 
sample. The algorithm uses color filters, thresholding and other operations to segment 
the leaf and then input it to a neural network. After comparing the AlexNet, VGG-16 and 
MobileNet architectures, the last one shows the best performance, with an average 
precision of 98.64% when identifying the 11 timber species. 

 
Keywords: Portable device, Timber species, Image processing, Convolutional neural 
networks (CNN), Species identification. 
 

 
1. INTRODUCTION 
 

The forestry industry is highly relevant to modern global economics. According to the 
International Tropical Timber Organization (ITTO), in 2020, global trade exchanged 
more than 2.5 trillions of cubic meters of timber (Ferreira et al., 2021). On the other hand, 
illegal logging is a growing issue which harms producers and consumers worldwide such 
as: Australia, Cambodia, China, the European Union, Indonesia and Peru (Winkel et al., 
2017). Both timber global trade as well as illegal logging show the need to regulate 
forests and inspect the origin of commercialized timber in order to protect species 
diversity. In the case of Peru, SERFOR (the National Forestry and Wildlife Service) 
compels owners of forest areas to register them in the national registry of forest 
plantations, indicating the number of trees and species in the owned area for commercial 
purposes. A botanist identifies the timber species, firstly through visual means and, if 
required, through laboratory analysis using a dendrological manual. This manual process 
is time-consuming, costly and has low precision, so an automatic identification method 
would significantly reduce these issues and allow timber companies and research  
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institutions to precisely monitor forests for an appropriate 
timber commercialization or for elaborating species 
protection plans. State-of-the-art solutions use algorithms 
with Support Vector Machines (SVM) or CNN which work 
with mobile applications, portable devices or graphical 
interfaces but do not solve the identified problems because 
of: high error rates, using public databases which do not 
have Peruvian timber species or comparing easily 

differentiable plant species, instead of comparing timber 
species. 

Table 1 shows these proposals, as well as their strengths 
and weaknesses. As Table 1 shows, none of the previous 
works detect Peruvian timber species, but in-stead use 
public datasets or build their own datasets with fruit, 
medicinal or non-Peruvian plants. This is a problem since 
SERFOR requires 

 
Table 1. Proposed solutions in the state-of-the-art 

Reference Technique Application Strengths Weaknesses 

(Selda et al., 
2017) 

Uses SIFT (Scale-Invariant Feature 
Transform) to obtain the leaf vein 
structure and SVM to classify the 

SIFT features. 

Portable equipment 
with a Raspberry Pi 

to identify plants 

Integrates the SIFT 
and SVM algorithm 
in a portable device, 
adding a graphical 

user interface. 

High error rate of 15.71% 

(Singh et al., 
2020) 

Image pre-processing via noise 
reduction, border enhancing, binary 
thresholds and Fourier descriptors. 

Uses a VGG-16-based CNN for 
classification. 

Method for leaf 
recognition. 

High algorithm 
precision (95%). The 

algorithm can 
recognize leaves 

damaged up to a 30% 
of their shape. 

The algorithm is trained 
and tested with the Flavia 
public database, which has 
plant leaves and no timber 

species. 

(Monroy-de-
Jesús et al., 

2019) 

Uses a CNN in Python trained with 
20 epochs and 1000 iterations per 

epoch. 

Algorithm which 
recognizes medicinal 
plants in Jocotitlan, 

Mexico. 

The algorithm 
identifies 11 plant 

species. 

Training images show 
notable differences in their 

flowers, structure and 
color. The achieved 
precision is 84.07% 

(Song et al., 
2019) 

Uses an ABCNN (Attention-Based 
Convolutional Neural Network), 

trained with the Leafsnap database. 
Image pre-processing via gamma 
transform, geometric transforms, 

smoothing filters and noise for data 
augmentation 

Method to recognize 
similar tree leaves. 

High precision of 
98.27% 

Leafsnap only contains 
images from the 

Northwest of the United 
States. 

(Srivastava 
and 

Khunteta, 
2018) 

Extracts 14 leaf image features: leaf 
area, eccentricity, orientation, 
circularity, perimeter, among 

others. Compares the performance 
of 3 classifiers: quadratic SVM, 

cubic SVM and medium Gaussian 
SVM. 

Classification 
algorithm for 16 plant 
species in the Flavia 

database. 

Method can identify 
16 different species, 

which is plenty. 

The achieved error rates 
are slightly high: 9.1% for 
the quadratic SVM, 10.6% 
for the cubic SVM, 10.2% 
for the medium Gaussian 

SVM. 

(Zarrin and 
Islam, 2019) 

Uses a Redmi 5A smartphone for 
leaf image acquisition and authors 
propose their own 9-layer CNN. 

Leaf image classifier 
based on a CNN. 

Algorithm achieves a 
precision of 99.4% 
for the 10 species. 

All species are fruit trees 
and none are timber 

species. The algorithm has 
no electronic equipment. 

(Kang and 
Oh, 2018) 

Compares the following CNN 
models: AlexNet, VGG, 

GoogleNet; integrates the deep 
learning model with a mobile 

application which asks the uses to 
center the leaf with the phone 

camera. 

Android application 
for plant 

classification in real 
time. 

Achieves a 96.0% 
accuracy with VGG 

for 63 species. 

The plant species in the 
dataset are from a field in 

a Korean university. 

(Varghese et 
al., 2020) 

Uses transfer learning with a 
MobileNet model connected to a 

mobile application through 
Firebase. 

Android application 
for plant 

classification in real 
time. 

Achieves a validation 
precision of 95%. 

The training database 
consists of only 6 different 

medicinal plants from 
India. 
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registering Peruvian timber species mainly targeted by 
illegal loggers. Moreover, some works have high error rates, 
which could translate into financial penalties due to 
incorrectly registering misidentified species. Additionally, 
most proposals use mobile applications instead of their own 
portable devices for in situ image acquisition. Since the 
forest plantations are located deep in the Amazon rainforest, 
the use of an autonomous, portable device has two main 
advantages. Firstly, analyzing the samples in situ minimizes 
the need for taking the samples back to a stationary 
laboratory, which is time consuming. Secondly, performing 
the analysis in the device eliminates the requirement of a 
stable Internet connection, which is not available in the 
plantation locations. This work presents the design of a 
portable equipment which works jointly with the image pre-
processing algorithms and the CNN model to classify 11 
timber species, which were chosen because of their 
vulnerability to illegal logging and their ecological 
importance to the Peruvian amazon rainforest. 
The main contributions of this work are: 
1. A portable device for identifying 11 Peruvian timber 

species, consisting of a waterproof structure, a keyboard, 
an LCD screen, a single-board computer and image 
processing and artificial intelligence algorithms based on 
a CNN which achieve an average precision of 98.64%. 

2. A database with images from the 11 Peruvian timber 
species acquired with con-trolled lighting using the 
portable device. The latter guarantees that the images 
were acquired with a good quality to maximize the 
performance of the proposed algorithm. 
The following sections describe the portable device, 

algorithms and results. 
 
2. MATERIALS AND METHODS 
 

This section details the materials and methods applied in 
both the hardware (electronics and mechanical structure of 
the device) and software (image processing and artificial 

intelligence algorithms) aspects. The chosen materials and 
methods are the result of a selection process which 
considered several experimental tests, application scenarios, 
ease of operation and transportation, energy autonomy, 
computational efficiency, species detection performance 
and engineering fundamentals. 

The mechanical enclosure for the device is designed to be 
3D printed in PETG filament. The structure is then 
reinforced with fiberglass and covered by a waterproof 
backpack to improve its portability and fall resistance. This 
design results in a structure which minimizes the impact of 
external light sources and shadow artifacts during the image 
acquisition. Thus, the device does not require additional 
image pre-processing such as the use of color format 
conversion (Ozturk and Akdemir, 2017) or thermal capture 
methods (Soetedjo and Hendriarianti, 2022), which 
generate high use of computational load. 
 
2.1 Electronics and Structure of the Proposed Device 

The electronics of the proposed device are made up of 4 
functional parts: image acquisition, data processing, data 
visualization and power supply. Fig. 1 shows the pictorial 
diagram of the indicated parts. 

The image acquisition subsystem consists of a Raspberry 
Pi camera using a resolution of 12.3M pixels (4056 × 3040 
pixels) for still images and 1920 × 1080 for video 
(Raspberry Pi, 2020). These parameters enable an adequate 
image quality for a correct performance of the species 
identification algorithm due to a high image acquisition 
resolution which captures most of the details in the leaves 
while using a camera model compatible with the Raspberry 
Pi. Additionally, this camera may use different lenses to 
enhance its field of view (FOV).  

The chosen camera guarantees compatibility with the 
Raspberry Pi computer and with C or SC type lenses and 
connects to the Pi with a special flat cable. The lens 
compatibility enables the possibility of using Arducam 
models, which have a variety of focal lengths to modify the 

 

 
Fig. 1. Pictorial diagram of the device  
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desired FOV. The device also has two RGB LED strips with 
configurable intensity and color, useful for keeping the 
lighting constant throughout all captured images and 
allowing the segmentation algorithm to function properly.  

A small single-board computer Raspberry Pi 4B performs 
the data processing and equipment control. This computer 
has enough resources to execute the image processing and 
artificial intelligence algorithms quickly, demonstrated by 
various applications such as gesture recognition, face 
detection, facial biometrics, etc. (Chen et al., 2021). 
Moreover, it has a lower cost and power consumption than 
other single-board computer alternatives. Some features of 
the 4B version are: 8GB RAM, 1.5 GHz CPU, 802.11ac and 
Bluetooth 5.0 wireless connectivity 
(electronicaplugandplay, n.d.). These features allow for a 
fast image processing pipeline and quick leaf classification. 
Additionally, all the device’s peripherals are directly 
connected to the Pi since it has specific ports for each of 
them. 

On the other hand, a 7-inch LCD screen shows the 
graphic user interface, through which users can operate the 
device as well as visualize information. The display has a 
resolution of 1024 × 600 pixels and connects to the 
Raspberry Pi via a micro-HDMI port. A Mini Leotec 
wireless keyboard serves to input data through the user 
interface, so that users have a comfortable way to interact 
with the device features, such as registering new plant 
species. The keyboard has a touch pad for users to navigate 
through the developed GUI and the device’s operating 
system if needed. 

The power supply consists of a 20100 mAh PowerCore. 
The energy consumption requirements are detailed in Fig. 2. 
 

 
Fig. 2. Time diagram of estimated consumption for 1 h 

 
The autonomy time is evaluated with Equation (1): 
 
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡 × 𝐷𝐷                                                                               (1) 
 
Where: 
𝑡𝑡: autonomy time (h) 
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐: battery capacity(Ah) 
D: system consumption(A) 

For 8 h of autonomy and a consumption per hour of 1.42 A, 
the required battery capacity is: 
 
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡 × 𝐷𝐷 = 8 × 1.42 = 11.36 𝐴𝐴ℎ  
 
Then, the real capacity of the powerbank is calculated using 
Equation (2). 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 = 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐 × 3.7

5
× 𝐸𝐸𝑟𝑟𝑒𝑒                                                  (2) 

 
Where: 

Bcap : Battery capacity (Ah) 
Een: Energy efficiency (%) 
A 90% power bank efficiency is a reasonable assumption, 

so replacing in the data we have: 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 = 20.1 × 3.7

5
× 0.9 = 13.38𝐴𝐴ℎ  

 
Therefore, the PowerBank 20100 ensures the operational 

autonomy of 8 h of continuous execution of the species 
identification algorithm.  

Regarding the structure of the equipment (see Fig. 3), this 
was manufactured with carbon fiber due to its resistance to 
elevated temperatures such as those in the Peruvian 
rainforest. Additionally, this material has a low density and 
high flexibility which enables improved ergonomics and 
aesthetics. The device has a total weight of 7.2 kg and is 
equipped with external waterproof plastic casing for 
adequate protection and transportation.  The plastic casing 
allows the equipment to be carried out easily like a backpack, 
which is extremely helpful when identifying species deep 
inside the Peruvian Amazon, where walking is required to 
extract the leaf of said species.  

 

 
Fig. 3. Developed device 



International Journal of Applied Science and Engineering 
 

Blanco et al., International Journal of Applied Science and Engineering, 21(1), 2023274 
 

  
https://doi.org/10.6703/IJASE.202403_21(1).001                                                                                                                                      5 
    

Fig. 4 shows some main parts of the equipment such as 
the power supply, keyboard, screen and leaves tray. Each 
measurement shown in Fig. 5 is justified. In the first place, 
the width, length and depth of the screen are designed to 
prevent liquids from entering and also to create a shadow so 
that the screen can be viewed even in bright sunlight. 
Secondly, the thickness of the electronics area generates 
greater ventilation for the electronic boards inside and 
prevents overheating. Third, the diameter of the hole in the 
upper part provides access to the components area and the 
image acquisition area in case an adjustment is needed, 
especially regarding the lens calibration. Lastly, the width 
of the image acquisition area ensures that leaves up to 30 
cm long can be captured without losing image quality. 
Finally, Fig. 6 shows in detail the internal electronic 
components and the main areas of the developed device. 

 

 
Fig. 4. External view of render of the device 

 
2.2 Image Processing and Artificial Intelligence 

Algorithms 
This section will detail the methods used for the image 

processing and artificial intelligence algorithms. Since the 
equipment has uniform acquisition conditions, the 
segmentation process is simplified and is performed with 
simple methods that reduce the computational load and 
allow to use greater resources for the leaf classification via 
artificial intelligence. Fig. 7 illustrates the block diagram of 
the proposed algorithm.As seen in Fig. 7, the input to the 
algorithm is the leaf image acquired under controlled 
lighting in the portable equipment. The first step consists of 
background elimination, using image processing techniques 
such as color filter, binary thresholds, morphological 
operations and border detection techniques. If the timber 
species has been previously registered, an artificial 

intelligence identifies it. If not, the segmented leaf image is 
stored in a database such that, when enough images are 
available, the neural network model can be trained again. 
The following section describes each step in the algorithm. 

 

 
Fig. 5. Detailed views of the developed device, dimensions 

in millimeters 
 

 
Fig. 6. Main areas of the developed device 
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Fig. 7. Block diagram of the proposed algorithm 

 
2.2.1 Image Acquisition 

The input sample consists of the leaf of a tree from the 
Amazon rainforest, which must be in a good condition, 
without deformations and flattened out to avoid processing 
artifacts due to shadows. The device’s dimensions are 410 × 
342 × 250 mm and the leaf tray has a size of 365 × 243 mm, 
which is the maximum leaf size. Acquired images are 24 bits 
RGB (true color) with primary components IR(x, y) , 
IG(x, y) and IB(x, y). Here, (x, y)  are the spatial coordinates 
of the image, where x = 0,1,…,M-1 and  y = 0,1,…,N-1, for 
M = 1080 and N = 1920.    

Considering the device dimensions, the following 
procedure determines the distance between the surface 
which holds the leaf and the acquisition camera. 

Step 1: The chosen image resolution follows the criterion 
of achieving a performance of at least 90% in the 
identification of species, as well as a computational load 
where the algorithm execution time does not exceed 20 
seconds. Empirical testing shows that a resolution of  N =
1920  columns by M = 1080 rows is appropriate for image 
acquisition.     

Step 2: Using the image resolution from step 1, the sensor 
dimensions are computed. The Raspberry Pi camera has a 
IMX477R sensor with square pixels of  Lp = 1.55μm, so 
Equations (3) and (4) show the sensor size: 
 
Lsx = Lp × M=1.55 μm × 1080 = 1.674 mm                           (3) 
 
Lsy = Lp × N = 1.55 μm × 1920 = 2.976 mm                 (4) 
 
Where: 

Lsx: Sensor’s vertical dimension (mm) 
Lsy: Sensor’s horizontal dimension (mm) 
Step 3: The camera’s focal distance serves to calculate the 

vertical 𝐶𝐶𝑥𝑥  and horizontal 𝐶𝐶𝑦𝑦  viewing angles, through 
Equations (5) and (6). This calculation uses the shortest 
focal distance in the multifocal camera lens, df = 2.8 mm. 
 
α𝑥𝑥 = 2 × tan−1 �Ls𝑥𝑥

2df
� = 2 × tan−1(1.674mm

2×2.8mm
) = 33.29°   (5) 

 
αy = 2 × tan−1 �Ls𝑦𝑦

2df
� = 2 × tan−1( 2.976mm

2 × 2.8mm
) = 55.97°  (6) 

 
Step 4: Finally, Equation (7) shows the calculation of the 

distance Dcs between the camera and the acquisition surface. 

This calculation considers a rectangular image acquisition 
area with a length Lay = 30 cm. 
 
Dcs=

Lay
2 × tan�

αy
2 �

=  30cm

2 × tan�55.97°
2 �

= 28.2cm                             (7) 

 
Then, Equation (8) computes the rectangle’s width Lax: 
 
Lax=2 × tan �αx

2
� × Dcs = 2 × tan �33.29°

2
� × 28.2 =

16.9 cm                                                                              (8) 
 

Fig. 8 illustrates the dimensions of the acquisition area 
(FOV) and the distance between the camera and the 
acquisition surface. 
 
2.2.2 Dataset 

This section describes the two datasets used for the 
development of the leaf classification algorithm. The first 
one is used to classify a leaf from 11 possible species, while 
the second one is used to determine whether a leaf belongs 
to one of the species in the first dataset. Details of each of 
the datasets are given below.  
 

 
Fig. 8. Image acquisition area and working distance. 

 
2.2.2.1 Species Classification 

The species classification dataset consists of images of 
leaves from 11 timber species from the Peruvian amazon 
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rainforest, chosen due to their vulnerability to illegal 
logging and their economic and ecological importance. 
These species are among the most commercialized ones for 
timber production in Peru. The 11 selected species are 
accessible within a particular region of the Peruvian 
Amazon Rainforest. The developed device took pictures of 
the collected leaves, resulting in 100 images for each of 10 
of the 11 species, and 120 images for the remaining one, 
since a collecting mission deep in the Peruvian Amazon was 
conducted and that was the number of available leaves. The 
application of data augmentation helps in building a more 
diverse dataset to avoid model overfitting. The 
augmentation transforms are random rotations in the range 
[-20°, 20°] and random horizontal flipping. Rotations 
provide better results than other geometric transformations 
in diverse augmentation tasks (Maharana et al., 2022), while 
flipping augmentation is necessary to recognize leaves 
wrongly inserted into the device. Fig. 9 illustrates the block 
diagram of the data augmentation process. 

The final dataset after data augmentation consists of 
13308 images, where 69.70% are used for training and 
30.3%, for testing. Table 2 indicates the species distribution 
in the training and testing datasets, and Table 3 shows 
examples of the 11 species in the dataset. 

 
2.2.2.2 Identification of Whether a Species belongs to 

the Built Dataset 
This section describes an additional dataset used to train 

a neural network which distinguishes whether the leaf put 
in the device belongs to the species identification dataset. 
The additional dataset consists of some images from the 11 
selected timber species, grouped in a “Known” class, and 
new images grouped in an “Unknown” class. The latter class 
consists of images from 8 fruit species, shown in Fig. 10, as 
well as images from the timber species with manual 
modifications such as shape deformations, cropped 
apex/bottom ends, margin undulations, etc. After building a 
balanced new dataset (50% of images in each class), it is 

enhanced using data augmentation, resulting in 9865 images 
split in 69.34% for training and 30.66% for testing. Table 4 
shows the final data distribution. 

 

 
Fig. 9. Block diagram of the data augmentation process 
 

2.2.3 Leaf Segmentation 
The following computational procedure results in the leaf 

segmentation and elimination of unwanted objects and 
regions which could hamper the classification stage: 
Step 1: A color filter extracts most of the leaf section from 
the background. The original image with primary 
components IR(x, y) , IG(x, y)  and IB(x, y)  is converted to 
the HSV (Hue-Saturation-Value) color model (Gonzales 
and Woods, 2018), where H(x, y)  is the hue, S(x, y)  is the 
saturation and V(x, y)is the value component. An extensive 
evaluation of the histograms from the 3 components in 
plenty images with only background resulted in the 
thresholding mask Mas(x,y) in Equation (9) with thresholds 
illustrated in Fig. 11. 
 

Mas(x,y)=�

 0    ,  85< H(x,y)<100 ∧ 
                   S(x,y)<52 ∧

                V(x,y)<50
1    ,    otherwise                

                            (9) 

 
 

Table 2. Species distribution in the dataset, after data augmentation 
Species Common name Training images Testing images Total images 

Simarouba amara Marupa 828 360 1188 
Osteophoeum platypermum Cumala Llorona 996 432 1428 

Aniba rosaeodora Palo Rosa 828 360 1188 
Otoba glycycarpa Aguanillo 828 360 1188 
Cedrela odorata Cedro 828 360 1188 

Swietenia macrophylla Caoba 828 360 1188 
Cedrelinga cateniformis Tornillo 828 360 1188 
Parahancornia peruviana Naranjo Podrido 828 360 1188 

Caryocar glabrum Almendra 828 360 1188 
Guazuma crinita Bolaina 828 360 1188 

Dipteryx micrantha Shihuahuaco 828 360 1188 
 Total 9276 4032 13308 
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Table 3. Selected eleven species from the Peruvian Amazon rainforest 
Species Image Leaf features  

Simarouba amara 

 

Pointy apex and bottom end, irregular 
margin, no visible vein structure. 

Osteophoeum platypermum 

 

Blunt bottom end, circular apex, oval 
shape, slightly visible vein structure. 

Aniba rosaeodora 

 

Pointy apex and bottom end, glossy 
and rough surface.  

Otoba glycycarpa 

 

Pointy apex and bottom end, 
ondulated margins, elliptical shape. 

Cedrela odorata 

 

Pointy bottom end, circular apex, 
blade is narrow near the stem. 

Swietenia macrophylla 

 

Visible stem in bottom end and apex, 
circular shape, visible vein structure. 

Cedrelinga cateniformis 

 

Pointy apex and bottom end, 
ondulated margin, vertically oriented 

veins. 

Parahancornia peruviana 

 

Circular apex and bottom end, oval 
shape, only central vein is visible. 

Caryocar glabrum 

 

Pointy apex and bottom end, oval 
shape, blade is broader near the stem, 

diagonally oriented veins. 

Guazuma crinita 

 

Visible stem at the apex, vertically 
oriented veins, glossy and bright 

surface. 

Dipteryx micrantha 

 

Curved apex and bottom end, smallest 
size of the 11 chosen species. 
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Fig. 10. Collected 8 fruit species: (a) Schefflera 

Arboricola, (b) Vitis Labrusca, (c) Persea Americana, (d) 
Bengonia Glabra, (e) Piper Aduncum, (f) Ficus Carica, (g) 

Ficus Benjamina, (h) Artocarpus Heterophyllus lam 
 
 

 
Fig. 11. Histograms of the Hue, Saturation and Value 
components for an image of the device background 

 
IRR(x,y)=IR(x,y).Mas(x,y)                                               (10) 
 
IGG(x,y)=IG(x,y).Mas(x,y)                                               (11) 
 
IBB(x,y)=IB(x,y).Mas(x,y)                                                (12) 

 
Step 2: The color filtered RGB image in Fig. 12 results 

from applying the mask in (7) to the original primary 
components, as per Equations (10)–(12): 

 

 
Fig. 12. Image after color filtering 

Step 3: Equation (13) calculates the conversion from the 
color filtered image to the gray-scale image in Fig. 13: 
 
I(x,y) = 0.299∙IRR(x,y) + 0.587∙IGG(x,y) + 0.114∙IBB(x,y) 

(13) 
 

 
Fig. 13. Grayscale image 

 
Step 4: The image background is easily distinguishable 

and has few artifacts after the color filter. Thus, the 
grayscale image I(x,y)  is thresholded to separate the 
background from the leaf, as per Equation (14): 
 

F(x,y)= �255    ,     I(x,y)   >  ua
0    ,    otherwise                                        (14) 

 
The binary threshold ua  is computed using the Otsu 

method (Vijay and Patil, 2016, Hassanein et al., 2018), 
which employs the grayscale histogram to separate pixels 
into foreground and background classes. Then, it computes 
the interclass variance, and settles in a threshold value 
which minimizes this variance. This method achieves the 
best results and ensures that the pixels inside the image are 
assigned an intensity of 255 while the background ones get 
0. The binary threhsold computation and the thresholding 
operation are performed with OpenCV, using the 
cv2.THRESH_OTSU and the cv2.threshold functions 
respectively. The thresholding operation receives the 
grayscale image, the binary threshold and the intensity value 
assigned to the pixels with intensity greater than the 
computer threshold. Fig. 14 shows the resulting thresholded 
binary image. 
 

 
Fig. 14. Image after applying Otsu’s method 
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Step 5: It is necessary to extract the edges of the binary 
image so that the largest contour (leaf shape) can be 
recognized and separated from the rest. To ensure an 
accurate edge detection,  the Canny algorithm (Canny, 1986) 
is selected. This algorithm extracts the leaf edges in the 
thresholded binary image from the previous step. It is 
implemented using the cv2.Canny command from OpenCV 
library. It receives the input binary image from the previous 
step, the low gradient intensity threshold (0) and the high 
gradient intensity threshold (255). The result is stored in the 
binary image FCanny . Then, FCanny  is morphologically 
dilated using Equation (15), to eliminate some artifacts after 
the Canny edge detector and connect any empty spaces in 
the leaf contour. 

 
BC= FCanny ⊕ ES2×5                                                          (15) 
 
Where ES2×5  is an all-one rectangular structuring 

element with 2 rows and 5 columns. Fig. 15 shows the 
image after the Canny edge detector and the morphological 
dilation: 

 

 
Fig. 15. Image after Canny edge detector and 

morphological dilation 
 

Step 6: The final leaf mask Iseg(x,y) results from choosing 
the largest contour in “BC” and filling the surrounded 
region with an intensity of 255. The cv2.fillPoly function 
from OpenCV performs the contour filling. It requires the 
destination image to draw the resulting filled polygon, the 
coordinates of the largest contour and the fill color (white). 
The result is shown in Fig. 16. 
 

 
Fig. 16. Image of the final leaf mask, Iseg(x, y) 

Step 7: The Iseg(x,y) mask is applied to the original RGB 
image, resulting in the segmented leaf image at Fig. 17, with 
the following primary components: 
 
IFR(x,y)=IR(x,y).Iseg(x,y)                                                   (16) 
 
IFG(x,y)=IG(x,y).Iseg(x,y)                                                  (17) 
 
IFB(x,y)=IB(x,y).Iseg(x,y)                                                  (18) 
 

 
Fig. 17. Segmented image 

 
These methods achieve good leaf segmentation results, 

mostly due to the uniform acquisition conditions inside the 
developed equipment. These conditions allow the use of a 
straightforward image processing pipeline. 
  
2.2.4 Re-scaling 

The segmented images with primary components 
IFR(x,y) , IFG(x,y)  and IFB(x,y) are rescaled to sizes 224 × 
224 and 227 × 227 pixels, since these are the input sizes for 
the CNN models in this work. Image scaling is done via 
bilinear interpolation (Kirkland, 2010), since it achieves 
adequate results and has a lower computational load than 
other methods such as cubic interpolation. The resulting re-
scaled image has primary components IFFR(x,y) , 
IFFG(x,y)and IFFB(x,y), and is shown in Fig. 18. 
 

 
Fig. 18. Re-scaling example: (a) Image after segmentation. 

(b) Re-scaled image, 224 × 224 pixels 
 

Overall, bilinear interpolation provides good results 
resizing the segmented images. The details observed in the 
leaf structure are preserved, which will be beneficial for the 
classification process. 
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2.2.5 Convolutional Neural Network 
Transfer learning enables employing learnt features in 

pre-trained neural network models for a different 
application than it was originally trained for. The following 
3 models are compared to choose the best CNN: AlexNet 
(Krizhevsky et al., 2017), MobileNet (Howard et al., 2017) 
and VGG-16 (Tammina, 2019). Said models were chosen 
due to the following reasons:  
• The classification task is focused on a single type of 

object (tree leaves). Thus, a simple model like AlexNet 
may achieve good results. 

• Since the project intends to add more species to the 
classification task in the future, new models will need to 
be trained. Therefore, a lightweight CNN model like 
MobileNet could help to store new trained models while 
keeping below the maximum storage capacity. 

• One of the goals of the portable equipment is to achieve 
an accuracy greater than 95%. In turn, a model like VGG-
16 known for its high performances in classification tasks 
could achieve this. 

In the 3 models, the last layer is changed to a softmax 
layer with 11 outputs for each of the timber species. 
MobileNet and VGG-16 are pre-trained in the ImageNet 
dataset, consisting of around 14 million images with more 
than 20000 classes (Ghorui et al., 2023). Training lasts for 
20 epochs with a batch size of 32, using the Adam (Kingma 
and Ba, 2014) optimizer with a learning rate of 0.001. 
Limited memory resources result in using a small batch size, 
which in turn results in a small learning rate. Training is 
done with early stopping, after 12 epochs of continuous 
reduction in accuracy. Fig. 19 shows the CNN architectures 
and training parameters used for this comparison. The 
results obtained for each of the CNN models and other 
characteristics are compared in Table 5. Evidently, 
MobileNet achieves the best accuracy with the smallest 
memory footprint next to AlexNet or VGG-16. The 
MobileNet model uses separable depth convolutions 
followed by point convolutions to achieve its low memory 
footprint. It has a depth of 88 layers and uses ReLU 
activations (Howard et al., 2017). 

 

 
Fig. 19. CNN architectures 

 
Table 5. Model comparison: AlexNet, MobileNet and VGG-16 

Model Depth # of parameters (M) Memory (MB) Accuracy (%) 
AlexNet 8 60 260 86.11 
VGG-16 23 138 528 95.39 

MobileNet 88 4 16 98.64 
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2.2.6 Graphical User Interface and Device Operation 
A graphical user interface made in Tkinter enables users 

to easily operate the device. Fig. 20 shows the leaf 
classification screen after the software has analyzed a leaf. 
The operation steps are described below: 
• Step 1: The user places the leaf in the sliding tray. 
• Step 2: Using the mousepad, the user chooses the 

classification option in the graphical user interface menu. 
• Step 3: The user presses the “Capture” button, after 

which the captured (left) and segmented (right) images 
appear on screen. 

• Step 4: If user considers that the image is correctly taken, 
they press the “Identify” button; otherwise, they repeat 
the image acquisition with the “Repeat” button. 

• Step 5: After the algorithm has identified the leaf, the 
user may press the “Save” button if they desire to store 
the segmented image. 
If the system detects that the leaf does not belong to any 

species in the dataset (see sections 2.3.2.), the interface 
shows a secondary screen as seen in Fig. 21. The operation 
steps are: 
• Step 1: The user presses the “Back” button in the upper 

left corner and chooses the species record from the menu. 
• Step 2: The user presses the “Capture” button and, if the 

image has been correctly taken, inputs a species name in 
the text box. Otherwise, the user can repeat the image 
acquisition. 

• Step 3: The user presses the “Upload” button. 
 

 
Fig. 20. Main screen in the graphical user interface 

 

 
Fig. 21. Screen to record a new species 

2.2.7 Performance Evaluation Metrics 
The following metrics are used to evaluate the 

equipment’s performance: accuracy, precision, recall and 
F1-score. Each metric is described as follows: 
• Accuracy: Is the percentage of correctly classified 

images with regards to the total number of predictions 
(Tharwat, 2021). It is computed according to (19): 

 
Accuracy= # of correct predictions

Total # of predictions
                                        (19) 

 
• Precision: Represents the ratio of true positive samples 

with respect to the total number of positively classified 
samples (TP+FP) (Tharwat, 2021). It is computed as per 
(20): 

 
Precision= TP

TP+FP
                                                               (20) 

 
Where:  

TP: # of true positives (Images correctly classified as a 
particular class) 

FP: # of false positives (Images classified as a class but 
belonging to a different) 
• Recall: Ratio of true positive samples with respect to the 

total of predicted samples (TP+FN) (Tharwat, 2021). It 
is computed according to (21): 

 
Recall= TP

TP+FN
                                                                      (21) 

 
Where:  
FN: # of false negatives (Images belonging to a class which 
were not classified as said class) 
• F1-score: It is the harmonic mean between precision and 

recall, and is computed by (22): 
 
F1-score=2 × Recall × Precision

Recall +Precision
                                          (22) 

 
3. RESULTS AND DISCUSSION 
 

Model evaluation is performed using Google Collab. 
30.30% of images are used to test the classification model 
while 30.66% of images are used to evaluate the model that 
determines whether an input belongs to the dataset. 
 
3.1 Identification of whether the Image Belongs to 

the Classification Dataset 
Figs. 22–24 show the obtained confusion matrices. Table 

6 presents the metrics for each model, computed via the 
confusion matrices. The VGG-16 model achieves the lowest 
accuracy, at 91.57%. This might be explained due to VGG-
16 having the largest number of parameters, which might 
result in the network overfitting during training. On the 
other hand, MobileNet achieves an accuracy of 99.34% and 
AlexNet, of 98.61%. Finally, the MobileNet model is 
chosen due to its higher accuracy and its lower memory 
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footprint. 
 
Table 6. Model comparison, determination if an input 

belongs to the dataset 
 Accuracy (%) Precision (%) F1-score (%) 

AlexNet 98.61 98.61 98.61 
VGG-16 91.57 92.03 91.52 

MobileNet 99.34 99.34 99.34 

3.2 Classification of the 11 Timber Species 
Figs. 25–27 show the species classification confusion 

matrices. Table 7 shows the accuracy per timber species for 
the 3 evaluated models. Table 8 shows confusion matrix 
metrics (Precision, Accuracy, F1-score) for each model. 

 
 

 

 
Fig. 22. Confusion matrix for AlexNet, determination 

if an input belongs to the dataset 

 
Fig. 23. Confusion matrix for VGG-16, determination if an 

input belongs to the dataset 
 

 
Fig. 24. Confusion matrix for MobileNet, 

determination if an input belongs to the dataset  
Fig. 25. Confusion matrix for AlexNet, 11 timber species 

classification 
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Fig. 26. Confusion matrix for VGG-16, 11 timber 

species classification 

 
Fig. 27. Confusion matrix for MobileNet, 11 timber species 

classification 
 

Table 7. Accuracy for each model (AlexNet, VGG-16, 
MobileNet) for each of the 11 timber species 

 Accuracy (%) 
Species AlexNet VGG-16 MobileNet 

Simarouba amara 85.56 95.56 99.72 
Osteophoeum 
platypermum 98.61 100 100 

Aniba rosaeodora 97.22 99.17 99.72 
Otoba glycycarpa 95.37 98.15 100 
Cedrela odorata 71.67 82.78 87.50 

Swietenia macrophylla 71.67 90.83 98.89 
Cedrelinga cateniformis 99.72 100 100 
Parahancornia peruviana 89.17 96.11 98.89 

Caryocar glabrum 76.39 98.33 100 
Guazuma crinita 93.06 97.78 100 

Dipteryx micrantha 66.94 90 100 
 

Table 8. General comparison of the 3 models (AlexNet, 
MobileNet, VGG-16) 

 Accuracy (%) Precision (%) F1-score (%) 
AlexNet 86.11 87.19 86.22 
VGG-16 95.39 95.37 95.33 

MobileNet 98.64 98.69 98.62 
 

Table 7 shows that AlexNet and VGG-16 perform poorly 
for some timber species, achieving an accuracy of less than 
95% for Cedrela odorata, Swietenia macrophylla and 
Dipteryx micrantha. AlexNet has the worst performance, 
achieving a 95% accuracy for only 5 of the 11 species, while 
VGG-16 did so for 8 species and MobileNet, for 10 species. 
Nonetheless, MobileNet (87.5%) does not achieve the 95% 
accuracy threshold for Cedrela odorata, just as happens for 
AlexNet (71.67%) and VGG-16 (82.78%). This might be 

explained by the leaves having many similar features as 
other species, such as diverse margins (undulated or 
straight), apices and bottom ends. 

In general terms, AlexNet achieves the lowest accuracy 
(86.11%) which is lower than 90%, while MobileNet 
(98.64%) and VGG-16 (95.35%) surpass the 90% threshold. 
Additionally, MobileNet’s precision is 98.69% and its F1-
score, of 98.62%, which indicates that the model can 
correctly predict classes as well as avoid assigning incorrect 
classes to samples. 

Figs. 28–30 show the accuracy and loss curves for each 
model during training. Fig. 28 shows that, for AlexNet, the 
validation loss slightly increases and the validation accuracy 
slightly decreases in the last epochs, which triggered the 
early stopping criterion at epoch 16. Fig. 29 shows that 
VGG-16 achieved a stable loss and accuracy from epoch 5 
onwards. This stagnated loss and accuracy curve, coupled 
with the fact that the validation curve is somewhat far from 
the training curve, might indicate overfitting. Finally, Fig. 
30 shows that MobileNet has a validation loss and accuracy 
spike at epoch 5 but both curves quickly close the gap to the 
training loss and accuracy, achieving a value of 0.1 (loss) 
and 98.69% (accuracy) by the last epoch. 

Based on the Figs. and Tables shown above, the 
MobileNet architecture was selected because it has the 
highest accuracy of the 3 architectures (98.64%) and 
requires the least storage space per trained model (16MB). 
Thus, a new model can be trained in the network with more 
species and then update the one stored inside the equipment 
without requiring a large storage space. Moreover, a more 
lightweight model tends to have a lower computational load 
and thus, a lower power consumption. 
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Fig. 28. Loss and accuracy for AlexNet during training 

 
  0.0

 
Fig. 29. Loss and accuracy for VGG-16 during training 

 
Fig. 30. Loss and accuracy for MobileNet during training 

 
3.3 Related Work Comparisons 

Table 9 shows a comparison of the classification accuracy 
between the present work and related ones. 

Two of the related works achieved an accuracy lower than 
90%. One of these (Selda et al., 2017) relied on the leaf vein 
structure and an SVM, but did not take into account the leaf 
surface characteristic.  

Likewise, authors at Monroy-de-Jesús et al. (2019) built 
a custom basic CNN with limited results. The proposed 
system achieved the third highest accuracy of the models. 
The proposal at Varguese et al. (2020) considered medicinal 
plants which could be easily distinguished and did not 
require a large dataset to train the neural network. Similarly, 
Zarrin and Islam (2019) evaluated fruit trees with somewhat 
distinguishable leaves and had a dataset with 10,000 images.  

Besides the proposed image pre-processing and neural 
network-based algorithm, this work also details a hardware 
device which captures leaf images and shows the results 
through a graphical interface, which enables in-situ leaf 
identification and analysis. 

 
Table 9. Results comparison with related work 

Reference Number of identifiable species Dataset Maximum achieved accuracy 
Developed device with proposed algorithm 11 Custom dataset 98.64% 

(Selda et al., 2017) 20 Custom dataset 84.29% 
(Singh et al., 2020) 32 Flavia dataset 95% 

(Monroy-de-Jesús et al., 2019) 11 Custom dataset 84.07% 
(Song et al., 2019) 10 SVHN dataset 98.27% 

(Srivastava and Khunteta, 2018) 16 Flavia dataset 90.90% 
(Zarrin and Islam, 2019)  10 Custom dataset 99.40% 

(Kang and Oh, 2018) 63 Custom dataset 96.08% 
(Varghese et al., 2020) 6 Custom dataset 99% 
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4. CONCLUSIONS AND FUTURE WORKS 
 
The large amounts of globally traded timber require 

regulations and control of existing species to avoid issues 
such as illegal logging, and current methods are not 
sufficiently appropriate. This work presents a portable leaf 
image acquisition equipment whose design ensures good 
image capturing conditions. It works jointly with a Python 
algorithm and a graphical user interface which enables easy 
user operation. This device serves to identify species in situ 
and to build new species datasets through imaging and 
recording of unregistered species. 

Apart from ensuring good capture conditions, the 
equipment was manufactured with carbon fiber and 
considering requirements such as: rigidity, low weight and 
portability in order to prevent health problems in the 
botanical experts who will operate said equipment in the 
long term. Also, thanks to the components inside the 
equipment, the illumination control and uniform 
background, the image segmentation is facilitated, which 
allows the software to work effectively without the need for 
complex processing or the use of high computational 
resources.  

In addition to cutting computational resources from the 
segmentation process, the algorithm uses the MobileNet 
architecture, which due to its low memory footprint does not 
need to consume high resources to perform a classification 
and leaves plenty of space to train new models with updated 
datasets with more species in the future. MobileNet 
achieved 98.64% accuracy, superior to the AlexNet and 
VGG-16 models. Future works can improve these results by 
building larger datasets with thousands of images per 
species to improve the training process. 

Finally, the device aims to be operated by forestry 
institutions or botanical to increase the analysis throughput 
and precision when identifying timber species from the 
Peruvian amazon rainforest. 
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