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ABSTRACT 
 

This research proposes to enhance the non-destructive method for classifying the 
juiciness of pineapples using tapping sound sensing. Ten statistical features were 
extracted from the waveform signals by waveform analysis. These features were then 
separated into a spectral feature set (3 features) and a temporal feature set (7 features). 
Each feature set was calculated with the weight of important features and selected 
features for 15 training datasets using 10 machine learning classifiers. Ten machine 
learning classifiers were Support Vector Machine (SVM), Random Forest (RF), Gradient 
Boosting Machine (GBM), Extreme Gradient Boosting (XGB), K-Nearest Neighbors 
(KNN), Multilayer Perceptron (MLP), Ensemble Voting, Adaboost, Ensemble Bagging, 
and Ensemble Stacking. The classifiers were evaluated with accuracy and the kappa 
coefficient. Grid search was used to determine various important hyperparameters for 
Machine Learning classifiers. The experiment results showed that the Ensemble Voting 
(soft), Ensemble Stacking, and MLP outperformed other classifiers. They can obtain an 
accuracy of 92.08%, and kappa coefficients are 0.8811, 0.8808 and 0.8808, respectively. 

 
Keywords: Tapping sound sensing, Ensemble learning, Pineapple juiciness, Waveform 
signal, Non-destructive quality. 
 

 
1. INTRODUCTION 
 

The pineapple (Anamas comosus) is one of the most well-known tropical fruits. 
Pineapple is classified as a non-climacteric fruit. It does not continue ripening after being 
harvested. As a result, juiciness is an essential characteristic of edible pineapple and is 
useful for exporters and consumers who want to sort pineapples based on their ripeness 
and juiciness. Unfortunately, it is difficult to ascertain the degree of juiciness in pineapple 
using traditional non-destructive detection techniques. 

Traditionally, farmers and sellers used various non-destructive techniques to 
determine the juiciness degree of pineapple. Pineapple farmers or merchants typically 
employ a traditional technique of tapping the fruit skin with a rubber-tipped stick or their 
middle fingernails using force impulse techniques to hear the sound to judge pineapple 
juiciness. However, the conventional classification method calls for years of training or 
practice. Due to personal judgment, classification errors can happen quickly using 
traditional approaches, resulting in low classification accuracy. Notably, a human's 
ability to detect cannot accurately determine the juiciness level of pineapple. 
Various image processing techniques have been extensively employed in previous 
evaluation studies. They have been employed in the fields of medical for the critical 
classification of lymphoblastic cancer (Saeed et al., 2023) as well as for the detection of 
objects in remote sensing imaging (Wang et al., 2022). Furthermore, the agricultural 
sector has applied these techniques to assess the quality of fruits (Azman and Ismail, 
2017; Chaikaew et al., 2019). However, it is important to note that assessing the external 
appearance of fruit may be inaccurate due to potential damage from the external environment. 

mailto:pongpinigpinyo_s@su.ac.th
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Acoustic signals have been the subject of numerous 
researches that have attempted to classify the quality and 
maturity of various fruits such as durian (Kharamat et al., 
2020), coconut (Rahmawati et al., 2019; Caladcad et al., 
2020; Fadchar and Cruz, 2020), cacao (Bueno et al., 2020), 
watermelon (Chawgien and Kiattisin, 2021), pistachio nut 
(Hosseinpour et al., 2022), and pineapple (Huang et al., 
2022; Phawiakkharakun et al., 2022). 

Additionally, several studies applied the acoustic signal 
to assess the internal quality of fruits like apples (Lashgari 
et al., 2020; Ekramirad et al., 2021; Zhao et al., 2021), pears 
(Zhang et al., 2021), and wheat (Yang et al., 2021). 
Furthermore, researchers have adapted the machine learning 
using the statistical features to parameters of 11 features of 
time domain, 7 features of the frequency domain, and 18 
features of the combined feature set to identify early core 
browning in pear fruit. In each feature set, the minimal 
number of features was determined using the distance 
evaluation approach. As a result, the browning classifier 
achieved an accuracy of 93.90% using only three time-
domain features (shape factor, kurtosis and square root 
amplitude value) and one frequency domain feature 
(variance). On the other hand, the classifier for slight 
browning achieved an accuracy of 86.40% overall with two 
time-domain features (shape factor and clearance factor) 
and one frequency-domain feature (mean square) (Zhang et 
al., 2021). When applying digital signal processing, natural 
frequency, spectrum entropy, and zero-crossing were the 
three most effective components of the carob moth 
diagnostic method in pomegranate fruit. A classification 
accuracy of 97.55% was achieved using these three features. 
(Janati et al., 2022). To enable real-time evaluation of 
kiwifruit firmness, 10 features from the frequency domain 
data were extracted using statistical characteristics. The root 
mean square, energy, means, spectral centroid of magnitude, 
and reference firmness indices all showed strong 
relationships (|R| > 0.7). The CARS-PLS model's prediction 
accuracy for fresh firmness, stiffness, and skin firmness in 
external cross-validation sets yielded R2cv = 0.96, 0.95 and 
0.93, respectively (Tian et al., 2022). In addition, the 
industrial sector has also applied statistical features for 
machinery fault diagnosis (Hui et al., 2017; Lei et al., 2017), 
and utilizing machine learning methods for the purpose of 
diagnosing, treating, and overseeing cognitive rehabilitation 
in individuals with neurological disorders is a primary focus. 
EEGs are employed to monitor and analyze brain activity 
(Das et al., 2023). 

Machine learning methods can be used to evaluate quality 
by analyzing data collected from sensing devices. This is a 
useful tool since it can be used to find flaws in products and 
raise their quality. (Nturambirwe and Opara, 2020). 
Therefore, high-dimensional data in machine learning 
issues is problematic, especially with numerous 
characteristics and extracting feature significance from 
these variables and data with a high dimension. The 
redundant data and noise in the dataset were removed using 
statistical methods. This is important because feature 

selection for models is crucial for classifying the 
phenotypes of colorectal cancer cases. Many different 
methods have been proposed for selecting the most 
important features in a dataset. (Cenggoro et al., 2019). The 
result showed that random forests (RF) have the highest 
performance in techniques for selecting features from RFs 
and extra trees for malware detection in ensemble 
classification (Gbenga et al., 2021). Additionally, it used RF, 
Boruta, and Recursive Feature Elimination (RFE) selection 
methods to select essential features and compare different 
machine learning for classification analysis. In all 
experiment groups, the RF algorithm outperformed other 
algorithms in terms of performance (Chen et al., 2020). 

However, no prior research works have been proposed to 
perform the statistical features extracted from the waveform 
signals and use feature selection for pineapple juiciness 
classification on Machine Learning methods. Signal 
processing might be a more suitable choice compared to 
image processing due to the potential for errors resulting 
from adverse external factors. These external conditions can 
lead to inaccuracies in the assessment process. Therefore, 
this paper proposes a statical feature of acoustic sensing and 
10 machine learning classifiers to classify the juiciness level 
of pineapple. The juiciness level is divided into three classes: 
Juiciness 1 is defined as the flattening sound that is 
produced when a pineapple is particularly juicy, sweet, and 
slightly acidic in flavor. Juiciness 2 is the dullness that 
results from fruit that is just a little bit juicy, sweet, and sour 
in flavor. Juiciness 3 is defined as the echo transmitted as a 
tympany sound when the pineapple is slightly less juicy and 
sweet and has a more acidic flavor. (Phawiakkharakun et al., 
2022).  

The primary aim of this research is to address the 
challenge of assessing the juiciness level in pineapples 
using non-invasive methods, particularly by analyzing 
audio waveforms generated through the detection of tapping 
sounds on pineapples. Traditionally, fruit quality assessment 
has relied on the subjective personal experience judgments, 
which can be time inefficiencies and lead to inconsistencies 
and inaccuracies. Our research proposes a modern approach 
that utilizes machine learning techniques to provide an 
objective and efficient solution. 

The research makes several valuable contributions: 1) 
The study utilizes machine learning models to assess the 
juiciness of pineapples, demonstrating the practical 
application of these models in assessing fruit quality. 2) It 
highlights the importance of feature selection by 
highlighting key attributes that significantly affect 
classification accuracy, such as the form factor, crest factor, 
and root mean square. 3) The study demonstrates notable 
gains in accuracy when analyzing the effects of combining 
features from several datasets when compared to reference 
datasets. This suggests that model performance may be 
enhanced through data integration. 4) The investigation 
employs ensemble learning techniques, including ensemble 
layering and ensemble voting, to enhance classification 
accuracy effectively, improving the efficiency of machine 
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learning models. 5) The study provides a comparative 
analysis of various machine learning models, demonstrating 
variations in their accuracy when classifying pineapple 
juiciness. 6) Applying machine learning to assess fruit 
quality, particularly pineapples, has practical implications 
for the fruit production and quality control industries.  
7) Unlike prior research that relied on Convolutional Neural 
Networks (CNNs), this approach prioritizes accessibility 
and the ability to conclude the significance of feature 
engineering with ensemble learning, making it suitable for 
practical applications. 

These collective contributions enhance the understanding 
and real-world utilization of machine learning for assessing 
fruit quality, with a specific focus on classifying the 
juiciness of pineapples. The structure of this study is as 
follows: 

Section 2, we present a summary of pertinent research 
related to the assessment of fruit quality, the utilization of 
acoustic signals, and the utilization of machine learning 
approaches. We delve into foundational investigations 
explore related applications and highlight the gaps in the 
literature. 

Section 3, we introduce the datasets and machine learning 
models used in our study. We elaborate on the features 
extracted from audio waveforms and the essential pre-
processing steps required for effective model training. 

Section 4, we showcase the results of our experiments, 
illustrating how different machine learning models perform 
on a range of datasets. We underscore the significance of 
feature selection, feature integration, and the utilization of 
ensemble learning to improve the accuracy of classification. 

Section 5, we delve into a thorough examination of our 
results, emphasizing the importance of distinct attributes 

like crest factor, shape factor, and root mean square in the 
classification process. Additionally, we explore the 
advantages of utilizing ensemble classification techniques 
to enhance the precision of our classifications. 

Section 6 encapsulates the findings of our research and 
their significance in the context of quality assessment. We 
emphasize the disruptive nature of our methodology and its 
potential for wider adoption within the agricultural post-
harvest industry. 

 
2. MATERIALS AND METHODS 

 
The experimental process for classifying the juiciness of 

Sriracha pineapples. The process begins with Step 1, which 
involves acquiring data from 30 pineapple samples using a 
mobile phone. In Step 2, 1,200 audio waveforms are input 
and divided into three classes based on juiciness levels 
(Juiciness 1, Juiciness 2 and Juiciness 3). Step 3 involves 
audio preprocessing, where the spectral centroid, spectral 
bandwidth, spectral roll-off, crest factor, skewness, zero-
crossing rate, root mean square, impulse factor, shape factor, 
and kurtosis are extracted as features from the waveform. 

In Step 4, a score of feature importance values is 
calculated, and the dataset is prepared by selecting features 
based on their rank of importance. Step 6 employs an 
evaluation model comprising a SVM, RF, GBM, XGB, 
KNN, Multi-Layer Perceptron (MLP), Ensemble Voting, 
Adaboost, Ensemble Bagging, and Ensemble Stacking, with 
accuracy and kappa coefficient serving as the metrics. 
Finally, in step 7, the classification results are visualized and 
compared among the different models as shown in Fig. 1. 

 

 
Fig. 1. Sriracha pineapple juiciness classification experimental process 
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2.1. Dataset Preparation 
Thirty Sriracha pineapples were collected and tapped 

with a rubber-tipped stick. The tapping sound was recorded 
by using Motiv audio software in real environments 
(Phawiakkharakun et al., 2022). This non-destructive 
recording approach is based on the technique used by 
pineapple sellers and pineapple farmers who tap on 
pineapple samples to identify their juiciness. There are two 
methods of tapping: (a) employing a stick with a rubber tip 
and (b) utilizing the middle fingernail of an individual as 
shown in Fig. 2. 

 

 
Fig. 2. The process of assessing the level of pineapple's 

juiciness 
 
Samples of pineapple were divided by pineapple 

connoisseurs or pineapple farmers. Juiciness 1 was 
separated into three groups of identical size, followed by 
Juiciness 2 and Juiciness 3 (Fig. 3(a)). Consequently, ten 
pineapples of each level of juiciness are included in each 
dataset. Each level of the pineapple's juiciness is shown in 
Fig. 3(b). 

 

 
Fig. 3. The pre-classified the harvested pineapple fruits 

 
The impact response technique, the rubber-tipped stick, 

is used to process the acoustic data. A sampling rate of 
44,100 Hz and a bit-depth of 16 bits per sample were 
obtained for the mono audio. Each pineapple was tested by 
tapping it five times, resulting in a total of 40 audio 
waveform files. In total, 1,200 audio waveform files were 
created, which were categorized into three groups: Juiciness 
1 and Juiciness 2 each have 400 audio waveform files, and 
Juiciness 3 has 400 audio waveform files. 

 

2.2. Data Exploration 
Our dataset consists of 1,200 audio waveform files, out 

of which 1,098 files (equivalent to 91.5% of the total) have 
a length of less than 3 seconds. The remaining 102 audio 
waveform files have a period of time longer than three 
seconds, constituting 8.5% of the total files and the density 
of the data set varies within the range of 1.5–3.0 seconds. 

The audio signal contains noise, such as variations in the 
duration of the first tap produced by a rubber-tipped stick 
hitting a pineapple. Additionally, ambient noise from human, 
animal, machine, and engine sources. These factors 
contribute to the presence of noise or errors in each audio 
signal, resulting from data acquisition in an uncontrolled 
environment. 

 
2.3. Audio Pre-processing 

Each audio signal was used to extract features. The 
spectral features consist of three representative statistical 
attributes, namely, the spectral centroid (F1), the spectral 
bandwidth (F2), and the spectral roll-off (F3). The Librosa 
library (McFee, 2015) was used in our research to extract 
the features from the spectral features. 

In addition to these, it lists seven statistical features for 
the temporal features, namely, crest factor (F4), skewness 
(F5), zero-crossing rate (F6), root mean square (F7), 
impulse factor (F8), shape factor (F9) and kurtosis (F10) of 
the audio signal. The identification of juiciness classes was 
carried out using both spectral and temporal feature datasets 
as shown in Table 1. 

An excessive amount of information and irrelevant data 
can lead to bias, which can affect the accuracy of machine 
learning outcomes. Therefore, it is essential to focus on 
important features that have a significant impact on machine 
learning. Feature importance approaches are employed for 
the computation of a score across all input features in a 
machine learning model. The scores provide an indication 
of the "significance" of each feature, where a higher score 
implies that the feature will exert a more substantial 
influence on the model's parameters.  

Our research analyzes features to identify which ones are 
effective in classifying data. RFs were used in these 
experiments. The top three features identified were crest 
factor, shape factor, and root mean square, with obtained 
feature importance values of 0.1796, 0.1661, and 0.1341, 
respectively. The feature importance values for spectral 
centroid, crest factor, impulse factor, spectral roll-off, 
skewness, spectral bandwidth, and kurtosis were 0.0924, 
0.0881, 0.0862, 0.0832, 0.0633, 0.0547 and 0.0522, 
respectively. 

The dataset comprises 15 sets of experiments. X1 
includes all features (F1-F10), X2 includes crest factor (F4), 
shape factor (F9), and root mean square (F7) (X1 is a dataset 
with feature importance values greater than 0.1). X3 
includes spectral centroid (F1), crest factor (F6), shape 
factor (F9), spectral roll-off (F3), skewness (F5), spectral 
bandwidth (F2) and kurtosis (F10) (X3 is a dataset with  
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Table 1. Features description and formula of spectral and temporal features 
Feature description Formula Feature description Formula 

Spectral centroid1 𝑭𝑭𝟏𝟏 = ∑ 𝑆𝑆(𝑘𝑘)𝑓𝑓(𝑘𝑘)𝑘𝑘
∑ 𝑠𝑠(𝑘𝑘)𝑘𝑘

  Zero crossing rate3 𝑭𝑭𝟔𝟔 = 1
2
∑ |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥[𝑠𝑠] −𝑁𝑁
𝑛𝑛=1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥[𝑠𝑠 − 1])|  
Spectral 

bandwidth1 𝑭𝑭𝟐𝟐 = (∑ 𝑆𝑆(𝑘𝑘)(𝑓𝑓(𝑘𝑘) − 𝑓𝑓𝑐𝑐)𝑝𝑝𝑘𝑘 )1/𝑝𝑝  Root mean square3 𝑭𝑭𝟕𝟕 = �∑ �𝑥𝑥(𝑛𝑛)�
2𝑁𝑁

𝑛𝑛=1
𝑁𝑁

  

Spectral rolloff2 𝑭𝑭𝟑𝟑 = ∑ 𝑀𝑀𝑡𝑡[𝑠𝑠] ≥ 0.85∑ 𝑀𝑀𝑡𝑡[𝑠𝑠]𝑁𝑁
𝑛𝑛=1

𝑅𝑅𝑡𝑡
𝑛𝑛=1   Impulse factor3 𝑭𝑭𝟖𝟖 = 𝑀𝑀𝑀𝑀𝑥𝑥|𝑥𝑥(𝑛𝑛)|

1
𝑁𝑁∑ |𝑥𝑥(𝑛𝑛)|𝑁𝑁

𝑛𝑛=1
  

Crest factor3 
𝑭𝑭𝟒𝟒 = 𝑀𝑀𝑀𝑀𝑥𝑥|𝑥𝑥(𝑛𝑛)|

�∑ (𝑥𝑥(𝑛𝑛))2𝑁𝑁
𝑛𝑛=1

𝑁𝑁

  
Shape factor3 𝑭𝑭𝟗𝟗 =

�∑ (𝑥𝑥(𝑛𝑛))2𝑁𝑁
𝑛𝑛=1

𝑁𝑁
1
𝑁𝑁∑ |𝑥𝑥(𝑛𝑛)|𝑁𝑁

𝑛𝑛=1
  

Skewness3 
𝑭𝑭𝟓𝟓 =

∑ �𝒙𝒙(𝒏𝒏)−
∑ 𝒙𝒙(𝒏𝒏)𝑵𝑵
𝒏𝒏=𝟏𝟏

𝑵𝑵 �
𝟑𝟑

𝑵𝑵
𝒏𝒏=𝟏𝟏

(𝑵𝑵−𝟏𝟏)

⎝

⎜
⎛�∑ (𝒙𝒙(𝒏𝒏)−

∑ 𝒙𝒙(𝒏𝒏)𝑵𝑵
𝒏𝒏=𝟏𝟏
𝑵𝑵−𝟏𝟏 )𝟐𝟐𝑵𝑵

𝒏𝒏=𝟏𝟏
𝑵𝑵−𝟏𝟏

⎠

⎟
⎞

𝟑𝟑  
Kurtosis3 

𝑭𝑭𝟏𝟏𝟏𝟏 =
∑ �𝑥𝑥(𝑛𝑛)−

∑ 𝑥𝑥(𝑛𝑛)𝑁𝑁
𝑛𝑛=1

𝑁𝑁 �
4

𝑁𝑁
𝑛𝑛=1

(𝑁𝑁−1)

⎝

⎛�∑ (𝑥𝑥(𝑛𝑛)−
∑ 𝑥𝑥(𝑛𝑛)𝑁𝑁
𝑛𝑛=1
𝑁𝑁−1 )2𝑁𝑁

𝑛𝑛=1
𝑁𝑁−1

⎠

⎞

4  

1 where the spectral magnitude at frequency bin k is denoted as S(k), the frequency at bin k is represented by f(k), and the 
spectral centroid is given by fc.. 2where Rt is the roll-off frequency, and Mt is the magnitude of the n-th frequency component 
of the spectrum.  3where x(n) is a signal series for n = 1,2, … N, and N is the number of data point 
 
feature importance values less than 0.1). X4 includes 
spectral centroid (F1), crest factor (F6), shape factor (F9), 
and spectral roll-off (F3) (X4 is a dataset with feature 
importance values between 0.08 and 0.1). X5 includes 
skewness (F5), spectral bandwidth (F2), and kurtosis (F10) 
(X5 is a dataset with feature importance values between 0.6 
and 0.8). Another dataset (X6-X14) combines the top three 
features (crest factor, shape factor, and root mean square) 
with X3 and X5. X15 comprises a combination of X2 and 
X4, eliminating the skewness, spectral bandwidth, and 
kurtosis features. To conduct the experiment, all datasets 
were split randomly into two groups, with 80% used to train 
the model and 20% used to test the performance of the 
model on unseen data, as shown in Fig. 4. 

 

 
Fig. 4. The dataset features an experiment for input into 

the classifier 
 

2.4 Ensemble Learning Model and Fine-Tune 
Training Configuration 

The examined features for classification, including the 15 
datasets and the target output (Juiciness class), were applied 
to the development of a variety of machine learning models. 
Some of the implemented machine learning models were 
SVM, RF, GBM, XGB, KNN, MLP, Ensemble Bagging, 
Adaboost, Ensemble Voting, and Ensemble Stacking. To 
carry out an optimized analysis, each ML model underwent 
hyperparameter fine-tuning using the tuning procedure. 

We utilized grid search to determine various essential 
hyperparameters. Grid search is a way to find the best 
hyperparameters for a model by trying out all possible 
combinations of hyperparameter values within a specified 
range and then applying them to the learning process. The 
experimental results for the best parameter of each model 
consisted of the classification accuracy achieved when 
tuning hyperparameters via SVM, RF, GBM, XGB, KNN, 
MLP, bagging, Adaboost, and the optimal hyperparameters 
selected via grid search, presented in Table 2. 

Ensemble voting implements both "hard" and "soft" 
voting. When using "hard" voting, it relies on predicted 
class labels to determine the majority vote. On the other 
hand, the class label is predicted by “soft” voting based on 
the argmax of the sums of the expected probability. The 
estimators used in ensemble voting are SVM, RF, GBM, 
XGB, KNN, MLP, Bagging, and Adaboost. 

Ensemble stacking, on the other hand, utilizes a meta-
learning algorithm that decides how to combine predictions 
from two or more fundamental machine learning techniques 
most effectively. Like ensemble voting, it also uses the 
estimators SVM, RF, GBM, XGB, KNN, MLP, Bagging, 
and Adaboost. However, the final estimator is logistic 
regression. Overall, ensemble methods are powerful 
techniques that can significantly enhance the robustness and 
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accuracy of machine learning models. Derived from the 
study details in the research, the pseudocode framework for 
an Ensembled learning classification algorithm is presented 
in Algorithm 1. 

 
Table 2. The selected optimal parameters using grid search 

Model Optimal parameters Accuracy (%) 

SVM 

c = 50 
gamma = 0.1 
kernel = rbf 
max_depth = 5 

91.56 

RF max_leaf_nodes = 30 
n_estimators = 50 86.88 

GBM 

max_depth = 4 
subsample = 0.5 
learning_rate = 0.02 
n_estimators = 500 

88.25 

XG 
gamma = 0.0 
learning_rate =. 0.05 
max_depth = 5 

88.75 

KNN n_neighbors = 4 86.35 

MLP 
activation = tanh 
alpha = 0.0001 
hdden_layer = (10,30,10) 

89.48 

BAGGING 

base_estimator = 
Decision Tree Classifier 
max_dept = 8 
max_sample = 0.5 
N_estimators = 50 

86.88 

ADABOOST 

base_estimator = 
Decision Tree Classifier 
max_depth = 2 
nearning_rate = 0.1 
n_estimator = 100 

85.94 

 
Algorithm 1: Pseudocode of the ML algorithms  
 
Input: Training and testing dataset 
   X_train, X_test, y_train, y_test = 
train_test_split(X, y, test_size=0.2,  
           random_state=1) 
Output: Trained ML Classifier 
 
BEGIN 
 

Step 1: Initialize the ML estimator. 
# Initialize the machine learning 
    [mlp,'MLPClassifier'] 
    [ensemble_voting1,'Ensembled VotingClassifier 
(Soft) '] 
    : 
    : 
    [stack,Ensembled Stacking  Classifier'] 
 

Step 2: Machine Learning and Ensemble Learning 
Classification 
# Initialize a list of models and their names 

    algo = [ 
                 [mlp,’MLPClassifier’], 
                 [ensemble_voting1,’Ensembled 
VotingClassifier (Soft)’], 
                 : 
                 : 
                  [stack.’Ensembled StackingClassifier’] 
                  ] 
    model_scores = [] 
 

# Define target names for classification report 
    target_names = ['Juiciness 1', 'Juiciness 2', 'Juiciness 
3'] 
 

# Loop through the models and evaluate their 
performance 
    for a in algo: 
                model = a[0]  # Get the model 
                model.fit(X_train, y_train)  # Train the model 
                score = model.score(X_test, y_test)  # 
Calculate accuracy 
                y_pred = model.predict(X_test)  # Make 
predictions 
                cm= ConfusionMatrix(actual_vector=y_test, 
predict_vector=y_pred)   
 
 

# Store the model's performance metrics in a list 
    model_scores.append([score, cm.Overall_ACC, 
cm.TPR_Macro, cm.TNR_Macro,  
    cm.PPV_Macro, cm.F1_Macro, cm.Kappa, a[1]]) 
 
 

Step 3: Print parameter values and evaluation 
results. 
     print (score) # Print the accuracy score. 
     print (confusion_matrix(y_test, y_pred))    # Print the 
confusion matrix 
     print (classification_report(y_test, y_pred, 
target_names=target_names))  
END 
 

2.5. Evaluation 
The optimal network with the best hyperparameters is 

selected and applied to the dataset, which is randomly split 
into 80% for the training dataset and 20% for the validation 
dataset. The validation precision and loss (error) are both 
recorded. The accuracy and Cohen's kappa are compared to 
the results of each model on the test dataset using the 
confusion matrix and classification report to determine the 
model's performance. As shown in Equation (1), accuracy 
denotes the ratio of accurately categorized pineapple 
samples to the overall count of pineapple samples. 

 
Accuracy = number of correctly classified samples

total number of samples
× 100                           (1) 

 
Cohen's kappa is a widely used statistical measure that 

determines the level of agreement between two important 
factors. It is frequently employed to assess how well a 
classification model performs the equation for computing 
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Cohen's kappa as shown in Equation (2). 
 

K = po−pe
1−pe

                                                                                    (2) 
 
The kappa coefficient value is denoted by K, where po 

represents the overall accuracy of the model, and pe 
represents the degree of concurrence between the 
predictions of the model and the authentic class values that 
could happen randomly. The degree of agreement can be 
categorized based on the kappa coefficient value as follows: 
slight agreement if the value is less than or equal to 0.20. 
Fair agreement if the value is between 0.41 and 0.60. There 
is moderate agreement if the value is between 0.61 and 0.80. 
There is a strong and almost perfect agreement if the value 
is between 0.81 and 1.0. 

 
3. RESULTS AND DISCUSSION 

 
In this paper, the important scores for all input features 

were calculated. The analysis revealed that the crest factor 
had the highest feature importance value of 0.1796, 
followed by the shape factor with a value of 0.1661, and the 
root mean square with a value of 0.1341.  

Notably, the crest factor, shape factor, and root mean 
square obtained feature importance value greater than 0.1. 
In the next step, we partitioned the features into 15 datasets, 
applied grid search to tune hyperparameters, and showed the 
best parameters for each of the 15 datasets (X1-X15). The 
experiments conducted in this paper demonstrate the 
performance of the machine learning model for classifying 
pineapple juiciness, as shown below: 
1. The performance of the ML model for pineapple 

juiciness classification shows that the SVM and MLP 

achieve greater accuracy than other models, with the 
MLP model achieving the highest accuracy of 92.28% 
and a kappa coefficient of 0.8808 in the X15 dataset. The 
SVM model had a maximum accuracy of 91.25% and a 
kappa coefficient of 0.8681 in the X7 dataset, as shown 
in Table 3. 

2. The ensemble learning model for pineapple juiciness 
classification shows that the ensembled voting (soft) and 
ensemble stacking methods achieve higher accuracy than 
other methods. Specifically, the ensembled voting (soft) 
model achieves the highest accuracy of 92.08% and a 
kappa coefficient of 0.8811 in the X8 dataset. Meanwhile, 
in the X7 dataset, the ensemble stacking model achieves 
the best accuracy of 92.08% and a kappa coefficient of 
0.8808, as shown in Table 4. 

3. Comparing the baseline datasets with the combined 
datasets shows that better accuracy values can be 
obtained. For instance, the X3 dataset comprises spectral 
centroid (F1), zero-crossing rate (F6), shape factor (F9), 
spectral roll-off (F3), skewness (F5), spectral bandwidth 
(F2), and kurtosis (F10), achieves the best accuracy value 
of 90.00% with the SVM model. The X6 dataset 
combines crest factor with a feature in X3; the X7 dataset 
combines shape factor with a feature in X3; the X8 
dataset combines root mean square with a feature in X3; 
and the X9 dataset combines crest factor and shape factor 
with a feature in X3, achieve accuracies of 90.83%, 
91.25%, and 90.83%, respectively. Moreover, other ML 
models can achieve higher accuracy than the baseline 
dataset (X3), as shown in Fig. 5. 

4. The results indicate that both ensemble voting (soft) and 
ensemble stacking methods can achieve a high accuracy 
of 92.08% in the X8 and X7 datasets, as demonstrated in 
Fig. 6. 

 
Table 3. The performance of ML models for pineapple juiciness classification 

Classifier/ 
Dataset 

SVM RF GBM XGB KNN MLP 
Accuracy 

(%) Kappa Accuracy 
(%) Kappa Accuracy 

(%) Kappa Accuracy 
(%) Kappa Accuracy 

(%) Kappa Accuracy 
(%) Kappa 

X1 90.42 0.8559 85.83 0.7865 88.75 0.8308 89.58 0.8432 84.58 0.7676 91.67 0.8746 
X2 83.33 0.7485 82.92 0.7424 85.00 0.7737 84.58 0.7676 82.08 0.7308 84.58 0.7674 
X3 90.00 0.8498 84.58 0.7689 87.50 0.8123 85.00 0.7746 82.50 0.7362 88.75 0.8309 
X4 88.33 0.8248 86.67 0.7997 87.50 0.8123 87.08 0.8060 86.25 0.7926 87.92 0.8181 
X5 78.33 0.6747 77.50 0.6613 76.67 0.6491 75.42 0.6299 72.50 0.5844 76.25 0.6432 
X6 90.83 0.8621 86.67 0.8000 87.50 0.8122 87.08 0.8058 85.42 0.7804 90.00 0.8496 
X7 91.25 0.8681 87.08 0.8057 86.67 0.7992 88.33 0.8244 85.42 0.7803 91.67 0.8745 
X8 90.83 0.8621 87.08 0.8061 90.83 0.8623 89.17 0.8374 82.08 0.7298 89.58 0.8435 
X9 90.00 0.8493 86.25 0.7926 88.33 0.8246 86.67 0.7994 84.58 0.7676 90.83 0.8621 

X10 86.25 0.7934 82.08 0.7308 82.50 0.7364 82.08 0.7302 78.75 0.6787 87.08 0.8054 
X11 85.00 0.7738 85.42 0.7802 87.08 0.8053 85.42 0.7801 84.17 0.7611 83.33 0.7490 
X12 86.67 0.8006 84.58 0.7688 86.25 0.7933 86.25 0.7935 77.50 0.6610 85.83 0.7874 
X13 87.08 0.8051 85.83 0.7864 86.25 0.7926 85.42 0.7803 83.75 0.7544 86.25 0.7927 
X14 87.92 0.8178 85.00 0.7739 87.92 0.8179 87.50 0.8115 84.58 0.7675 89.58 0.8428 
X15 90.00 0.8496 87.50 0.8117 88.33 0.8244 88.75 0.8309 89.17 0.8369 92.08 0.8808 

An orange highlight is the best performance of each input dataset compared with all models. (SVM, RF, GBM XGB, KNN, 
MLP, ensemble Voting (soft), ensemble Voting (hard), Adaboost, ensemble bagging, and ensemble stacking) 
A blue highlight the performance of the model obtaining an accuracy greater than 90% of each dataset. 
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Table 4. The performance of Ensembled learning models for pineapple juiciness classification 

Classifier/ 
Dataset 

Voting (Soft) Voting (Hard) AdaBoost Bagging Stacking 
Accuracy 

(%) Kappa Accuracy 
(%) Kappa Accuracy 

(%) Kappa Accuracy 
(%) Kappa Accuracy 

(%) Kappa 

X1 90.00 0.8495 88.75 0.8307 87.50 0.8118 86.25 0.7927 91.67 0.8747 
X2 84.17 0.7613 84.17 0.7610 82.92 0.7417 82.50 0.7362 84.58 0.7674 
X3 88.33 0.8247 87.92 0.8183 77.50 0.6626 85.00 0.7746 90.83 0.8623 
X4 90.42 0.8560 89.17 0.8369 79.58 0.6953 86.67 0.7992 88.75 0.8310 
X5 76.25 0.6425 77.92 0.6678 75.83 0.6370 78.33 0.6733 76.67 0.6492 
X6 90.42 0.8560 88.33 0.8243 84.17 0.7628 87.08 0.8055 90.83 0.8622 
X7 87.50 0.8118 88.33 0.8241 85.00 0.7741 86.25 0.7926 92.08 0.8808 
X8 92.08 0.8811 90.83 0.8622 84.17 0.7638 88.75 0.8307 91.25 0.8686 
X9 89.58 0.8431 87.50 0.8117 86.67 0.7990 86.25 0.7926 90.83 0.8621 

X10 84.58 0.7680 82.92 0.7428 80.83 0.7121 81.25 0.7177 85.42 0.7803 
X11 86.67 0.7989 86.25 0.7925 83.75 0.7553 85.83 0.7863 84.17 0.7614 
X12 87.50 0.8125 87.08 0.8060 78.75 0.6822 84.58 0.7684 87.92 0.8187 
X13 85.83 0.7865 86.25 0.7925 87.08 0.8054 86.25 0.7924 85.83 0.7861 
X14 87.92 0.8180 87.08 0.8051 87.08 0.8052 86.67 0.7987 86.67 0.7994 
X15 90.42 0.8560 89.58 0.8431 85.42 0.7803 88.75 0.8302 90.42 0.8560 

An orange highlight is the best performance of each input dataset compared with all models. (SVM, RF, GBM XGB, KNN, 
MLP, ensemble Voting (soft), ensemble Voting (hard), Adaboost, ensemble bagging, and ensemble stacking) 
A blue highlight is the performance of the model obtaining an accuracy greater than 90% of each dataset. 
 
5. The X5 dataset comprises skewness (F5), spectral 

bandwidth (F2), and kurtosis (F10), combined with the 
top three features (i.e., crest factor, shape factor, and root 
mean square) with a score of feature importance greater 
than 0.1. The X10 dataset includes the crest factor 
combined with a feature from X5, the X11 dataset 
includes the shape factor combined with a feature from 
X5, and the X12 dataset includes root mean square 
combined with a feature from X5. The X13 dataset 
comprises the crest factor and the shape factor combined 
with a feature from X5, and the X14 dataset comprises 
the crest factor, the shape factor, and root mean square 
combined with a feature from X15. The MLP model can 
achieve an accuracy of 76.25% in the baseline dataset 
(X5) and 89.58% in the combined dataset (X14), 
indicating an improvement of approximately 17.48% 
from the baseline dataset (X5). Other models can also 
outperform the baseline dataset, as shown in Fig. 7. 

6. The performance of the ensemble learning model shows 
that ensemble stacking can achieve an accuracy of 
76.67% in the X5 dataset and an accuracy of 87.92% in 
the X12 dataset, resulting in an accuracy improvement of 
approximately 14.67% from the baseline dataset (X5). 
Additionally, other models can achieve higher accuracy 
levels than the baseline dataset (X5), as demonstrated in 
Fig. 8. 

7. The features of skewness, spectral bandwidth, and 
kurtosis were removed from the X15 dataset because 
their feature importance values were less than 0.07. As a 
result, the X15 dataset now includes the crest factor, the 
shape factor, root mean square, the spectral cent, the 
zero-crossing rate, the impulse factor, and the roll-off. 
When compared with the X1 dataset, which consists of 
all 10 features, the MLP model achieved an accuracy of 
92.08% with the X15 dataset, while the X1 dataset could 
only obtain an accuracy of 91.67%, as shown in Fig. 9

 

 
Fig. 5. The performance of the ML model on the baseline dataset and each combined dataset (X6–X9) 
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Fig. 6. The performance of the ensembled learning model on the baseline dataset (X3) and each combined dataset (X6–X9) 

 
Fig. 7. The performance of the ML model on the baseline dataset (X5) and each combined dataset (X10–X14) 

 

 
Fig. 8. The performance of the Ensembled learning model on the baseline dataset (X5) and each combined dataset (X10–X14) 

 

 
Fig. 9. The performance of each model on the base dataset (X1) and combined dataset (X15) 
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The primary objective of the study was to apply machine 
learning models to classify the degree of juiciness in 
pineapples. The study included processes such as feature 
selection, hyperparameter tuning, and a comprehensive 
evaluation of multiple models. This study presents the 
following significant findings and results:  
1. Feature Importance Analysis: The calculation of feature 

importance scores included all input features, leading to 
the identification of three features with the most 
significant importance values: crest factor, form factor, 
and root mean square. The features mentioned above 
showed significance values exceeding 0.1, indicating 
their substantial contribution to the classification activity. 

2. Impact of Combined Datasets: Integrating features from 
various datasets significantly improved accuracy 
compared to the reference datasets. The X3 dataset 
achieved the highest accuracy at 90.00% when used with 
the SVM model. Additionally, incorporating features 
from X3 into other datasets further enhanced accuracy. 
The MLP model showed a significant performance boost 
when applied to the combined dataset X14, reaching an 
accuracy of 89.58%. This represents a significant 
improvement compared to the baseline dataset X5. 

3. Feature Selection: To improve the X15 dataset, features 
with significance values below 0.07 were specifically 
dropped. The reduced dataset, denoted as X15, exhibited 
a superior accuracy rate of 92.08% when used with the 
MLP model, compared to the original dataset, X1, which 
contained all ten features and achieved an accuracy rating 
of 91.67%. 
In this discussion, the study highlights the significance of 

feature selection and combination, hyperparameter tuning, 
and the utilization of ensemble learning methods to enhance 
the classification accuracy of machine learning models for 
determining the degree of pineapple juiciness. The findings 
indicate that specific features, such as crest factor, shape 
factor, and root mean square, play a crucial role in the 
classification task. When combined with other relevant 
features, they result in significant improvements in accuracy. 
Additionally, ensemble methods like ensemble stacking and 
ensemble voting (soft) prove effective in enhancing 
classification accuracy. In comparison to the previous work 
by Phawiakkharakun et al. (2022) as shown in Table 5. 

Our previous research (Phawiakkharakun et al., 2022) 
utilized a CNN model to evaluate the juiciness level of 
Sriracha pineapple. This was done by comparing the 
performance of two different feature extraction methods, 
namely Mel Frequency Cepstral Coefficient (MFCC) and 
Mel-Spectrogram, utilizing acoustic sensors in conjunction 
with CNN. The results from the experiments revealed that 
both CNN and MFCC outperformed other approaches, 
achieving an impressive accuracy of 96.67 percent. In 
contrast, the present study employs statistical features (such 
as spectral centroid, spectral bandwidth, spectral roll-off, 
crest factor, skewness, zero-crossing rate, root mean square, 
impulse factor, shape factor and kurtosis) extracted from 
audio recordings as input variables for machine learning in 

the task of categorizing juiciness. Even if this approach's 
accuracy was lower than that of the preceding work at 92.08 
percent, it is crucial to note that the strategy utilized in the 
earlier work may have problems with feature interpretability. 
As a result, the current research approach holds distinct 
advantages in terms of accessibility and the potential for 
drawing meaningful inferences about the significance of 
feature engineering when combined with ensemble learning. 
This makes it a valuable choice for applying machine 
learning models. 
 

Table 5. The comparison for pineapple juiciness 
classification 

Model Feature Accuracy 

Deep 
Learning 
(CNN) 

- Mel Frequency Cepstral 
Coefficient (MFCC) 

- Mel-Spectrogram 

MFCC combined 
with CNN 

performed the 
best, with an 
accuracy of 

96.67% 

Purpose 
Method 

(Ensemble 
Learning) 

Ten statistical features 
including 
-spectral centroid (F1) 
-spectral bandwidth (F2) 
-spectral roll-off (F3) 
-crest factor (F4) 
-skewness (F5) 
-zero-crossing rate (F6) 
-root mean square (F7) 
-impulse factor (F8) 
-shape factor (F9) 
-kurtosis (F10) 

Ensemble Voting 
(soft), Ensemble 

Stacking, and 
MLP 

outperformed 
other classifiers. 
They can obtain 
an accuracy of 

92.08% 

 
4. CONCLUSIONS 

 
This research presents a non-invasive approach to assess 

the quality of Sriracha pineapples based on the audio 
waveforms sound. The method classifies the juiciness of the 
pineapple using ten features extracted from spectral and 
temporal analyses. These features were divided into 15 
datasets based on their importance scores and fed into 
machine learning and ensemble learning models. In this 
study, we employed grid search to optimize the 
hyperparameters of nine machine learning models. Our 
experiments revealed that the ensemble voting (soft) 
method performed the best, achieving an accuracy of 
92.08% and a Kappa coefficient of 0.8811 in the X8 dataset. 
The ensemble stacking and MLP methods both achieved an 
accuracy of 92.08%, with Kappa coefficients of 0.8088 in 
the X7 and X15 datasets, respectively.   

There are multiple avenues to explore for future research. 
1) Develop mobile applications that utilize this method to 
assess the pineapple juiciness in real-time, making it 
applicable to business applications. 2) Increasing the dataset 
with additional pineapple samples from various sources and 
environments to enhance the generalizability of the model. 



International Journal of Applied Science and Engineering 
 

Phawiakkharakun and Pongpinigpinyo, International Journal of Applied Science and Engineering, 21(1), 2022369 
 

  
https://doi.org/10.6703/IJASE.202403_21(1).009                                                                                                                                      11 
    

3) Investigate feature engineering methods to find 
additional features or combinations that can increase 
accuracy. 4) Integrating acoustic sensing devices to 
automate the data collection process and provide immediate 
feedback to users. 5) Applying the methodology to assess 
the quality of other fruits or agricultural products, thereby 
expanding its potential impact on the agriculture and 
culinary sectors.  

Future research has the potential to expand on the 
groundwork laid in this study and drive the domain of non-
invasive quality evaluation through acoustic signals by 
tackling these challenges. 

 
ACKNOWLEDGMENT 

 
This research was supported by Scholarship of the 

Celebrations on the Auspicious Occasion of His Majesty the 
King’s 70 the Birthday Anniversary of Ph.D. Degree 
Scholarship Project Doctoral Studies in Thailand. 

 
REFERENCES 
 
Azman, A.A., Ismail, F.S. 2017. Convolutional neural 

network for optimal pineapple harvesting. Journal of 
Electrical Engineering, 16, 1–4. 

Bueno, G.E., Valenzuela, K.A., Arboleda, E.R. 2020. 
Maturity classification of cacao through spectrogram and 
convolutional neural network. Jurnal Teknologi dan 
Sistem Komputer, 8, 228–233. 

Caladcad, J. A., Cabahug, S., Catamco, M. R., Villaceran, P. 
E., Cosgafa, L., Cabizares, K. N., Piedad, E., Jr. 2020. 
Determining Philippine coconut maturity level using 
machine learning algorithms based on acoustic signal. 
Computers and Electronics in Agriculture, 172, 105327. 

Cenggoro, T.W., Mahesworo, B., Budiarto, A., Baurley, J., 
Suparyanto, T., Pardamean, B. 2019. Features importance 
in classification models for colorectal cancer cases 
phenotype in Indonesia. Procedia Computer Science, 157, 
313–320. 

Chaikaew, A., Thanavanich, T., Duangtang, P., Sriwanna, K., 
Jaikhang, W. 2019. Convolutional neural network for 
pineapple ripeness classification machine. Proceeding of 
the 16th International Conference on Electrical 
Engineering/Electronics, Computer, 
Telecommunications and Information Technology, 16, 
373–376. 

Chawgien, K., Kiattisin, S. 2021. Machine learning 
techniques for classifying the sweetness of watermelon 
using acoustic signal and image processing. Computers 
and Electronics in Agriculture, 181, 105938. 

Chen, R.-C., Dewi, C., Huang, S.-W. and Caraka, R.E. 2020. 
Selecting critical features for data classification based on 
machine learning methods. Journal of Big Data, 7, 52. 

Das, S., Adhikary, A., Laghari, A.A., Mitra, S. 2023. Eldo-
Care: EEG with kinect sensor based telehealthcare for the 
disabled and the elderly. Neuroscience Informatics, 

100130. 
Ekramirad, N., Khaled, A.Y., Parrish, C.A., Donohue, K.D., 

Villanueva, R.T., Adedeji, A. 2021. Development of 
pattern recognition and classification models for the 
detection of vibro-acoustic emissions from codling moth 
infested apples. Postharvest Biology and Technology, 181, 
111633. 

Fadchar, N.A., and Cruz, J.C.D. 2020. A non-destructive 
approach of young coconut maturity detection using 
acoustic vibration and neural network. Proceedings of 
16th IEEE International Colloquium on Signal Processing 
and Its Applications (CSPA), 136–140. 

Gbenga, F., Adetunmbi, A., Elohor, O. 2021. Towards 
optimization of malware detection using extra-tree and 
random forest feature selections on ensemble classifiers. 
International Journal of Recent Technology and 
Engineering, 9, 223–232. 

Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., 
Nasiri, A., Mahmoudi, A. 2022. Acoustic signal-based 
deep learning approach for smart sorting of pistachio nuts. 
Postharvest Biology and Technology, 185, 111778. 

Huang, T.-W., Bhat, S. A., Huang, N.-F., Chang, C.-Y., Chan, 
P.-C. and Elepano, A.R., 2022. Artificial intelligence-
based real-time pineapple quality classification using 
acoustic spectroscopy. Agriculture, 12, 1–17. 

Hui, K.H., Ooi, C.S., Lim, M.H., Leong, M.S., Al-Obaidi, 
S.M. 2017. An improved wrapper-based feature selection 
method for machinery fault diagnosis. PLOS ONE, 12, 
1–10. 

Janati, S., Mehdizadeh, S.A., Heydari, M. 2022. Designing, 
manufacturing, and evaluating the diagnostic system of 
carob moth in pomegranate fruit using digital signal 
processing. Computers and Electronics in Agriculture, 
192, 106564. 

Kharamat, W., Wongsaisuwan, M., Wattanamongkhol, N. 
2020. Durian ripeness classification from the knocking 
sounds using convolutional neural network. Proceedings 
of the 8th International Electrical Engineering Congress 
(iEECON), 1–4. 

Lashgari, M., Imanmehr, A., Tavakoli, H. 2020. Fusion of 
acoustic sensing and deep learning techniques for apple 
mealiness detection. Journal of Food Science and 
Technology, 57, 2233–2240.  

Lei, Y., He, Z., Zi, Y., Hu, Q. 2007. Fault diagnosis of 
rotating machinery based on multiple ANFIS 
combination with GAs. Mechanical Systems and Signal 
Processing, 21, 2280–2294. 

McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., 
Battenberg, E., Nieto, O. 2015. Librosa: Audio and music 
signal analysis in python. Proceedings of the 14th Python 
in Science Conference, 8, 18–25. 

Nturambirwe, J.F.I., Opara, U.L. 2020. Machine learning 
applications to non-destructive defect detection in 
horticultural products. Biosystems Engineering, 189, 60–
83.  

Phawiakkharakun, S., Taeprasartsit, P., Pongpinigpinyo, S. 
2022. Acoustic sensing for quality edible evaluation of 



International Journal of Applied Science and Engineering 
 

Phawiakkharakun and Pongpinigpinyo, International Journal of Applied Science and Engineering, 21(1), 2022369 
 

  
https://doi.org/10.6703/IJASE.202403_21(1).009                                                                                                                                      12 
    

sriracha pineapple using convolutional neural network. 
Current Applied Science and Technology, 22, 1–15. 

Priasni, T., Oswari, T. 2021. Comparative study of 
standalone classifier and ensemble classifier. 
TELKOMNIKA (Telecommunication Computing 
Electronics and Control), 19, 1747–1754. 

Rahmawati, D., Haryanto, H., Sakariya, F. 2019. The design 
of coconut maturity prediction. device with acoustic 
frequency detection using naive bayes method based 
microcontroller. Journal of Electrical Engineering, 
Mechatronic and Computer Science, 2, 15–20. 

Saeed, U., Kumar, K., Khuhro, M.A., Laghari, A.A., Shaikh, 
A.A., Rai, A. 2023. DeepLeukNet—A CNN based 
microscopy adaptation model for acute lymphoblastic 
leukemia classification. Multimedia Tools and 
Applications, 1–25. 

Tian, S., Wang, J., Xu, H., 2022. Firmness measurement of 
kiwifruit using a self-designed device based on acoustic 
vibration technology. Postharvest Biology and 
Technology, 187, 111851. 

Wang, L., Shoulin, Y., Alyami, H., Laghari, A.A., Rashid, 
M., Almotiri, J., Alyamani, H.J., Alturise, F. 2022. A 
novel deep learning‐based single shot multibox detector 
model for object detection in optical remote sensing 
images, 1–15. 

Yang, X., Guo, M., Lyu, Q., Ma, M. 2021. Detection and 
classification of damaged wheat kernels based on 
progressive neural architecture search. Biosystems 
Engineering, 208, 176–185. 

Zhang, H., Zha, Z., Kulasiri, D., Wu, J. 2021. Detection of 
early core browning in pears based on statistical features 
in vibro-acoustic signals. Food and Bioprocess 
Technology, 14, 887–897. 

Zhao, K., Zha, Z., Li, H., Wu, J. 2021. Early detection of 
moldy apple core based on time-frequency images of 
vibro-acoustic signals. Postharvest Biology and 
Technology, 179, 111589.  
 


	Enhanced non-destructive of degree of pineapple juiciness using ensemble learning model based on tapping sound sensing
	ABSTRACT
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Dataset Preparation
	2.2. Data Exploration
	2.3. Audio Pre-processing
	2.4 Ensemble Learning Model and Fine-Tune Training Configuration
	2.5. Evaluation

	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES


