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ABSTRACT 
 

The virtual simulation laboratory saves the material resources and equipment 

investment required for simulating a real experiment environment. This paves the 

learners to experiment and explore in a virtual environment, reducing resource waste and 

cost. In addition, the virtual simulation laboratory can also realize the sharing of 

resources, and academic institutions can share the platform and content of the virtual 

laboratory to improve the efficiency of resource utilization. But the virtual simulation 

experiment data can be is easily hacked from the network, hence making it challenging 

task to study virtual simulation data security. In this paper, we research the virtual 

simulation data security based on deep learning through applied innovation design and 

proposed a new algorithm. The minimum violation sequence set in the virtual simulation 

data set is identified and the suppression mode of the minimum violation sequence is 

judged. The score table is constructed for the instances in the sequence, and the 

corresponding instances are selected and suppressed according to the score value. The 

cross-attention module of Transformer Structure is proposed to aggregate the global and 

local feature information between left and right graphs and obtain the long-distance 

dependence relationship between left and right graphs along the polar direction, which 

can more effectively fuse the global feature information of left and right graphs. The 

results show that the proposed algorithm can not only ensure the safety of trajectory data 

but also improve the availability of data. 

 

Keywords: Applied innovation design, Deep learning, Virtual simulation, Data security. 

 

 

1. INTRODUCTION 
 

With the rapid development of information technology and the coming of the era of 

big data, data privacy becomes particularly important. The privacy protection technology 

of data release has been widely concerned by academia and industry. Differential Privacy 

(Yin et al., 2021; Adnan et al., 2022; Zhao et al., 2022) is a new privacy protection 

technology emerging in recent years, which solves the defects of the traditional privacy 

protection model. Its basic idea is to use stochastic algorithm to disturb the query 

operation results of the original data set, so as to achieve the privacy protection effect. 

The advantage of Differential Privacy Protection technology is that it no longer describes 

the background knowledge of the attacker quantitatively, but directly gives the 

assumption that the attacker has all the background knowledge (Tseng and Zhang, 2023). 

Assume that an attacker attacks a record and knows all records except this record. After 

analyzing the query result, the attacker can still ensure that the record is not leaked (Jia 

et al., 2021; Cretu et al., 2022). 

With the rapid development of GPS, Wi-Fi and other positioning technologies and 

storage technologies, a large number of mobile users' trajectory data has been collected 

and stored (Zhang et al., 2023). Trajectory data contains rich temporal and spatial 

information, and in-depth research and analysis of trajectory data has become a research  

mailto:jiao.phdscholar@lincoln.edu.my
https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en


International Journal of Applied Science and Engineering 
 

 

Bo and Bexci, International Journal of Applied Science and Engineering, 21(1), 2023323 

 

 

https://doi.org/10.6703/IJASE.202403_21(1).002                                                                                                                                      2 

          

hotspot in the field of data mining (Kesu and RamAngu, 

2023; Meng et al., 2023). Trajectory data with high 

availability is the basis of effective trajectory data mining. 

Researchers can obtain valuable information through the 

analysis and mining of trajectory data (Hamid et al., 2021; 

Hu et al., 2021). However, trajectory data also contains a 

large amount of privacy information of mobile users. If 

trajectory data is not protected before release, attackers with 

background knowledge can infer the privacy information of 

users by analyzing trajectory data, such as physical 

condition, living habits and home address, etc., and even 

bring economic losses and personal safety problems to users 

(Dhinakaran and Joe, 2022). Therefore, how to ensure that 

the published trajectory data will not disclose the privacy of 

users and have high availability is an urgent problem to be 

solved (Bag et al., 2021; Birjali and Kasri, 2021). 

This paper is organized as follows. In Section 2, the 

related works are introduced. We detailed state the proposed 

method in this paper in Section 3. The results and discussion 

are shown in Section 4. There is a conclusion in Section 5. 

 

2. RELATED RESEARCH 
 

When accessing published data, even if the attacker has 

the background knowledge obtained from other channels, 

the attacker cannot get any additional information about the 

target (Irazoqui et al., 2014), which is the basic idea of data 

privacy protection. Under this goal, many privacy 

protection models and specific methods have emerged. 

Traditional privacy protection techniques are based on 

grouping, including K-anonymity (Ren et al., 2023), L-

diversity (Li et al., 2023), t-close (Soria-Comas et al., 2015) 

and some derivative methods (Kerestes et al., 2021). The 

basic idea is to anonymize and hide all records by aligning 

identifiers (attributes related to the background knowledge 

of the attacker), so that all records are divided into several 

equivalence classes, and thus realize a record hiding in a 

group of records. But they are all based on assumptions 

about the attacker's capabilities and background knowledge. 

Therefore, the above model cannot provide a guarantee of 

sufficient security, but it leads to many other ideas, such as 

privacy metrics (Yin et al., 2018). Differential privacy 

protection technology is proposed in (Soria-Comas et al., 

2017). Its specific implementation algorithm was 𝑓(𝐷) 

obtained by arbitrary query 𝑓  of data set 𝐷 , and random 

algorithm M added noise 𝑥  on the basis of 𝑓(𝐷) , and 𝑥 

followed a certain distribution (e.g., Laplace distribution). It 

was proved that this algorithm satisfied the differential 

privacy definition, and finally returned 𝑓(𝐷) + 𝑥 to the user. 

Suppose the attacker already knows everyone's 

information except Alice's diagnosis, and the attacker wants 

to obtain Alice's diagnosis, so he/she issues a query request 

𝑓 to the medical data set shown in Table 1: 

Table 1 indicates a medical data set. The attacker already 

knows everyone's information except Alice, so the attacker 

knows that the query above outputs 3 or 4. Differential 

privacy algorithm M adds a noise x on the basis of the query 

output of 4, assuming x = -0.7, then returns 3.3 to the 

attacker. For the attacker, 3.3 makes it difficult to determine 

whether the output is 3 or 4, thus ensuring Alice's privacy. 

 

Table 1. Medical data set D 

Name Age Diagnostic results 

Heshei 21 0 

Shahid 22 1 

Bitaf 35 1 

Kokor 39 0 

Tom 48 1 

Alice 45 1 

 

The core of differential privacy protection lies in the 

selection of parameter 𝜀  and the design of stochastic 

algorithm. In terms of random algorithm design, different 

types of problems can have different implementation 

mechanisms, the most basic protection mechanisms are 

Laplacian mechanism (Li et al., 2019), exponential 

mechanism (Gopi et al., 2022). The former is an algorithm 

that realizes differential privacy protection by disturbing the 

real output value of noise generated by Laplacian 

distribution, and mainly deals with some numerical data 

with output results. The latter mainly deals with some 

algorithms whose output results are non-numerical. In the 

interactive environment, Zhang et al. (2022) improved the 

traditional Laplacian mechanism, which could provide more 

queries under the same budget compared with the Laplacian 

mechanism. In a non-interactive environment, Brauwers 

and Frasincar (2023) put forward the concept of matrix 

mechanism, which represented interrelated queries into a 

matrix, thus reducing the amount of noise added, but its 

efficiency and optimization effect were not ideal. Xiao et al. 

(2011) first implemented Haar wavelet transform on data 

and then adds noise, which reduced data availability and 

improves query accuracy. Soria-Comas et al. (2014) 

proposed a differential privacy protection method based on 

hierarchical summation and least squares to divide the query 

sequence into groups that met the consistency constraint, 

and noise was added to each group. These achievements are 

included in the category of matrix mechanism. Li et al. 

(2021) improved the above method, proposed a low-rank 

matrix mechanism, and adopted the method of decomposing 

load matrix to optimize its strategy. In terms of the selection 

of parameter 𝜀 , Jagielski et al. (2018) proposed an attack 

model, which provided an upper bound for the selection of 

parameter 𝜀, but did not provide an attack algorithm. From 

the perspective of economics, Jacobs et al. (2022) proposed 

a simple economic model, which enabled users to select 

parameters in a principled manner. Mahawaga et al. (2020) 

proposed an attack algorithm of differential privacy 

protection technology and gave the upper bound of 

parameter 𝜀  selection. To sum up, the importance of 

selecting parameter 𝜀 is self-evident. 
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3. RESEARCH METHOD 
 

Suppose the dataset D has n tuples, and the attacker 

knows all the background information except the sensitive 

information of the target. Therefore, there are a total of n 

possibilities for any n-1 tuples in dataset D to form dataset 

𝐷′(|𝐷′| = |𝐷| − 1) . Here, the data set 𝐷′  is denoted 𝛹 , 

called the potential input set, and its size is 𝑛 = |𝛹|. 
In the scheme of Li et al. (2021), an attack model is 

proposed, which is based on the prior of the attacker 

(assuming that the average distribution is satisfied, i.e., 𝜌 >
1

𝑛
, otherwise it has no meaning) and a posterior probability 

deduce that the upper bound of parameter 𝜀 satisfies: 

 

𝜀 ≤
∆𝑓

∆𝑣
𝑙𝑛(

(1−𝑛)𝜌

1−𝜌
)                                                             (1) 

 

∆𝑣 = max
1≤𝑖,𝑗≤𝑛

|𝑓(𝐷′1) − 𝑓(𝐷′2)|                                       (2) 

 

Where 𝜌  represents the probability that the attacker 

pushes the attack object in or out of the output result set. 𝑛 

represents the size of the potential input set. It can be seen 

from this inequality that when 𝑛 is large, the value of the 

parameter 𝜀 is large. 

In this section, we consider how to guess the true value 

of multiple attacks on the same query in a worst-case 

scenario (only 2 potential input sets), so as to know whether 

the attack object is in the data set. The data set owner obtains 

a result f(D) based on the query request f made by the 

attacker against the attack object, and then returns its f(D) 

with noise x to the attacker. In this way, the attacker 

performs N attacks and gets N results 𝑓(𝐷) + 𝑥1, 𝑓(𝐷) +
𝑥2,...,𝑓(𝐷) + 𝑥𝑁, and infer whether the attack object is in 

the data set based on N results. 

Since noise 𝑥 is random, it is impossible for an attacker 

to accurately guess the specific value of 𝑥 in each query. But 

as long as the attacker can guess in which interval 𝑥 can fall, 

it is enough for the attacker to make some decisions. For 

example, a count query, as long as the noise 𝑥 falls between 

[-0.5, 0.5], an attacker can make an accurate judgment. 

Since noise 𝑥 follows the 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇, 𝑏) distribution, an 

attacker can calculate the probability of 𝑥 falling in a certain 

interval if 𝜇 and 𝑏 are known. The location parameter 𝜇 has 

no effect on the attacker, while the scale parameter 𝑏 =
∆𝑓

𝜀
 

directly affects the difficulty of the attack. Under a given 

query problem, with the increase of 𝑏 , the probability of 

noise 𝑥 falling into the fault-tolerant interval of the query 

becomes smaller and smaller, and the attacker's attack 

becomes more and more difficult. Therefore, the selection 

of parameter 𝜀 can reflect the above phenomenon. 

In the feature extraction stage, the algorithm adopts 

ResNet-40 structure (Nam et al., 2023) to down-sample the 

left and right graphs three times. Each sub-sampling module 

contains 3, 4 and 6 residual modules, which can obtain the 

feature maps of 1/3, 1/6 and 1/12 of the original image. The 

number of channels is 64, 128 and 256 respectively. Then 

the global average pooling is applied to the final output 

feature map, and finally the channel attention weight of the 

multi-scale feature map is calculated by two 1 × 1 

convolution, which is used to guide the multi-scale fusion 

in the feature fusion stage. 

The 3 × 3 convolution of residual modules in all scales is 

replaced by context attention (COA). COA can capture rich 

static and dynamic context information at the same time, 

make full use of dynamic and static context information 

between input keys to guide the learning of dynamic 

attention matrix, and enhance the representation ability of 

feature graphs. Because COA is computationally similar to 

standard 3 × 3 convolution, the COA module has a similar 

number of parameters and floating-point calculations to 

ResNet-40. 

In COA, assuming the input 2D feature map 𝑋 ∈
𝑅𝐻×𝑊×𝐶, Key, Query, and Value are defined as 𝐾 = 𝑋, 𝑄 =
𝑋 and 𝑉 = 𝑋𝑊𝑉, respectively. COA first uses 𝑘 × 𝑘 group 

convolution for all the neighborhood keys in the 𝑘 × 𝑘 grid, 

and the learned context Key 𝐾1 ∈ 𝑅𝐻×𝑊×𝐶   is the static 

context information between the neighborhood keys. Then, 

the context keys 𝑄 are superimposed by 2, and the 𝑊𝜃 and 

𝑊𝛿   are convolved by 2 consecutive 1 × 1 activation 

functions with ReLU and without activation functions. It 

gets a dynamic multi-head attention matrix: 

 

𝐴 = [𝐾1, 𝑄]𝑊𝜃𝑊𝛿                                                            (3) 

 

For each head in the multi-head dynamic attention matrix, 

𝐴  first learns the local attention matrix for each spatial 

position based on Query and context Key, and then 

multiplicities the COA matrix 𝐴  and 𝑉  to calculate the 

participation feature graph 𝐾2: 

 

𝐾2 = 𝑉 ⊗ 𝐴                                                                    (4) 

 

Finally, the feature mapping 𝐾2 , which captures the 

dynamic feature interaction between inputs, is called 

dynamic context. 𝐾2 is then fused with the static context 𝐾1 

by the attention mechanism (Yin et al., 2020) as the output 

of COA. 

The attention-guided multi-scale fusion module 

aggregates the feature information of the three scales in 

parallel, then recalibrates the feature map at each scale, and 

outputs the feature map according to the original three 

scales (1/3, 1/6, 1/12 of the original image). 

The existing research results show that, in the estimation 

of parallax map, the channel weights of feature map at 1/3 

scale of the original image are usually fixed, and the channel 

weights of feature map at 1/6 and 1/12 scale of the original 

image are usually more specific, and the parallax 

distributions of different images have different influences 

on the channel weights of feature map. This shows the 

importance of recalibrating each feature channel by 

attention in parallel aggregation of multi-scale feature maps. 
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By recalibrating the channel weights of feature maps across 

scales, the algorithm's ability to selectively identify 

information features and focus on significant features can 

be enhanced, more comprehensive and effective features 

can be extracted, and matching errors can be reduced. 

In this paper, the algorithm proposes three parallel 

aggregation modules for the feature graphs of these three 

scales. The aggregation modules are defined as follows: 

 

�̂�𝑆 = ∑ 𝑓𝑘(𝐹𝑘)𝑆
𝑘=1 , 𝑠 = 1,2, ⋯ , 𝑆                                    (5) 

 

Where 𝑆 is the number of levels of feature mapping (𝑆 = 

3 in this paper). 𝐹𝑘 is the feature map of grade 𝑘 output in 

the feature extraction stage. Similar to (Lee et al., 2022), 𝑓𝑘 

computes the feature mapping according to the size 

relationship between 𝑘 and 𝑆: 

 

𝑓𝑘 = {
𝐼, 𝑘 = 𝑆

(𝑆 − 𝑘)3 × 3, 𝑘 < 𝑆
1 × 1 𝑐𝑜𝑛𝑣, 𝑘 > 𝑆

                                              (6) 

 

When 𝑘 = 𝑆 , 𝐼  represents the identity function. When 

𝑘 < 𝑆 is used, the (𝑆 − 𝑘) convolution with step 2 is used 

to down-sample the feature graphs to achieve the same size. 

When 𝑘 > 𝑆, bilinear up-sampling is used to achieve size 

consistency, and then 1 × 1 convolution is used to align the 

number of channels. 

After the three scales are aggregated, channel importance 

is recalibrated by the channel attention module, and the 

recalibrated feature map �̂�𝑠 can be expressed as: 

 

�̂�𝑠 = 𝜑𝑠(�̂�𝑠) ∙ 𝑤𝑠 + �̂�𝑠                                                    (7) 

 

Where 𝜑𝑠  consists of two batch normalized 3 × 3 

convolution and ReLU. 𝑤𝑠 is the attention weight learned 

from the proposed attention module. 

 

3.1 Experimental Environment and Data Set 
In this paper, the synthetic data set City80K (Chen et al., 

2013) is used to test the data's utility loss. City80K is a data 

set that simulates the movement trajectory of 80,000 

pedestrians 24 h a day in a metropolis with 26 plates. It 

contains five sensitive attribute values, one of which is 

chosen as the sensitive value in the experiment (Guo et al., 

2023). All comparison algorithms are implemented in 

MATLAB language and run on a workstation with Intel i7-

5500U CPU (3.0 GHz), 8 GB memory and 7200 RPM 1 TB 

hard disk. The operating system is Window 11.  
 

3.2 Measuring Standards 
Loss rate is an important parameter to measure the 

practicality of trajectory data set. This paper measures the 

practicality loss from three aspects: instance, Modified 

Fractal Signature (MFS) and trajectory, as follows: 

In terms of instance losses, Equation (8) is used to 

measure: 

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐿𝑜𝑠𝑠 =
𝑁(𝑇)−𝑁(𝑇′)

𝑁(𝑇)
                                        (8) 

 

In terms of MFS losses, Equation (9) is used to measure: 

 

𝑀𝐹𝑆 − 𝐿𝑜𝑠𝑠 =
𝑈(𝑇)−𝑈(𝑇′)

𝑈(𝑇)
                                                (9) 

 

Where 𝑈(𝑇) is the total number of MFS in the original 

data set, and 𝑈(𝑇′) is the total number of MFS in the data 

set after algorithm processing. In this paper, MAFIA 

algorithm (Burdick et al., 2005) is used to calculate MFS. 

In terms of trajectory loss, Equation (10) is used to 

measure: 

 

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 − 𝐿𝑜𝑠𝑠 =
𝑃(𝑇)−𝑃(𝑇′)

𝑃(𝑇)
                                   (10) 

 

Where 𝑃(𝑇) is the number of tracks in the original data 

set, and 𝑃(𝑇′) is the number of tracks in the data set after 

algorithm processing. 

 

4. RESULTS AND DISCUSSION 
 

In order to fully study the effectiveness of the proposed 

algorithm, it is compared with the KCL algorithm (Liu et al., 

2021; Yu et al., 2023), DLE method (Zheng et al., 2022) and 

BBL method (Liu and Zhang, 2023). Figs. 1–3 and Tables 

2–4 show the instance loss rate, MFS loss rate and trajectory 

loss rate of the two algorithms under different C values, 

where L = 3, K = 30, E = 800. As can be seen from figures, 

the instance loss rate, MFS loss rate and track loss rate all 

decrease first and then tend to be stable with the increase of 

C value. As C value increases, the number of minimum 

violation sequences decreases and tends to be stable, and the 

number of suppressed sequences decreases and becomes 

stable. Therefore, the instance loss rate, MFS loss rate and 

track loss decrease first and then stabilize. When the C value 

is small, the minimum violation sequences are mainly 

global suppression, and the loss rates of the two algorithms 

are similar. With the increase of the C value, the number of 

minimum violation sequences decreases and the number of 

local suppression sequences increases, and the number of 

suppressed sequences decreases and becomes stable. 

Compared with the two algorithms, the algorithm in this 

paper effectively reduces the instance loss, so its loss rate is 

lower. Table 2 indicates the Instance − Loss  comparison 

from the virtual simulation data. Fig. 1 is the 

Instance − Loss visualization results of virtual simulation 

data. 

As can be seen from Table 2 and Fig. 1, under different 

C values, instance-loss can become lower than KCL method, 

which means that the security of virtual simulation data can 

be better guaranteed. When C = 0.4, the curve reaches the 

convergence state, so in the subsequent experiment, we 

adopt C = 0.4. 

https://ieeexplore.ieee.org/author/37566573400
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Fig. 1. Instance − Loss comparison 

 

 

Fig. 2. MFS − Loss comparison Loss visualization results of virtual simulation data 

 

 . 

Fig. 3. Trajectory − Loss comparison 
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Table 2. Instance − Loss comparison (%) 

C value 0.2 0.4 0.6 0.8 1.0 

KCL 80.0 18.5 18.5 18.5 18.5 

DLE 80.0 17.9 17.9 17.9 17.9 

BBL 80.0 15.4 15.4 15.4 15.4 

Proposed 80.0 7.6 7.6 7.6 7.6 

 

As can be seen from Tables 3 and 4 and Figs. 2 and 3, 

similarly, under different C values, values of MFS-loss and 

Trajectory-loss are also lower than that of KCL method, 

which signify that the security of virtual simulation data in 

applied innovation design can be better ensured. When C = 

0.4, the curve reaches the convergence state, subsequent 

values do not change. 

 

Table 3. MFS − Loss comparison (%) 

C value 0.2 0.4 0.6 0.8 1.0 

KCL 100.0 20.1 20.1 20.1 20.1 

DLE 100.0 19.8 19.8 19.8 19.8 

BBL 100.0 18.9 18.9 18.9 18.9 

Proposed 100.0 18.8 18.8 18.8 18.8 

 

Table 4. Trajectory − Loss comparison (%) 

C value 0.2 0.4 0.6 0.8 1.0 

KCL 43.2 2.4 2.4 2.4 2.4 

DLE 42.6 2.1 2.1 2.1 2.1 

BBL 41.7 1.8 1.8 1.8 1.8 

Proposed 40.1 1.3 1.3 1.3 1.3 

 

Figs. 4–6 show the instance loss rate, MFS loss rate, and 

trajectory loss rate of the two algorithms under different K 

values. Where L = 3, C = 0.4, E = 800. As can be seen from 

Figs. 4–6, the instance loss rate, MFS loss rate and track loss 

rate all increase with the increase of K value. Because the 

increase of K value causes the increase of minimum 

violation sequences and global suppression sequences, the 

increase of suppressed sequences will correspondingly 

increase the data loss rate. When K value is small, the 

minimum violation sequence is mainly local suppression, 

and the loss rates of the two algorithms are similar. With the 

increasing of K value, the global suppression sequence and 

the suppressed sequence increase. Compared with the two 

algorithms, the proposed algorithm effectively reduces the 

instance loss, so its loss rate is lower. 

 

 

Fig. 4. Instance − Loss comparison visualization results of virtual simulation data when K value is different 

 

 

Fig. 5. MFS − Loss comparison visualization results of virtual simulation data when K value is different 
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Fig. 6. Trajectory − Loss Comparision visualization results of virtual simulation data when K value is different 

 

From Table 5 and Fig. 4, it can be seen that when K = 

10/20, the KCL and proposed method have the same values, 

when K becomes bigger, the values of KCL and proposed 

method all become bigger too, however, their growth has 

been dramatic. Because the increase of K value causes the 

increase of minimum violation sequences and global 

suppression sequences, the increase of suppressed 

sequences will correspondingly increase the data loss rate. 

 

Table 5. Instance − Loss comparison (%) 

K value 10 20 30 40 50 

KCL 1.0 1.0 3.0 6.0 6.0 

DLE 1.0 1.0 9.4 16.5 16.5 

BBL 1.0 1.0 12.8 21.7 21.7 

Proposed 1.0 1.0 13.0 25.0 25.0 

 

Figs. 5 and 6 and Tables 6 and 7 similarly to Fig. 4 and 

Table 5, the above tables and figures have the similar curve 

trend. From the objective analysis point of view, the 

increase of K value does not reduce the security guarantee 

of virtual simulation data. In short, the three indicators have 

similar trends, which shows that the method in this paper 

has a good effect in ensuring the security of virtual data. 

 

Table 6. MFS − Loss comparison (%) 

K value 10 20 30 40 50 

KCL 0 0 14.0 17.0 17.0 

DLE 0 0 15.0 16.0 16.0 

BBL 0 0 18.0 19.0 19.0 

Proposed 0 0 20.0 20.0 20.0 

 

Table 7. Trajectory − Loss comparison (%) 

K value 10 20 30 40 50 

KCL 0.2 0.2 0.2 0.2 0.2 

DLE 0.2 0.2 1.2 1.2 1.2 

BBL 0.2 0.2 1.8 1.8 1.8 

Proposed 0.2 0.2 2.0 6.0 6.0 

From the above data results, it can be seen that the method 

in this paper has a good security guarantee for virtual 

simulation data. In this case, teachers can be assured to teach 

without worrying about data leakage, so as to ensure the 

effectiveness of student learning. 

 

5. CONCLUSION 
 

This paper presents a new privacy protection algorithm 

for virtual simulation data. It adopts local suppression 

instead of global suppression to realize the privacy 

protection of trajectory data, and combines deep learning 

methods to reduce the trajectory loss rate, instance loss rate 

and MFS loss rate. Experimental results show that the data 

loss rate performance of the proposed algorithm is better 

than other privacy protection algorithms. In the future, data 

availability will be further improved while ensuring the 

efficiency of the privacy protection algorithm. 
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