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ABSTRACT 
 

Indonesia, a country heavily dependent on agriculture, continues to grow potatoes. 

However, the presence of plant diseases, manifested by the condition of the leaves, is a 

significant problem that requires attention. Agriculture offers extensive opportunities to 

explore computer vision applications, including tasks like object detection. In this paper, 

we present a method that increases the YOLOv7 tiny model's accuracy to assist farmers 

in identifying diseases in potato leaves. Our study employed multi-scale and MixUp 

augmentation techniques to process input images when training using the YOLOv7 tiny 

model. Based on our experiment, the model can be enhanced using multi-scale training 

instead of fixed-scale training. After implementing our proposed technique, the mAP 

metric significantly improved over the original model, achieving a range of 0.94325 to 

0.96975 for fixed-scale training and a range of 0.9620 to 0.97525 for multi-scale training 

with the MixUp approach. In addition, we have developed the YOLOv7 tiny model, 

which aims to enable seamless use of mobile devices in real-time applications. To assess 

the current state of potato leaves on land in real-time, we convert the results of our 

extended model into a compact format called TF Lite. Future potato production can be 

improved by using these findings to help farmers combat leaf diseases. 

 

Keywords: MixUp, Multi-scale, Potato leaf diseases, TF Lite, YOLOv7 tiny. 

 

 

1. INTRODUCTION 
 

Agriculture is a critical factor that can affect any country's economic growth, including 

Indonesia (The Digital Transformation of Agriculture in Indonesia). Agriculture in 

Indonesia covers 70 million hectares, of which only 45 million are ready for use 

(DIPERTAPA - Kebutuhan Lahan Untuk Pangan Capai 13,17 Juta Ha). The available 

data indicates a consistent decline in the agricultural land area over time. On the other 

hand, this paradox poses a new challenge for an agrarian country like Indonesia to 

survive in its agricultural sector, which remains one of its pillars. In addition, other facts 

show that crops in Indonesia are very diverse. Crops commonly used as a mainstay of 

agriculture in Indonesia include rice (Mariyono, 2019), corn (Suriani et al., 2021), 

cassava (Sukara et al., 2020; Hasiholan et al., 2021), or vegetable crops (Mariyono, 2020; 

Mariyono et al., 2020) such as kale, spinach, lettuce, and others. Potato production is the 

goal of the Indonesian government to increase food demand and economic growth. 

However, diseases in potatoes identified by leaves are sometimes one of the main factors 

that trigger potato production failure (Yusianto et al., 2020; Taylor and Dawson, 2021; 

Saptana et al., 2022) , thus failing to achieve the target. Various factors, such as weather, 

soil conditions, and fertilizers, cause this disease. However, the challenge of recognizing 

diseases in potato leaves can be a problem farmers face. In more detail, the condition of 

the leaves affected by disease makes the shape or color and even the type of disease 

challenging to distinguish from one another. In this case, technological assistance such 
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as object detection could be one solution to help farmers 

more effectively recognize types of disease on potato leaves. 

Furthermore, more computational technological 

interventions are needed in the agricultural sector to help 

farmers identify plant disease that can disrupt crops. Deep 

learning models are increasingly used in image or video 

processing (Laghari et al., 2023) to produce results that help 

people solve real-world problems. Identification of objects 

in images (Laghari et al., 2023), especially in agricultural 

fields for plant disease detection (Eldeen et al., 2021), has 

become popular in computer vision, equal to image 

classification (Saeed et al., 2023) or object detection (Zhang 

et al., 2020; Ouhami et al., 2021). As in our previous 

research, the image classification task for potato leaf disease 

classification can be solved by implementing a deep 

learning model based on a transformer-based model such as 

Swin Transformer (Li and Tanone, 2023). However, future 

improvement must address potato farmers' pressing issues 

related to video processing, such as object detection using 

models like You Only Look Once (YOLO) framework. In 

addition, there are many mobile phone users (Ahmad et al., 

2024; Prabhu N and Majhi, 2024), including farmers. In 

further development, integrating mobile and other devices 

in an architecture such as IoT for agriculture has become an 

exciting research topic. This raises the question, is it 

possible to detect disease on potato leaves based on object 

detection using a model like YOLOv7 tiny? Of course, 

exploring how this tiny model is further processed into a TF 
Lite-based model, which can be used to build mobile 

applications based on iOS, android, or other mobile 

operating systems, would be more attractive. The impact of 

developing this idea can help farmers detect diseases on 

potato leaves based on mobile in the future. 

Based on the background, we are interested in further 

investigating how the problem of disease identification in 

potato leaves can be addressed using a model such as 

YOLOv7 tiny. Our motivation is to build the lightweight 

model by improving the YOLOv7 tiny model to assist 

potato farmers in identifying disease detection on potato 

leaves. In line with this motivation, we use multi-scale 

techniques and adjust advanced data augmentation like 

Mosaic and MixUp to improve the accuracy of the YOLOv7 

tiny model. After that, we developed this model into a 

mobile-based model for real-time applications. In addition, 

we have a limitation in this research: we only prepared the 

model on the TF Lite version but did not test it on mobile 

devices as we prepared for our future research. 

In detail, our contribution to this research is presented as 

follows: 

1. We examined the YOLOv7 tiny model and made 

improvements to this model using a multi-scale 

resolution training approach. In addition, we improve 

the model by adjusting data augmentation techniques 

like Mosaic and MixUp to improve the model 

performance. 

2. Our study compared the tiny model trained with a 

fixed-scale and a multi-scale input image in YOLOv7 

tiny. Using this approach, we can examine how the 

model's performance impacts the detection of potato 

leaf conditions. 

3. To detect potato leaf conditions in real-time 

applications, we also created a lightweight model by 

converting it to a TF Lite model, and we examined the 

model. In the future, this model can be implemented in 

mobile applications to detect potato leaf diseases. 

Furthermore, this paper will discuss related works 

followed by methods for improved YOLOv7 tiny model to 

detect potato leaf diseases in section 2. The results and 

discussion of the experiments performed are presented in 

section 3. The rest are the conclusions and references of this 

paper. 

 

2. RELATED WORKS 
 

Since YOLO was first launched in 2015 by Redmon et al. 

(2015), much research has been done on YOLO. In fact, 

until recently, the latest version of YOLO was YOLOv8, 

developed by Ultralytics (YOLOv8 - Ultralytics | 

Revolutionizing the World of Vision AI). However, in 

several previous studies, YOLOv7 still dominates in object 

detection. As reported by Pham et al. (2022), which 

proposes to collect and label road damage data using Google 

street view and use YOLOv7 together with coordinate 

attention and related accuracy fine-tuning techniques such 

as label smoothing and ensemble method to train deep 

learning models for automatic road damage detection and 

classification. This approach produces accurate results in 

testing 74.1% of the dataset used. YOLOv7's excellent 

performance makes it possible to implement object 

detection in agricultural areas. One of the research studies 

was conducted by Gallo et al. (2023). Deep weed object 

detection was accomplished by putting the most recent 

YOLOv7 to the test on both the chicory plant (CP) and 

Lincoln beet (LB) datasets, for which a previous version of 

YOLO was used to map weeds and crops. Furthermore, the 

CP dataset was trained using the YOLO version and others 

with mean average precision (mAP)@0.5 scores, recall, and 

precision, which are low. However, after using YOLOv7 on 

the LB dataset, the values increased the mAP@0.5 scores 

from 51% to 61%, 68% to 74%, and 35% to 48% for the 

total mAP, mAP for weeds, and mAP for sugar beets, 

respectively. 

Furthermore, some researchers on object detection in 

agriculture also use YOLOv7, for example, Wu et al. (2022), 

which detects camellia oleifera fruit in complex scenes by 

using YOLOv7 and data augmentation. In their experiment, 

the data augmentation YOLOv7 (DA-YOLOv7) model was 

created by combining the YOLOv7 network with various 

data augmentation methods. With mAP, precision, recall, f1 

score, and average detection time of 96.03%, 94.76%, 

95.54%, 95.15%, and 0.025 s per image, the DA-YOLOv7 

model had the best detection performance and a strong 
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generalization ability in complex scenes. This is 

undoubtedly another finding, given YOLOv7's good 

performance detecting objects in agricultural areas. The 

same thing was done by Gumma and Yuan (2023), who 

compared YOLOv7 and YOLOv4 regarding image 

annotation quality for apple flower bud classification. In his 

research, YOLOv7 outperformed YOLOv4 for all growth 

stages and all training image annotation quality levels on the 

same test dataset. YOLOv7 achieved a 0.80 mAP with 

100% training image annotation quality but only a 0.63 

mAP with only 5% training image annotation quality. 

Depending on the apple flower bud growth stage and 

training image annotation quality, YOLOv7 improved 

YOLOv4 APs by 1.52% to 166.48% and mAPs by 3.43% to 

53.45%. 

Moreover, Siddique et al. (2023) conducted research 

using the YOLOv7 tiny model, in which the YOLOv7 tiny 

approach was used in the Jetson nano edge device to detect 

Bangla sign language in real-time. As a result of the 

proposed system, Bangladeshi people with hearing 

impairments will be able to easily communicate effectively, 

simply, and cost-effectively. Various deep learning models 

and architectures have been developed concerning object 

detection. One of the best-known is YOLOv7 (Wang et al., 

2022), where this model can run computational processes 

that detect objects in images or videos faster and more 

accurately. The previous version, YOLOv5, was also 

published by Dai et al. (2022) and used to detect potato leaf 

diseases. They proposed a hybrid YOLO v5 model with data 

augmentation and activation of the compression mechanism 

to identify potato disease. 

In contrast to previous research, our research focuses on 

building mobile-based models using YOLOv7 tiny. Based 

on our proposed method, we train the model using multi-

scale techniques and adjust advanced data augmentation 

like Mosaic and MixUp to improve the accuracy of the 

YOLO tiny model. These results are certainly a 

recommended solution for potato farmers to be more 

efficient in recognizing types of disease on potato leaves. 

 

3. MATERIAL AND METHODS 
 

3.1 Deep Learning and Object Detection 
Besides machine learning in agriculture (Maya Gopal and 

Bhargavi, 2019; Liu, 2020; Ben Ayed and Hanana, 2021), 

deep learning (LeCun et al., 2015; Popkova, 2022) is one of 

the parts of AI that is the basis for solving computer vision 

problems. Deep learning, multi-layered computing in 

decision-making, is a trend that continues to evolve for the 

better. Types of deep learning such as supervised, 

unsupervised, and reinforcement learning (RL) are driving 

researchers to continue developing more optimal models. 

Object detection is a computer vision technique that locates 

objects in images or videos. Object detection algorithms 

typically use machine learning or deep learning to produce 

meaningful results. We can quickly recognize and locate 

objects of interest when we look at images or videos. Object 

detection aims to use a computer to replicate this 

intelligence. Object detection (Tong et al., 2020; Joseph et 

al., 2021; Zou et al., 2023) has many applications in 

computer vision, including detecting leaf conditions in 

agriculture. In the internet of things (IoT) age, agricultural 

sectors also keep up with developments by using devices 

such as drones, webcams, or smartphones to monitor crop 

development. Potato leaf detection with the YOLOv7 tiny 

model could be one of the tools available to farmers to 

detect the condition of potato leaves in real-time. 
 

3.2 YOLOv7 
In July 2022, YOLOv7 (Wang et al., 2022) was released, 

and it achieves state-of-the-art performance and is trained to 

detect the generic 80 classes in the MS COCO dataset for 

real-time object detection. The model has six variants, 

ranging from the YOLOv7 (the fastest, smallest, and least 

accurate) to the beefy YOLOv7-E6E. (slowest, largest, and 

most accurate). The differences between the model sizes are 

the image input resolution, the number of anchors, the 

number of parameters, and the number of layers. Moreover, 

basic YOLOv7 consists of the backbone, neck, and head in 

Fig. 1. 

The E-elan based on elan (Zhang et al., 2022) is the 

foundation of YOLOv7. The E-elan architecture of 

YOLOv7 allows the model to learn more effectively while 

maintaining the original gradient route by employing the 

"expand, shuffle, and merge cardinality". Moreover, E-elan 

only modifies the architecture of the computational block, 

leaving the architecture of the transition layer untouched. 

The E-elan strategy uses group convolution to increase the 

number of computational blocks and the channel. It uses the 

same group parameter and channel multiplier for all 

computational blocks within a computational layer. The 

feature map computed by each computational block is then 

shuffled into g groups based on the set group parameter g 

and concatenated together. The number of channels in each 

group of feature maps will be the same as in the original 

architecture at this time. Finally, add g feature map groups 

to perform merge cardinality. E-elan can guide different 

groups of computational blocks to learn more diverse 

features while maintaining the original elan design 

architecture. 

 

3.3 Flowchart Proposed Method 
Our methodology for conducting this experiment consists 

of three phases: data, training, and inferences. Fig. 2 shows 

the specifics of our methodological process. 

In Fig. 2, the first stage is preparing a dataset. Our 

experiment took the potato leaf dataset from the Roboflow 

open dataset (Roboflow Universe: Open Source Computer 

Vision Community). The data format has been adapted to 

YOLOv7 from the Roboflow website. Furthermore, we 
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store the data we use in this experiment on GitHub (GitHub 

-Kakarads/YOLOv7-potato-leaf: Dataset YOLOv7-potato-

leaf). After the dataset has been obtained, the next step is 

pre-processing to prepare the data in YOLOv7 format. We 

carefully checked the collected data and then divided it into 

two parts: training data and test data. Our split data ratio is 

80 : 20 for training and testing. In addition, data annotation 

is also performed to meet the criteria for deep learning 

computational processes on YOLOv7. In this data phase, we 

make parameter adjustments to customize the dataset that 

will be processed later in the training process. In this phase 

of data expansion, we perform three types of expansion, 

namely Mosaic augmentation (Wei et al., 2020)  (with a 5% 

probability of MixUp augmentation), which is used for the 

basic YOLOv7 tiny model (training 1). Next is the 

augmentation MixUp without Mosaic augmentation which 

will be tried to do training 2 in the next step. Finally, we use 

the augmentation mix data between Mosaic and MixUp 

augmentation to see the performance of the YOLOv7 tiny 

model. The augmentation dataset is trained in the training 1, 

2, and 3 schemes, as shown in Fig. 2. The purpose of these 

different training settings is to compare the training results 

and determine which augmentation is most effective. The 

next phase is inference, which comes after training. 

The purpose of the inference phase is to evaluate the 

trained model. The model we have successfully trained is 

used to test the object detection performance of the tiny 

model used in the form of images and videos. Based on Fig. 

2, we performed the inference stage using the YOLOv7 

format model, then converted to ONNX format and drew 

conclusions. The final step was to convert the model to TF 

Lite format to use a lightweight model. In the following 

subsections, we explain the details of the individual 

processes. In addition, the results of this methodology can 

be viewed in the results section. 

 

 
Fig. 1. YOLOv7 basic architecture 

 

 
Fig. 2. Proposed methods 
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3.4 Dataset and Experimental Setup 
In conducting this experiment, we used an open dataset 

from Roboflow. The description of the dataset furthermore, 

we convert the results of our improved model into TF Lite 

format for lightweight that can be used in real-time on land 

to detect the condition of potato leaves in real-time, which 

consists of three classes, which can be seen in Table 1. The 

dataset was split into training and validation, which 

consisted of 4133 and 1034 images, respectively. Also, we 

use the input image with a resolution of 640 × 640, which 

will later be resized to the resolution in the training with 

multi-scale. 

In addition, we use environmental settings related to the 

hardware and software used to train the model to process 

this experiment. We typically use an Intel 11th generation 

CPU with an i9 11900K processor, NVIDIA GeForce RTX 

3080 GPU, and 32GB of RAM. 

Furthermore, we set the parameters for data augmentation 

to see the performance of the training model. More details 

can be seen in Table 2. Table 2 illustrates the augmentation 

data settings where the original model uses a 100% 

probability for Mosaic augmentation and 5% MixUp. In this 

original model, the dominant augmentation uses Mosaic. 

This performance needs to be improved by using MixUp 

augmentation. So, we also use a combination (100% 

probability) of Mosaic and MixUp and 100% MixUp in 

conducting training. 

 

Table 1. Potato leaf dataset 

No. Class Image Resolution 

1 Early blight 

 

640 × 640 

2 Late blight 

 

640 × 640 

3 Healthy 

 

640 × 640 

 

Table 2. Parameters setting for data augmentation based on Mosaic and MixUp 

Model Training 
Mosaic 

probability 

MixUp 

probability 

Original tiny model Training 1 100% 5% 

Custom tiny model Training 2 - 100% 

Custom tiny model Training 3 100% 100% 

3.5 Model and Parameters 
The model used in this experiment is the YOLOv7 tiny 

model to identify diseases on potato leaves. The description 

of the model, along with the parameters when we do the 

training, is the default of the original YOLOv7 tiny model. 

In addition, while conducting this experiment, we also 

changed some parameter values to improve model 

performance in detecting the condition of potato leaf. We 

will go into more detail on data augmentation in the 

following subsection. 

 

3.6 Fixed-scale and Multi-scale 
When training, we combine fixed-scale and multi-scale 

strategies to achieve more accurate object detection results 

with the YOLOv7 tiny model. Fixed-scale means that the 

input image used for training has only one size, 640 × 640 
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pixels. To improve accuracy in recognizing potato leaves, 

we use variations in the size of the input image ranging from 

640 to 1024 pixels in multi-scale. Details on the use of fixed 

and multi-scale during training are described in detail in 

Table 4. In detail, the number of epochs on the multi-scale 

is 300 because the training time needs to be longer to get 

maximum results. The results of the longer training effect 

can be viewed in the results section. 

 

3.7 MixUp Augmentation 
Data augmentation was introduced in 1998 (Simard et al., 

1998) and formalized by some researchers (Chapelle et al., 

2000), another data augmentation technique named MixUp 

by (Zhang et al., 2017). In processing the training data, the 

augmentation technique used when training the model is 

MixUp, not Mosaic. MixUp was chosen because it linearly 

interpolates input examples and the corresponding labels. 

Thus, Mixup interpolates linearly in the input space and 

similarly in the associated target space. This improves 

model robustness to corrupt labels, avoids overfitting 

because virtual labels are difficult to memorize, and 

increases generalization. In processing potato leaf as an 

input image, the part of the leaf that indicates disease is 

usually on the tip side. If the information from the input 

image is mixed randomly, this will undoubtedly be the 

robustness of the process in the YOLOv7 tiny model. 

In order to improve the performance of the tiny model, 

MixUp is being used as the primary data source for the 

following data augmentation tasks: to the exact dimensions 

and resize the images. Take a sample from the Beta 

distribution to get the value, multiply all the values in image 

1 by image 2 by 1, and so forth, and combine the annotations 

to create the final annotations for the image after adding the 

two images. Equations (1) and (2) of MixUp used to 

perform data augmentation. 

 

                     (1) 

  

𝑦̃ =   𝜆𝑦𝑗  +  (1 − 𝜆) 𝑦𝑗                         (2) 

 

Where 𝑥𝑖 , 𝑥𝑗 are raw input vectors and 𝑦𝑖 , 𝑦𝑗 are one-

hot label encodings. Furthermore, note that the lambda 

values are values with the [0, 1] range and are sampled from 

the Beta distribution. To see the augmentation results using 

MixUp on the potato leaf dataset can be seen in Fig. 3. 

 

 
Fig. 3. MixUp image 

3.8 TensorFlow Lite 
According to the TensorFlow website (TensorFlow Lite | 

ML for Mobile and Edge Devices), TensorFlow Lite is a 

mobile library for deploying models on mobile, 

microcontrollers, and other edge devices. In this experiment, 

in addition to training the model to achieve high accuracy, 

inference must be made. We decided to turn the YOLOv7 

tiny model into TF Lite in our research so that it can be built 

on top of, for example, Android-based real-time 

applications. When preparing the TF Lite file, we first 

convert the tiny model of YOLO to ONNX format and then 

convert it to TF Lite format. Another goal is to enable 

farmers to use smartphones to detect the condition of potato 

leaves using the YOLOv7 tiny model. 

 

3.9 Metrics evaluation 
The mAP metric was used to evaluate this YOLOv7-

based model. In addition, the calculation of mAP requires 

intersection over union (IOU), precision, recall, precision 

recall curve, and average precision (AP). Object detection 

models predict the bounding box and category of objects in 

an image. IOU determines if the bounding box was correctly 

predicted. The IOU indicates how much-bounding boxes 

overlap. This overlap ratio between the areas of two 

bounding boxes becomes 1.0 in case of an exact match and 

0.0 when there is no overlap. IOU formula can be seen in 

Equation (3). 

 

                   (3) 

 

Precision is a model's ability to identify only the relevant 

objects. A model that does not produce false positives has 

an accuracy of 1.0. However, the value is 1.0 even if there 

are undetected or unrecognized bounding boxes that should 

be detected. The precision formula can be seen in Equation 

(4). 

 

 

  𝑥̃ =   𝜆𝑥𝑖  + (1 − 𝜆)  𝑥𝑗  1 

𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 1 
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(4) 

 

The ability of a model to find all ground truth bounding 

boxes on potato leaf images is called recall. A model with a 

recall of 1.0 produces no false negatives (undetected 

bounding boxes that should be detected). Even if an "over 

detection" and the incorrect bounding box are detected, the 

recall will remain at 1.0. Recall formula can be seen in 

Equation (5). 

 

       (5) 

 

 

The precision-recall curve is a graph that shows precision 

on the vertical axis and recall on the horizontal axis, while 

the mAP is calculated by setting the confidence threshold. 

The mAP is calculated by calculating each class's average 

precision (AP) and then averaging it across multiple classes. 

The mAP considers both false positives (FP) and false 

negatives (FN) and incorporates the trade-off between 

precision and recall (FN). Because of this property, mAP is 

a good metric for most detection applications. mAP formula 

can be seen in Equation (6). 

 

                       (6) 

 

 

 

4. RESULTS AND DISCUSSION 
 

4.1 Results 
We conduct the training using two techniques, namely 

fixed-scale, and multi-scale. For multi-scale, we use more 

iterations to get maximum results from our improved model. 

To see the results of the improvements to the model we 

trained, we used the recall, precision, and mAP metrics to 

see the model's effectiveness in detecting conditions on 

potato leaves. 

To detect the condition of potato leaves, we use a tiny 

model that has been trained. The results of comparing the 

trained original tiny and tiny models are shown in Fig. 4 (a, 

b, and c). The detection of the potato leaf image is shown in 

Fig. 4(a), where the original model was not very detailed in 

the detection because only one class was displayed. Even 

though the potato leaves in this image are in various states. 

There is an improvement from the model in performing 

detection, where more than one class has been successfully 

detected in Fig. 4(b). Furthermore, with multi-scale, the 

model could detect more potato leaf conditions in Fig. 4(c) 

compared to the others.   

Overall, the images used to detect potato leaf conditions 

show that the improved model we built significantly 

impacted the detection of potato leaf conditions. The 

original YOLOv7 model could not detect the condition of 

the leaves in detail, while the improved model could detect 

the condition of the potato leaves in more detail. 

 

   
(a)                     (b)                              (c) 

Fig. 4. (a) original model, (b) fixed-scale training, (c) multi-scale training 

                                          𝑚𝐴𝑃 =  
1

𝑛
 𝐴𝑃𝑖

𝑛

𝑖=1

 1 

     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 =  

𝑇𝑃

𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 1 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 =  

𝑇𝑃

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 1 
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(a)         (b)         (c) 

Fig. 5. (a) original model, (b) fixed-scale model, (c) multi-scale model 

 

Following that, we created a test to detect the condition 

of the potato leaves using videos we created ourselves. The 

results of the inference on the potato leaf video are shown 

in Fig. 5. For the YOLO7 tiny model, which we improved 

by using the MixUp augmentation and multi-scale training, 

the video detection accuracy is better than the usual tiny 

model. Fig. 5 shows the improved inference results of the 

tiny model. As seen in the three images (a, b, c), the 

detection in the exact second in the video differs from the 

detection by the model. The normal (a) tiny model cannot 

detect leaf potatoes, then the tiny model trained on a fixed-

scale (b) image detects leaf blight states, but when the tiny 

model trained on a multi-scale (c) image, the detection is 

carried out more details. This increase occurs because 

MixUp augmentation and training use multi-scale images 

Moreover, the results of comparing the YOLOv7 tiny 

model can be seen in Table 3. For more metrics 

performance, see Figs. 6–9. The original tiny model with the 

original augmentation data parameter settings resulted in a 

mAP of 0.94325 after 100 iterations during training. In this 

iteration with the original model, the input image is trained 

using fixed size, 640 × 640. In 300 iterations, where the 

input image was made multi-scale with between 320 × 320 

and 1024 × 1024, the model produced an accuracy of 

0.96200. To increase the model's accuracy, we tried to make 

a hybrid augmentation where, besides Mosaic, we added 

MixUp augmentation to the input image to be trained. As a 

result, these two augmentation data combinations did not 

work well in the potato leaf dataset, causing the model 

performance to decrease to 0.90975 and 0.90625 for 100 

and 300 iterations, respectively. Seeing this change, 

according to the methodology we proposed in this research, 

we change the augmentation only by using MixUp for 100 

and 300 iterations. We also use a training strategy with 

augmentation data using a fixed-scale and multi-scale for 

image input. Furthermore, this strategy can increase the 

performance of the tiny model to 0.96975 and 0.97525. This 

improved accuracy is due to the MixUp augmentation, 

which we will discuss in the discussion section. 

 

Table 3. Comparison of mAP of different improved models 

Model Method Epochs Recall Precision mAP@@.5 : .95 

YOLOv7 tiny Original with fixed-scale 100 0.9877 0.9987 0.94325 

YOLOv7 tiny Original with multi-scale 300 0.9967 0.9987 0.96200 

YOLOv7 tiny Augmented (MixUp) 100 0.9937 0.9903 0.96975 

YOLOv7 tiny Augmented (MixUp) multi-scale 300 0.9960 0.9930 0.97525 
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Fig. 6. Metrics performance for fixed-scale training with MixUp augmentation 

 

 
Fig. 7. Confusion matrix for fixed-scale training with MixUp augmentation 
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Fig. 8. Metrics performance for multi-scale training with MixUp augmentation 

 

 
Fig. 9. Confusion matrix for multi-scale training with MixUp augmentation 
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After improvising the tiny model's performance, the next 

step is to make inferences using a TF Lite-based model. Fig. 

10 shows the results of the inference model in TF Lite 

format. To get a TF Lite-based model, the first step is to 

convert the YOLOv7-based model to an ONNX-based 

model. Next, the ONNX format is changed to TF Lite. The 

TF Lite results in Fig. 10 perfectly predict healthy potato 

leaves. Furthermore, to compare the performance of the TF 

Lite-based model where the model is trained using a multi-

scale input image, it can be seen in Fig. 10 (a) and (b). 

In conclusion, converting a YOLOv7 tiny model to TF 

Lite brings several advantages for deploying object 

detection capabilities on resource-constrained devices. The 

process involves leveraging TF Lite's optimization 

techniques, such as quantization and model compression, to 

reduce the model size and ensure efficient inference. This 

enables real-time object detection on mobile devices while 

maintaining a low memory and computational footprint.  

By utilizing TF Lite, developers can achieve fast and 

reliable on-device inference, allowing for applications like 

real-time image processing and object recognition without 

a constant internet connection. The platform independence 

of TF Lite facilitates deployment across various devices and 

operating systems, contributing to the solution's versatility. 

Additionally, the TF Lite ecosystem offers tools and 

support for custom operators, enabling fine-tuning and 

optimization specific to the YOLOv7 tiny model or other 

object detection architectures. The ongoing community 

contributions to TF Lite ensure developers have access to 

the latest advancements, making TF Lite a valuable 

framework for implementing efficient and accurate mobile 

object detection solutions, especially in agriculture for 

potato leaf disease detection. 

 

 
          (a)                   (b)  

Fig. 10. (a) Fixed-scale inference, (b) multi-scale inference 

 

4.2 Discussion 
As a result of MixUp augmentation, the YOLOv7 tiny 

model proved more robust. Three conditions of potato 

leaves, namely early blight, healthy, and late blight, were 

mixed up randomly using MixUp augmentation. In more 

detail, MixUp generates combinations of random image pair 

weights from training data on potato leaf images. As 

illustrated in Fig. 3, the random combination allows the 

neural network to increase the generalization of the 

condition detection of potato leaves. This is because the 

randomness in the image pair allows the joining of each 

class in the image, such as early blight and healthy, healthy, 

and late blight, or early blight and late blight. 

Furthermore, the robustness of the model shows an 

increase in accuracy in making predictions by conducting 

training using multi-scale images. We conducted a study 

that found that with a longer training time, multi-scale on 

the trained image can improve the model's performance in 

performing detection. This is because the image size is made 

from the smallest (320 pixels) to the largest (1024 pixels) 

during training. We conducted a study that showed that, with 

varying sizes, the model will learn better in identifying 

familiar potato leaf objects. 

In our study, we successfully used MixUp augmentation 

rather than Mosaic augmentation or combined these two 

augmentations because the results were not better in 

comparison. The results using the Mosaic and MixUp 

augmentation (training using an original tiny model) can be 

seen in Table 4. The results obtained from combining these 

two augmentations make the mAP lower than the basic tiny 

model. 

To conclude the discussion, seeing the performance 

improvement of the YOLOv7 tiny model in our experiments, 

the results of the model's conversion can be further 

referenced using mobile platform-based devices. The 

purpose of this inference is to be applied in real-time by 

farmers in agriculture. Furthermore, when it is used, the 

results of detecting the condition of potato leaves can be 

known quickly so that decisions can be made to help the 

production process and better harvests. 

In carrying out this experiment, we also carried out 

comparisons with previous state-of-the-art research. In 

comparison, the techniques used by previous researchers are 

undoubtedly different, and the datasets used are also 

different. However, to see how object detection research is 

regarding potato leaf detection, we present it in Table 5. 

 

 

Table 4. Result using Mosaic and MixUp augmentation 

Model Method Epochs Recall Precision mAP@@.5 : .95 

YOLOv7 tiny Augmented (Mosaic-MixUp) - fixed-scale 100 0.9790        0.9760         0.90975 

YOLOv7 tiny Augmented (Mosaic-MixUp) - multi scale 100 0.9703        0.9477      0.90625 
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Table 5. Comparison with state of the art research on potato leaf detection 

Works Dataset Technique 
Average 

precision 

Oishi et al., 2021 Potato leaf dataset 
Portable video and deep 

learning models 
0.9090 

Mohandas et al., 2021 
Tomato, mango strawberry, beans 

and potato leaves 
YOLOv4-tiny 0.6331 

Chairma Lakshmi et al., 2023 Plant diseases dataset (potato leaf) YOLOv3 0.9390 

This study Potato leaf dataset YOLOv7 tiny original 0.9753 

Table 5 illustrates that our experiment is better at 

producing average precision. However, when comparing the 

result with other research, with all due respect, it must be 

underlined that in carrying out object detection, the 

techniques and datasets used in each experiment are 

different according to needs. In addition, to produce good 

performance in identifying diseases on potato leaves, it is 

necessary to develop other techniques to produce better 

model performance. The YOLOv7 tiny model is highly 

recommended for producing object classification 

performance with small resources. This is a 

recommendation in the future so that it can be implemented 

in the agricultural sector to overcome existing problems. 

 

5. CONCLUSION 
 

In this experiment, we improved the YOLOv7 tiny model 

to detect conditions in potato leaves. According to our 

findings, the tiny model in YOLOv7 can be improved for 

the potato leaf dataset if the training uses only one data 

augmentation, MixUp. When using the original tiny model 

with the Mosaic augmentation, the model's accuracy and 

inference do not improve as expected. Another strategy we 

employ, combining Mosaic and MixUp data augmentation, 

causes model accuracy and inference to fail. Another 

finding from our research is that multi-scale training with 

more epochs can help the model perform well in accuracy 

and inference. In addition, the focus of our experiments is 

on how to make the tiny model on YOLOv7 work properly 

on mobile devices. In this experiment, we successfully 

implement the TF Lite format for mobile devices, which is 

extremely useful for developers creating applications to 

detect potato leaf conditions. In terms of future development, 

the results of our improvement model can be used in the 

field by applying it to agricultural land using more 

embedded systems or drones. 
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