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ABSTRACT 
 

In recent decades, eco-efficient waste management practices that incorporate 
economic and ecological considerations have been increasingly preferred by numerous 
municipal solid waste (MSW) authorities. Several approaches for evaluating the eco-
efficiency of decision-making units (DMUs), i.e., MSW authorities, were previously 
reported. However, the typical one is often difficult to comprehend as pertinent. Hence, 
it might be imperative to compare efficiency results from different methods to generalize 
the decent eco-performance status of DMUs. This study thus used data envelopment 
analysis (DEA) and the Weighted Russell Directional Distance Model (WRDDM) to 
analyze the eco-efficiency level of MSW authorities. The relevant performance factors, 
including an undesirable output (UDO), as eco-indicators, are screened and selected. 
Three different DEA methods, considering UDO respectively as an input (for input-
oriented DEA), a negative output (for input-oriented DEA), and a direction vector-
dependent UDO (for WRDDM), have been applied for efficiency assessment. 
Furthermore, eco-efficiency analyses are followed by corresponding DMUs’ rankings 
based on their respective efficiency scores by each method. A case study of 38 MSW 
authorities in Kaohsiung, Taiwan, demonstrates the distinct eco-efficiency outcomes 
from different DEA approaches. Applied methods revealed consistent findings for 
determining efficient and inefficient DMUs, but distinct efficiency scores for inefficient 
DMUs by varying methods influenced DMUs’ rankings. The comparative analysis of 
ranking variation for inefficient DMUs across those methods suggested the WRDDM 
method with the least variation as the robust method for assessing eco-efficiency. Further 
exploration of an integrated approach that incorporates undesirable factors appropriately 
would enhance the reliability of performance evaluation. 

 
Keywords: Eco-efficiency, Municipal solid waste, Data envelopment analysis, Weighted 
Russell directional distance model. 
 

 
1. INTRODUCTION 
 

The circular economy model is gaining popularity as a critical component in 
advancing sustainable development (Bertanza et al., 2021). It is a production and 
consumption system that depends on the recycling, reuse, repair, remanufacturing, and 
sharing of products. The idea is now widely accepted as a crucial element in solving 
problems, including waste, pollution, resource depletion, and climate change. Ultimately, 
it calls for new business models with a shift in consumer behavior and circular production 
and resource allocation. Local governments should take the initiative and lead in this 
venture by incorporating more stakeholders, such as municipality-residents, 
municipality-business, and municipality-business-residents (Dagilienė et al., 2021).  

Municipal solid waste (MSW) authorities play pivotal roles in directing and assisting 
the transition to a circular economy as these authorities are directly interwoven with local  
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communities and can formulate local regulations and 
interventions for circular goods and services. In recent 
decades, MSW authorities globally prioritize managing 
MSW, however, current collection and disposal techniques 
practiced by many of those authorities are not ideal or 
economically viable due to several factors such as poor 
management and enforcement, regulatory disparities, lack 
of infrastructure, and high cost of waste recycling systems, 
etc. Consequently, it results in inefficient waste 
management (Taleb and Al Farooque, 2021). Thus, it is 
crucial to assess those authorities’ performances for 
comprehending their current efficiency status and 
recommend possible benchmarks for productive 
performance.  

Data envelopment analysis (DEA) is one of the simple-
to-calculate performance analysis tools over more advanced 
alternatives (Ananda, 2018). Several previous studies have 
employed DEA for economic, environmental, as well as 
joint efficiency evaluation, termed as eco-efficiency. The 
prefix 'eco' stands for both environmental and economic 
performance, and thus determining eco-efficiency requires 
considering both environmental and economic factors 
(Molinos-Senante et al., 2018). The term "environmental 
factors" usually refers to undesired outcomes like pollution 
and waste, while the economic factors are associated with 
cost efficiency. Studies have also attempted varying 
approaches to integrate undesirable output (UDO) into the 
efficiency assessment models with the growing interest of 
public or governments’ policies for improving those factors 
with adverse impacts. A few studies integrated UDO into the 
input-oriented DEA model by assuming it as a normal input 
(Korhonen and Luptacik, 2004; Romano and Molinos-
Senante, 2020) while Koopmans (1951) suggested treating 
it as negative output in output-oriented DEA. Likewise, 
Seiford and Zhu (2002, 2005) performed linear 
transformation of bad output to model the pollutant (UDO) 
as a regular output while some integrated it into the DEA 
model by non-linear transformation using multiplicative 
inverse ratios (Lovell et al., 1995). In addition, another 
alternative DEA, known as Weighted Russell Directional 
Distance Model (WRDDM) is also used to integrate UDO 
into the efficiency evaluation model, based on the 
combination of directional distance function with a non-
radial approach (Barros et al., 2012; Chen et al., 2014). This 
model can gauge performance in terms of increased 
desirable output (DO) and decreased UDO and inputs 
simultaneously, based on chosen directional vectors. 

Although different oriented and non-oriented DEA 
models for efficiency evaluations are available, it still 
appears challenging to integrate undesirable variables into 
the performance evaluation functions. This could be due to 
the absence of a unified strategy that can effectively define 
such parameters and integrate various formulated models 
comprehensively. Eventually, data analysts and managers 
could be confounded in choosing a precise model. Thus, this 
study aims to analyze if any variation exists in the efficiency 
results of decision-making units (DMUs), i.e., MSW 

authorities, when UDO is incorporated differently in the 
production process with input-oriented and non-oriented 
DEA approaches. The findings of this study would assist in 
better understanding of the similarity or disparity among 
different selected models. For this, three approaches 
respectively, including two models with input-oriented 
radial DEA and one encompassing directional vector-
dependent non-radial DEA, incorporating (i) UDO treated 
as a normal input (Romano and Molinos-Senante, 2020), (ii) 
UDO treated as a negative output, (Koopmans, 1951), and 
(iii) UDO with weak disposability assumption for WRDDM 
(Barros et al., 2012) have been examined.  

Eco-efficiency evaluation methods incorporate various 
desirable and undesirable performance variables. 
Nevertheless, previous studies have no hints regarding most 
favorable method(s), to our knowledge, for incorporating 
those multi-dimensional variables for eco-efficiency 
evaluations. In order to fill such a gap in literature, it is 
crucial to analyze and gain a comprehensive understanding 
of the suitability of commonly used evaluation methods for 
efficiency analysis. Such an approach would aid in fair 
performance assessment of provided MSW authorities. 
Therefore, our study aims to contribute to the existing 
literature on waste-related performance assessment by 
analyzing and indicating the better method for incorporating 
desirable and undesirable factors. It thus would enhance the 
empirical understanding of the adopted DEA methods along 
with fair efficiency findings and provide useful insights for 
further research. 

 
2. MATERIAL AND METHODS 

 
2.1 MSW Problem 

MSW authorities are presumably interested in collecting 
and recycling high-value waste, like paper, plastics, glass 
etc., while also trying to reduce undesired outputs like 
pollution or unsorted (mixed) waste and input factors, such 
as operational expenses. To attain their intended goals of 
circular economy and sustainability, effective waste 
management strategies should be adopted. Therefore, it is 
essential to examine their current management techniques 
and suggest precise benchmarks for inefficiency 
improvements. 

 
2.2 Study Procedure 

Fig.1. illustrates the overall research procedure of this 
study. Data related to the performance factors, known as 
input and output variables of MSW authorities, were 
collected from concerned authorities and relevant literature. 
Different approaches of the DEA method were then 
implemented with selected input and output factors to assess 
the eco-performance on waste management of DMUs. Both 
the desirable and undesirable factors were considered 
during the evaluation. Finally, the ranking of DMUs by 
following efficiency estimations of different DEA models 
facilitated in comparing and analyzing their respective 
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efficiency status. Details of the overall procedures are 
explained below. 

 
2.2.1 Input and Output Factors 

Input and output (desirable and undesirable) factors can 
objectively represent the eco-efficiency levels of MSW 
authorities once progression of such factors is examined. 
The performance of each authority is determined based on 
input and undesirable factors involvement and targeted 
output achievement. These factors, after analysis, can be a 
reference for benchmark learning. Table 1 demonstrates the 
possible input and output factors associated with eco-

efficient waste management.  
The indicators of input and output factors and their 

corresponding definitions are based on the studies listed in 
the reference column of the table. The number of manpower 
used served as the input factor, whereas the annual amounts 
of recyclables and mixed waste served as the bases of DO 
and UDO factors, respectively. Input factors are 
subjectively invested by municipal authorities according to 
their policy objectives and some of them may be highly 
correlated to each other. For instance, Parthan et al. (2012) 
and Fernandez-Aracil et al. (2018) revealed strong 
correlation of capital value with the number of employed 
manpower. However, the data regarding cost or capital was 

 

 
Fig.1. Research flow chart  

 
Table1. Input and output factors of MSW authorities 

Parameters Inputs Description References 

Input Manpower involved (number) Number of cleaning, clearing and disposing 
team 

(Zhou et al., 2007; Wang and 
Feng, 2015) 

DO Selective or sorted waste 
collection (tons/year) 

Amount of segregated waste collection or 
selective collection of recyclable materials 

(Sarra et al., 2017; Lombardi et 
al., 2021) 

UDO Total quantity of unsorted/ 
mixed waste (tons/year) 

Amount of mixed waste except recyclables 
collection 

(Delgado-Antequera et al., 
2021; Sala-Garrido et al., 2022) 
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not available from all municipal authorities in our case. 
Thus, the employed manpower has been selected as an input 
factor in this study. The amounts of recycled resources 
would contribute to the environment and economy and are 
required to be enhanced. Thus, it has been classified as a DO, 
while the quantity of mixed waste is an environmental cost 
which is accounted as an optimizable UDO ( Wojcik et al., 
2017; Lombardi et al., 2021). 

 
2.2.2 DEA for Performance Evaluation  

The DEA method is employed to analyze the eco-
efficiency of DMUs via screened input and output (desirable 
and undesirable) factors. Those DMUs with the highest 
efficiency score can be used as benchmarks for other 
inefficient DMUs in the group. Among various 
models/approaches of DEA, this study used three different 
approaches to DEA and employed radial (classical Charnes, 
Cooper, and Rhodes, i.e., CCR model) and non-radial 
(WRDDM) models to incorporate the UDO in the efficiency 
evaluation procedures.  

Based on radial DEA, an input-oriented CCR-DEA 
model with two different approaches for UDO inclusion 
were adopted, including (i) UDO was treated as a normal 
input in the production function, implying that both inputs 
and UDO are to be decreased (Korhonen and Luptacik, 
2004; Romano and Molinos-Senante, 2020), and (ii) UDO 
was treated as negative output as suggested by Koopmans 
(1951). This model is characterized by adjusting all the 
variables to efficiency targets by the same proportion (Zhou 
et al., 2007), meaning that they provide a score of overall, 
i.e., global efficiency score (Zhou et al., 2012).  

The equations for the input oriented CCR model, based 
on Charnes et al. (1978) are as follows. 
 
Max  ho=∑ urYro

s
r=1                                                      (1.1) 

 
∑ viXio=m

i=1 1                                                                     (1.2) 
 
∑ urYrk

s
r=1 -∑ viXik

m
i=1  ≤ 0 , 𝑘𝑘 =  1, 2, … . , 𝑧𝑧                        (1.3) 

 
Where, o denotes the index of a DMU under evaluation; 

r refers to the index of output factors; s indicates the total 
number of output factors; ur  is the nonnegative weight 
assigned to output factor j; Yro represents the value of the 
DMU under evaluation on output factor r ; Yrk represents the 
value of the DMU k on output factor r; i refers to the index 
of input factors; m indicates the total number of input factors; 
𝑣𝑣𝑖𝑖 is the nonnegative weight assigned to input factor i; Xio 
represents the value of the DMU under evaluation on input 
factor i ; Xik represents the value of the DMU k on input 
factor i ; k indicates the index of total competitive DMUs 
(i.e., DMU-1, 2,….., z). The variables in the above equations 
are constrained to be non-negative. 

Equation 1.1 represents the objective function, which is 
to maximize the weighted sum of the DMU o’s output 
factors. Equation 1.2. shows the sum of weighted input 

factors for the given DMU o to prevent unbounded solutions. 
Similarly, Equation 1.3 indicates that the weighted sum of 
each individual DMU’s output factors (DO) should be less 
than or equal to the weighted sum of its input factors 
(including UDO that is also assumed as input). For each 
DMU, the above equations (Equation1.1-1.3) are applied to 
form a linear model to determine its efficiency. Thus, ‘n’ 
models must be established for the efficiencies of all DMUs. 
The CCR model evaluates the overall efficiency (OE). 

In the non-radial DEA approach, such as WRDDM (Chen 
et al., 2010; Barros et al., 2012), global as well as individual 
inefficiency scores are obtained for each input, DO, and 
UDO. Based on non-radial models, (iii) UDO was 
considered as weakly disposable and employing constant 
returns to scale (CRS). The equations for non-radial DEA, 
i.e., WRDDM method as provided by Chen et al. (2014) are 
as follows. 

Let us consider that municipalities produce a vector of 
desirable (good) outputs, Y = (y1, …, yM) ∈R+M using a set 
of inputs X = (x1, …, xN) ∈R+N. During the production 
process, a set of undesirable (bad) outputs are also produced 
as H = (h1,…, hJ) ∈ R+J . As a result, production technology 
is defined as follows. 

 
T= {(X, Y, H): X can produce Y and H}                           (2) 

 
It is assumed that both DO and UDO are jointly produced 

as part of the production process, and bad outputs are 
weakly disposable (Färe et al., 2005), which require 
additional expense for their management. Thus, weak 
disposability of UDO is assumed.  

WRDDM with weak disposability of UDO as indicated 
by Barros et al. (2012) is given by, 
 
𝑀𝑀𝑀𝑀𝑀𝑀:𝑊𝑊𝑋𝑋  ∑ 𝑇𝑇𝑛𝑛N

n=1 𝛽𝛽𝑛𝑛𝑛𝑛  + 𝑊𝑊𝑌𝑌 ∑ 𝑇𝑇𝑚𝑚M
m=1 𝛽𝛽𝑚𝑚𝑛𝑛  +

𝑊𝑊𝐻𝐻� 𝑇𝑇𝑗𝑗
J
j=1 𝛽𝛽𝑗𝑗𝑛𝑛                                                                                   (2.1) 

 
∑ 𝑋𝑋K

k=1 nk 𝑧𝑧𝑘𝑘   + gXn𝛽𝛽no    ≤  Xno               𝑛𝑛 =  1, … ,𝑁𝑁            (2.2) 
 
∑ Ymk

K
k=1 𝑧𝑧𝑘𝑘   − 𝑔𝑔Ym𝛽𝛽mo   ≥ Ymo               𝑚𝑚 =  1, … ,𝑀𝑀          (2.3) 

 
∑ Hjk

K
k=1 𝑧𝑧𝑘𝑘   + 𝑔𝑔Hj𝛽𝛽jo  =  Hjo                      𝑗𝑗 =  1, … , 𝐽𝐽            (2.4) 

 
𝑧𝑧𝑘𝑘    ≥  0,  𝑘𝑘 =  1, … ,𝐾𝐾                                                                    (2.5) 
 

Where, X, Y, and H indicate the indices for input, DO, and 
UDO respectively. N, M, J are respectively the total number 
of inputs, DO and UDO. WX, WY and WH are preset weights 
for total inputs, UDO, and DO respectively and their sum is 
normalized to unity. Equal prioritization is given to all 
parameters and the value is assumed to be 1/3 for each 
weight respectively, based on (Chen et al., 2014). 
𝛽𝛽no,𝛽𝛽𝑚𝑚𝑛𝑛,𝛽𝛽𝑗𝑗𝑛𝑛   are respectively the inefficiency associated 
with input, DO and UDO of DMU under evaluation. 
𝑇𝑇𝑛𝑛 ,𝑇𝑇𝑚𝑚,𝑇𝑇𝑗𝑗   are the respective normalized weight vectors 
associated with priorities given for individual input, DO and 
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UDO and are allocated based on the cardinal of each set of 
inputs, DOs, and UDOs, i.e., 1/N, 1/M, and 1/J, respectively 
(Chen et al., 2014; Delgado-Antequera et al., 2021). Xnk ,Ymk, 
and Hjk indicate respectively, the value of DMU k 
(k=1,2,..,K) on input factor n, DO factor m, and UDO factor 
j. gXn, gYm, and gHj refer to direction vector chosen by the 
analyzer for each input and output. zk refers to the intensity 
vector that weights the DMUs to construct a production set. 

Because the aim of the directional distance function in 
given equations is to maximize the generation of DO and 
minimize the use of input as well as the production of UDO, 
the direction vector can be written as (gX, gY, gH = -X, Y, -H) 
(Molinos-Senante et al., 2016).  

 
2.2.3 Ranking DMUs for Comparative Analysis of 

Efficiency Results  
Efficiency analysis of DMUs from varying approaches 

was followed by their corresponding ranking based on their 
respective efficiency scores in each model (Cooper et al., 
2006; Cook and Zhu, 2014). As DEA assists in classifying 
DMUs into efficient and inefficient ones, in practice, it is 
often necessary to rank them individually based on their 
respective efficiency scores by each method to increase 
discrimination among inefficient DMUs. The rankings of 
DMUs reveal their relative position or status among all. This 
could aid in additional information for precise benchmarks. 
The ranking of DMUs with each examined method would 
provide a foundation for comparative analysis of a 
particular DMU’s rank across the various DEA methods. 
Ultimately, it assists in understanding the efficiency 
assessment tendency of adopted DEA approaches. 

 
3. CASE STUDY 

 
3.1 Case Background 

This study assessed 38 MSW authorities in Kaohsiung, a 
city in southern Taiwan. Data on current waste management 
activities were collected from the respective municipal 
offices (Table S1) and relevant literature. Performance 
parameters, including an input, DO, and UDO, were 
screened, and then selected based on the data availability 
and existing literature. The selected input and output factors, 
such as the number of labor forces as an input, the amounts 
of recyclables, and mixed waste as a DO and UDO, 
respectively formed the basis of eco-performance 
evaluation.  

Eco-performance evaluation of DMUs was done using 
different approaches of DEA as discussed earlier. Ranking 
of the DMUs following efficiency results by various DEA 
models provided a basis for a comparative analysis of each 
DMU’s performance status with distinct models. Ultimately, 
the appropriate discrimination of employed approaches 
could be established. 

 

3.2 DEA Results for Classification of DMUs 
Table 2 elucidates eco-efficiency outcomes, where the 

majority of the MSW authorities showed poor performances. 
This result suggests that the eco-performance of waste 
management sector was considerably unsatisfactory on 
average, which is in line with earlier research (Llanquileo-
Melgarejo et al., 2021; Molinos-senante et al., 2022), who 
disclosed reduced efficiency estimates for the Chilean 
municipalities using non-parametric techniques. Only two 
MSW authorities, including K11 and K29, are deemed overall 
efficient in all applied methods, while the remaining 36 are 
inefficient. This outcome indicates that the application of 
various DEA models does not influence the classification of 
DMUs as efficient or inefficient. The evaluation procedure 
was based on the provided performance indicators, 
including inputs and outputs (DO and UDO), and three DEA 
approaches were adopted to incorporate UDO in the DEA 
model. The first two approaches were based on an input-
oriented CRS model, where UDO was incorporated as (i) 
input to be reduced and (ii) a negative output, and the third 
approach was based on directional distance function 
measure, indicating WRDDM (CRS) with UDO (iii) based 
on direction vector with weak disposability assumption.  

 
3.3 Ranking of DMUs  

Table 2 demonstrates DMUs' corresponding rankings 
obtained after efficiency analysis using different DEA 
approaches. It is found that only a few DMUs acquired 
identical ranks in two different applied models such as K34, 
K37, K38, in model 1 and 3, K8 and K36 in model 1 and 2 and 
K3 in model 2 and 3 while none of the inefficient DMU 
acquired equivalent rank in all three applied models (Table 
2). These findings infer that incorporating the same 
performance parameters with varying DEA models can also 
provide inconsistent efficiency scores for inefficient DMUs 
that characterize their respective ranks. 

Regarding the assessment of mean ranking values and 
individual ranks of DMUs by each model (Table 2), almost 
80% of DMUs with model 3 have ranking values that are 
proximal or equivalent (in many cases) with their mean 
ranks, followed by approximately 30% of DMUs in model 
1, and 14% in model 2. Furthermore, the proximity between 
ranking ranges (maximal-minimal ranking) and individual 
ranking values is demonstrated by a higher number of 
DMUs (61%) with model 2, while relatively by a less 
number (21%) with model 3. These findings suggest that 
model 3 could offer a more robust approach to eco-
efficiency analysis compared to other models.  
 
3.4 Comparative Analysis of DMUs’ Eco-efficiency 

Findings from Different Efficiency Analysis 
Approaches 

Intriguingly, out of 38 total DMUs, Table 2 demonstrates 
two equivalents efficient DMUs (i.e., K11, K29) in all the 
adopted models and the remaining 36 as inefficient. This 
could reveal the consistent discriminating power of DEA 
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methods for the best and worst performers, regardless of 
distinct approaches used for UDO inclusions. Nonetheless, 
prior studies reported contrasting outcomes for number of 
(in)efficient DMUs when two different statistical measures, 
including parametric SFA, i.e., stochastic frontier analysis 
and non-parametric DEA methods (Moutinho et al., 2020) 
as well as when both non-parametric measures, including 
DEA and FDH (free-disposal hull), (Kounetas et al., 2021) 
were employed. However, the ranking outcomes, as 
illustrated in the same table, vary for inefficient DMUs 
among different DEA models. A higher resemblance in 

ranking results is observed between model 3 (column 4) and 
mean ranking (column 6), with approximately 80% of 
DMUs having proximal values. Model 2 (column 3), on the 
other hand, shows the least number of DMUs 
(approximately 14%), having proximity in those ranking 
results. These outcomes suggest that model 3 might be a 
better fit for integrating UDO than the other two models.  

Table 3 demonstrates the assessment of comparative 
ranking variations and classification of inefficient DMUs 
based on their corresponding ranks in each model. Each 
model provides a rank to each DMU after the DEA analysis. 

 
Table 2. Results of DMU ranking after efficiency analysis 

DMU 
(Model-1) 

Ranking after UDO 
used as an input 

(Model-2) 
Ranking after UDO used 

as a negative output 

(Model-3) 
Ranking after UDO used as a 
weakly disposable vector with 

direction function 

(From all models) 
Maximal-minimal 

ranking 

Mean 
ranking 

K1 11 4 7 7 7 
K2 12 5 10 7 9 
K3 14 8 8 6 10 
K4 20 32 29 12 27 
K5 23 36 35 13 31 
K6 28 25 26 3 26 
K7 26 22 23 4 24 
K8 15 15 14 1 15 
K9 7 14 6 8 9 
K10 8 29 18 21 18 
*K11 1 1 1 0 1 
K12 19 11 13 8 14 
K13 31 24 27 7 27 
K14 32 30 33 3 32 
K15 6 7 3 4 5 
K16 29 19 22 10 23 
K17 27 20 24 7 24 
K18 18 10 17 8 15 
K19 36 26 34 10 32 
K20 9 16 12 7 12 
K21 3 28 9 25 13 
K22 30 31 32 2 31 
K23 21 34 31 13 29 
K24 4 27 11 23 14 
K25 24 12 20 12 19 
K26 10 3 4 7 6 
K27 33 18 28 15 26 
K28 25 13 19 12 19 

*K29 1 1 1 0 1 
K30 13 6 15 9 11 
K31 17 9 16 8 14 
K32 16 33 25 17 25 
K33 34 21 30 13 28 
K34 5 17 5 12 9 
K35 22 23 21 2 22 
K36 35 35 36 1 35 
K37 38 37 38 1 38 
K38 37 38 37 1 37 

* Represents the efficient DMU. 
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For each inefficient DMU, three ranks from different 
models are obtained, and the maximal/minimal rank among 
them were marked as highest/lowest rank, respectively. The 
total number of DMUs that were marked as both highest and 
lowest, i.e., extreme ranks, for each model are listed in 
columns 2 and 3, respectively. The ranking variation for 
each model (column 4) is obtained by summing the number 
of DMUs in column 2 and 3 and dividing by the total 
inefficient DMUs (column 5), which were determined for a 
specific model after rankings. Each model consists of 36 
inefficient DMUs (column 5), with varying ranks that are 
assigned by each model. The comparative analysis of three 
models for DMUs’ ranking revealed model 2 as having the 
highest extreme values or inconsistent ranking scenario for 
inefficient DMUs. For instance, model 2 (column 3) depicts 
the maximum number of DMUs (21), with the top ranks, 
and 14 DMUs (column 2), with the lowest ranks of all. As a 
result, 35 DMUs in total with model 2 obtained extreme 
ranking values, which led it to exhibit the greatest ranking 
variation (97%), followed by model 1 and model 3 
respectively. Model 3, on the other hand, demonstrates five 
DMUs (column 2) with the lowest and six DMUs (column 
3) having top ranks, including 25 DMUs with normal 
rankings. Thus, it exhibits relatively minimal ranking 
variation (31%), implying that it would be the most robust 
and reliable of all. 

Ultimately, the overall eco-efficiency and ranking 
findings infer that the varying models used for DMUs’ 
efficiency evaluation do not influence the classification of a 
specific DMU to be efficient or inefficient. However, 
distinct scores, characterizing their performance levels, 
especially for inefficient DMUs with different models have 
affected their corresponding rankings. The probable reason 
for such anomalies could be the diversified way of 
incorporating UDO while formulating eco-efficiency 
formulae or models, which would ultimately influence 
determining their precise benchmarks.  

Most of the eco-efficiency studies used a single non-
parametric DEA model to assess the eco-efficiency of the 
concerned authorities (Delgado-Antequera et al., 2021; 
Sala-Garrido et al., 2022), and derived the performance 
status based on the determined single efficiency estimates. 
However, our study attempted to assess the eco-efficiency 
of DMUs by employing and examining multiple UDO 
inclusion approaches of DEA methods, revealing the 
pertinent approach among all with relevant eco-
performance findings. 

 

3.5 Limitations of the Study 
Data related to preferable input and output factors are not 

readily available in all the cases. For instance, capital-
related information was not available in our case, which 
may have an influence on the performances of MSW 
authorities. Additionally, this study utilized the CCR-DEA 
model assuming constant returns to scale for all MSW 
authorities. Future studies could explore the potential scale 
effects of those authorities by incorporating the BCC-DEA 
model as well. Furthermore, three specific DEA approaches 
were analyzed for the comparative study. Future research 
may examine and compare multiple existing evaluation 
models to gain a better comprehension of each method for 
fair analysis of waste-related eco-performances.  

 
3.6 Policy Implications and Future Prospects 

Our findings may assist solid waste management 
authorities in adopting appropriate performance evaluation 
methods, like WRDDM, to fairly address eco-challenges 
faced by them. This could further contribute to establishing 
reliable efficiency improvement targets for inefficient 
municipalities. In addition, the findings may serve as 
baseline for decision-makers and analysts for revising and 
updating existing waste-related protocols and guidelines. 

Future studies may target selecting relevant performance 
factors based on the appropriate factor assessments and 
incorporate them for performance analysis with a suitable 
method. Additionally, the decent disposability assumption 
for each input and output factor can be emphasized during 
the DEA evaluation. The continuous monitoring and 
evaluation of waste management practices are 
recommended for all MSW authorities to identify potential 
areas for improvement and update regulations and policies 
accordingly. 

 
4. CONCLUSION 

 
This study has assessed the suitability of eco-efficiency 

evaluation methods by applying three commonly used DEA 
models for MSW authorities. Various oriented and non-
oriented DEA methods demonstrated distinct efficiency 
estimates (scores) for the inefficient DMUs, providing 
valuable insights for the comparative analysis of applied 
models. Nevertheless, the classification of DMUs as 
efficient or inefficient was consistent among all models, 
indicating the equivalent effectiveness of adopted models. 
The non-radial and directional vector dependent ‘WRDDM’ 
method was analyzed as a better DEA approach for 
integrating both desirable and undesirable performance  

 
Table 3. Classification based on DMUs’ rankings with different models 

Model Number of DMUs 
with lowest rank 

Number of DMUs with 
highest (top) rank 

Percentage of ranking 
variation (%) 

Total number of 
inefficient DMUs 

Model-1 17 9 72 36 
Model-2 14 21 97 36 
Model-3 5 6 31 36 
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factors. This could be due to its non-oriented and directional 
vector-based features, offering a more robust efficiency 
comparison than the remaining input-oriented CCR models. 

The ranking method that relied on the efficiency 
estimates of MSW authorities by each DEA method assisted 
in a comparative analysis of the incorporated DEA 
approaches. The proximity between individual ranking and 
the mean ranking values of MSW authorities, as well as the 
ranking variation among applied DEA models formed the 
basis for identifying a robust evaluation approach for waste-
related eco-performances. Based on the comparative 
analysis, model 3, i.e., WRDDM, outperformed other 
models regarding the same. In contrast, highly varying or 
deviated ranking outcomes were revealed by model 2, 
indicating CCR model with negative UDO requires further 
investigation to accurately incorporate undesirable factors 
for fair eco-performance findings. Future research may 
focus on assessing multiple performance factors to 
determine their suitability for determining waste-related 
performances effectively. 
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SUPPORTING INFORMATION 
 

Table S1. Data of performance parameters for 38 municipal authorities in Kaohsiung 

District 
code 

Year- 2019 
Input UDO DO 

Number of cleaning teams Total garbage removal (Metric tons/year) Total recyclables (Metric tons/year) 
K1 160 31229.4 43449.6 
K2 168 32908.4 44354.8 
K3 130 21462.0 31682.0 
K4 57 4730.4 6307.2 
K5 45 1073.1 1401.6 
K6 76 9493.7 11541.3 
K7 242 31645.5 39091.5 
K8 219 30879.0 45289.2 
K9 195 23644.7 41522.4 

K10 59 4599.0 7767.2 
K11 77 18308.4 27944.4 
K12 350 60809.0 83147.0 
K13 52 6825.5 8066.5 
K14 38 4234.0 4745.0 
K15 41 5409.3 10402.5 
K16 47 6701.4 8015.4 
K17 45 6022.5 7336.5 
K18 71 14819.0 17118.5 
K19 60 8541.0 8409.6 
K20 52 5986.0 10074.0 
K21 25 1635.2 3423.7 
K22 24 2409.0 2847.0 
K23 16 1160.7 1533.0 
K24 21 1401.6 2890.8 
K25 120 24936.8 26572.0 
K26 362 62721.6 99309.2 
K27 60 9314.8 10278.4 
K28 43 8124.9 9351.3 
K29 103 17702.5 43194.1 
K30 52 11388.0 13286.0 
K31 32 6540.8 7767.2 
K32 17 1303.1 1865.2 
K33 44 6570.0 7117.5 
K34 49 4380.0 8869.5 
K35 21 2555.0 3372.6 
K36 10 386.9 386.9 
K37 14 612.1 78.5 
K38 14 470.9 76.7 
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