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ABSTRACT 
 

Our study focuses on the diversity of user preferences and the dynamics of 

the user-product relationship, particularly in the context of periodic product 

usage. The principal objective of this research is to explore multi-objective 

optimization for a recommendation system tailored to periodic products. Our 

methodology employs a multi-objective reinforcement learning (MORL) 

algorithm. Additionally, we have proposed integrating the optimistic linear 

support algorithm into a MORL algorithm to collect good weight vectors. We 

also proposed using user clustering to ensure the model remembers user’s 

preferences in early episodes. The findings of this research demonstrate that our 

proposed multi-objective approach yields significantly higher effectiveness 

when contrasted with conventional single-objective methodologies. 

 

Keywords: Deep reinforcement learning, Multi-objective recommendation 

system, Optimistic linear support, Periodic product 

 

 

1. INTRODUCTION 
 

Recommender systems (RS) have become a highly studied and implemented 

field in numerous domains in recent years. The main goal of RS is to offer a 

customized experience and enhance the interaction between users and the 

system by using interaction history, users’ demographic information, and other 

factors to choose the most appropriate products from a large inventory. RS can 

be considered a pivotal technology that has played a significant role in the 

creation of billion-dollar empires like YouTube (Covington et al., 2016), 

Amazon (Linden et al., 2003), Netflix (Gomez-Uribe and Hunt, 2015), and 

others. 

Periodic products (periodic items) refer to items that can be purchased and 

selected by customers on a predetermined cycle. These products are also 

recommended based on a schedule while ensuring their essential presence in the 

market. In contrast to non-periodic products, such as those found on e-

commerce platforms or in the entertainment industry, where customers rarely 

repurchase or select the same item, and these products are seldom resold in a 

cyclical manner. An example of periodic products is telecommunications 

packages. These are monthly subscription-based products that are automatically 

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
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renewed, providing customers with the option to continue, 

cancel, or switch to a different package at their discretion. 

Some other examples include regularly used supplements or 

seasonal household products and clothing. In this paper, we 

focus on optimizing the recommender system for a group of 

products known as periodic products. 

Multi-object is understood as needing more than one goal 

in each problem we want to solve, especially in the problem 

of RS, multi-object is directly related to the product 

suggested to customers usually a single goal is to suggest 

products that match the user's preferences. However, with a 

variety of products, some other potential goals can be 

targeted such as suggesting high-value, profitable products 

and suggesting new products. In particular, in the problem 

of suggesting phone packages, applying a multi-object 

solution will help customers receive a suitable package, 

which can bring a lot of profit to both service providers. 

In 2021, Zheng and Wang (2021) conducted a survey on 

multi-objective recommendation system (MORS), where 

not only the accuracy of predicting user-preferred products 

but also the diversity, novelty, and fairness of the system 

were modeled under objective functions and simultaneously 

optimized during training. There are two main approaches 

to solving multi-objective optimization problems in 

recommender systems: Scalarization (Jahn, 1985) and 

multi-objective evolutionary algorithms (MOEA) (Von 

Lucken et al., 2014). For the first approach, a commonly 

used method is weighted sum, where objective functions are 

linearly combined into a sum function 𝐿 , and the 

recommendation system is optimized based on 𝐿. Wu et al. 

(2022) developed a fairness-aware recommendation system 

that tailors recommendations to meet user needs while 

ensuring fairness across different demographic user groups. 

Cui et al. (2017) utilized the NSGA-II algorithm to avoid 

conflicts when optimizing both accuracy and diversity 

objective functions for recommended products 

simultaneously. 

Reinforcement learning (RL) is a subfield of machine 

learning that investigates the optimal decision-making 

process of an agent within a given environment in order to 

maximize a certain long-term reward (Arulkumaran et al., 

2017). The combination of RS and RL has recently provided 

new opportunities to improve the accuracy of predicting 

client preferences for items (Afsar et al., 2022). The unique 

ability of a RL agent to gain knowledge from incentives 

provided by the environment without the need for training 

data makes RL especially suitable for handling 

recommendation problems. When discussing the 

construction of RS, the term “agent” refers to the system 

itself, the “environment” refers to the user-item dataset, and 

the “reward” represents the level of satisfaction the user 

experiences with the recommendation (Hou et al., 2023). 

Leading IT firms are implementing RS based on RL to 

improve the immediate user experience and consistently 

refresh recommendations for the most appropriate products 

(Mulani et al., 2020). 

The first attempt to utilize RL to enhance the quality of 

recommendations was likely WebWatcher (Joachims et al., 

1997). The authors framed the site recommendation 

problem as a RL problem and employed Q-learning to 

improve the precision of their underlying site 

recommendation system. They utilized a similarity 

algorithm, which relied on the TF-IDF index, to recommend 

pages that demonstrate a substantial degree of resemblance 

to the user’s interests. There is a growing emphasis on 

recommendation models that include deep learning 

approaches, such as deep Q-network (DQN), double deep 

Q-network (DDQN), or deep deterministic policy gradient 

(DDPG). The utilization of DDQN in deep recommendation 

news (DRN) (Zheng et al., 2018) tackles the problem of 

volatile changes in news content and user preferences. They 

utilized two Q networks and partitioned the Q function into 

distinct value and advantage functions; in addition to the 

current indices, such as click through rate (CTR), the 

incentives function now incorporates a new index termed 

user engagement. This index quantifies the rate at which a 

user engages with the system. Instead of employing greedy 

algorithms with epsilon, the upper confidence bound is 

utilized for probing. The list-wise recommendation 

framework based on deep reinforcement learning (LIRD) 

(Zhao et al., 2017) initially utilized a random environment 

simulator to generate recommendations. They subsequently 

employed an actor-critic framework to create these 

recommendations. The simulator generated a reward by 

considering a specific combination of state and action, 

employing the principle of collaborative filtering. This 

method implies that individuals with common interests are 

likely to have a shared interest in similar products. 

Furthermore, DDPG was utilized for parameter 

optimization. Within the deep reinforcement 

recommendation (DRR) architecture (Liu et al., 2018), the 

agent acquires a state from the state representation module 

and generates actions through the utilization of two rectified 

linear unit (ReLU) layers and one hyperbolic tangent (Tanh) 

layer. The state module comprised three structures: item-

based items, user-based items, and user-based average items. 

The critic utilized a DQN module consisting of two rectified 

linear unit (ReLU) layers to evaluate the action generated 

by the actor. In the end, the DDPG method was used to train 

the model. 

In recent years, there have been numerous studies related 

to multi-objective reinforcement learning (MORL). The 

goal of MORL is to learn a policy that optimizes multiple 

objectives where these objectives may conflict with each 

other (Roijers et al., 2013). Unlike traditional RL, where the 

agent optimizes a policy to achieve an optimal scalar reward 

value, an agent in MORL learns to achieve an optimal vector 

reward value based on predefined preference criteria among 

multiple objectives (Hayes et al., 2022). However, there 

have been few applications of MORL in RS due to the 

complexity of designing objective functions and creating 

reward functions that simultaneously ensure the accuracy of 

predictions and other metrics like fairness, diversity, ... of 
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recommended products (Paparella et al., 2023). However, in 

order to accomplish both goals, a differentiable function that 

takes into account both objectives is necessary, which might 

be challenging. Additionally, applying RL to RS faces 

challenges when dealing with an immensely large number 

of products and users, making the modeling of states 

particularly challenging (Song et al., 2014). Furthermore, 

when utilizing MORL frameworks, one must generate 

corresponding sets of weights for each objective so that the 

agent can prioritize the selection of products aligned with 

those objectives (Hayes et al., 2022). However, creating an 

excessively large search space for weights can escalate the 

cost and training time of the model. 

Modeling the recommendation of routes as a Markov 

decision process (MDP) has introduced a new direction in 

applying MORL to location-based and personalized route 

recommendations (Sarker et al., 2020; Stamenkovic et al., 

2022). Sarker et al. (2020) constructed a multi-objective 

route recommendation system to optimize travel routes with 

respect to time, cost, and air quality simultaneously. A Q-

learning network was trained to maximize rewards, 

considering user preferences and meeting multiple criteria 

while simulating real geo-tagged data sources (traffic, 

weather, points of interest, and GPS traces). Chen et al. 

(2023) employed an actor - critic network to generate 

optimal travel routes, simultaneously considering accuracy, 

popularity, and diversity for locations, thereby maximizing 

the composite reward. Stamenkovic et al. (2022), for the 

first time, applied the MORL framework to create three Q-

value functions representing the accuracy, novelty, and 

diversity of recommendations. The system optimization was 

performed through scalarized deep Q-learning. 

Constructing multiple rewards corresponding to each 

criterion ensures that the system maintains accuracy in 

predicting products while ensuring other criteria such as 

fairness, novelty, diversity, etc. Recently, Keat et al. (2022) 

proposed a framework applying deep reinforcement 

learning (DRL) to optimize MORS with the aim of creating 

an optimal system across conflicting metrics such as 

precision, novelty, and diversity. The authors utilize DQN 

to address the optimization problem for MORS, achieving 

higher performance compared to optimizing recommender 

systems using multi-objective optimization algorithms like 

the probabilistic-based multi-objective approach based on 

evolutionary algorithms (PMOEA). 

In this paper, we will employ a novel MORL framework 

to apply it to the construction of a recommender system. The 

principal contributions of our study are delineated as 

follows: 

• Our research offers a comprehensive solution for the 

effective implementation of reinforcement learning 

algorithms within recommender systems. This involves 

the meticulous organization of data, the precise definition 

of state vectors, actions, and rewards that are closely 

aligned with user preferences, and the careful preparation 

of training datasets. 

• We elaborate on the implementation of a user clustering 

mechanism. This strategy is designed to expedite the 

training process and enhance the efficacy of the training 

outcomes. We introduce a unique representation for each 

user based on their preference vector, taking into account 

the frequency of interactions to identify the most 

representative users. 

• The study goes deeper into explaining the view of 

leveraging the optimistic linear support (OLS) algorithm 

in the MORL problem, and then our setup integrated OLS 

algorithm to envelope multi-objective Q-learning (EMOQ) 

algorithm to improve the training process. 

In the remainder of this article, this paper presented basic 

knowledge about multi-objective optimization problems, 

reinforcement learning, MORL, and the optimistic linear 

support algorithm. In section 2.2 - Proposed method about 

modelling to reinforcement learning problem, we will 

divide it into two parts: "modeling based on reinforcement 

framework" details the modeling process, training, and 

applying the trained model to the recommender system; Part 

3 of section 2, "multi-object recommendation based on RL" 

will present the application of the OLS algorithm to the 

EMOQ algorithm to solve the MORL problem, and this part 

also details the construction of the user clustering block. 

Finally, in section 3 – Result and Discussion, we will present 

the results on real data sets, both single-object and multi-

object cases. 

 

2. MATERIALS AND METHODS 
 

2.1 Materials and Methods 

2.1.1 Multi-objective problem 
Consider the unconstrained multi-objective optimization 

problem (MOP): 

𝑀𝑖𝑛𝜃∈ℝ𝑛ℱ(𝜃) = 𝑀𝑖𝑛𝜃∈ℝ𝑛 [

ℱ1(𝜃)

ℱ2(𝜃)
⋮

ℱ𝑚(𝜃)

], 

where ℱ: ℝ𝑛 → ℝ𝑚 is a continuously differentiable vector 

function, 𝑚 is the number of objectives and 𝜃 ∈ ℝ𝑛. 

A solution 𝜃∗ is said to dominate another solution 𝜃 if 

∀ℱ𝑖(𝜃∗) ≤ ℱ𝑖(𝜃), 𝑖 = 1, … , 𝑛 , and there exists ℱ𝑗(𝜃∗) <

ℱ𝑗(𝜃), 𝑖 = 1, … , 𝑚 . A solution 𝜃∗  is a Pareto solution if 

there is no solution 𝜃  that dominates 𝜃∗ ; 𝜃∗  is a local 

Pareto solution of the (MOP) if there exists a neighborhood 

𝑈(𝜃∗) ⊂ ℝ𝑛 such that ∄𝜃 ∈ 𝑈(𝜃∗): ℱ(𝜃) < ℱ(𝜃∗). 

In order to address the multi-objective optimization 

problem, a viable approach is to employ a gradient-based 

optimization strategy. Prior to introducing the algorithm, we 

will elucidate the concept of common descent vectors and 

outline the ideal circumstances for gradient-based solutions 

in MOP. A conventional descent vector can be expressed as 

a convex amalgamation of the gradients of each objective. 

It can be accurately delineated as follows: 

∇𝜃ℱ(θ) = ∑ 𝛼𝑖
𝑛
𝑖=1 ∇𝜃ℱ𝑖(𝜃) [*] 

In the equation, 𝑛 represents the number of objectives, 

𝜃  denotes the model parameters, ∇𝜃ℱ(θ)  stands for the 

common descent vector, ∇𝜃ℱ𝑖(𝜃) is the gradient of the 𝑖𝑡ℎ 
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objective function, and 𝛼𝑖 represents the weight of the 𝑖𝑡ℎ 

gradient. Equation [*] adheres to the following conditions: 

1. 𝛼1, … , 𝛼𝑛 ≥ 0 

2. ∑ 𝛼𝑖
𝑛
𝑖=1 = 1 

 

2.1.2 Reinforcement learning 
RL addresses decision-making problems using a 

mathematical model known as Markov decision process 

(MDP). A MDP is characterized by five components in the 

following manner: (𝒮, 𝒜, 𝒫(⋅∣⋅,⋅), 𝑅(⋅,⋅,⋅), 𝛾) which are the 

state space, action space, transition probability model, 

reward model and discount factor, respectively. 

For a MDP (𝒮, 𝒜, 𝒫(⋅∣⋅,⋅), 𝑅(⋅,⋅,⋅), 𝛾) , the goal is to 

construct a policy 𝜋  to optimize the long-term rewards 

(also known as the return). The return 𝐺𝑡 with a discount 

factor 𝛾 is defined as: 

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + ⋯ = ∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1 

where 𝐺𝑡 is the sum of all rewards received from state 𝑠𝑡 

into the future, where 0 < 𝛾 < 1 discounts future rewards, 

making rewards further in the future less significant. 

Corresponding to the components of MDP, there are five 

terms in RL: agent, environment, state, action, and reward. 

Because often in real problems, the model of the 

environment is not given, so current RL algorithms are 

model-free algorithms, including traditional algorithms Q-

learning, and state-action-reward-state-action (SARSA) 

(Sutton and Barto, 2018) to advanced algorithms. More 

modern mathematics when integrating deep learning such 

as deep Q-network (Mnih et al., 2013), dueling deep Q-

network (Wang et al., 2016). 

 

2.1.3 Multi-objective reinforcement learning problem 

and some approaches 
Similar to the MDP, a multi-objective Markov decision 

process (MOMDP) can be represented by a set of values 

(𝒮, 𝒜, 𝒫, ℛ, 𝛷, 𝑔𝜙) where the 3 quantities (𝒮, 𝒜, 𝒫) have 

the same meaning as in the conventional MDP while the 

reward function ℛ returns the reward in the form of an 𝑚-

dimensional vector with 𝑚  being the number of objects 

need to optimize. 

𝑟(𝑠, 𝑎) = (𝑟𝑖(𝑠, 𝑎))
𝑖=1,𝑚

𝑇
= (

𝑟1(𝑠, 𝑎)

𝑟2(𝑠, 𝑎)
⋯

𝑟𝑚(𝑠, 𝑎)

) ∈ ℝ𝑚 

The term 𝛷 is the space of the weight vector 𝜙 while 

𝑔𝜙 is the preference function that functions to convert the 

reward vector to a scalar value. This preference function 

plays an important role in iterative algorithms when 

supporting choosing actions for the agent. For example, we 

have a linear preference function: 

𝑔ϕ(r(𝑠, 𝑎)) = ϕ𝑇r(𝑠, 𝑎) 

Under the change from scalar to vector of reward term, 

other important terms of the Markov process such as the 

return function of a trajectory, the value function of a state, 

or the Q-value function of a pair action - state also change. 

Specifically, the return value 𝐺(𝜏)  of the trajectory 𝜏 =
(𝑠𝑖 , 𝑎𝑖)𝑖=1,2,...,𝑇−1 ∈ (𝒮 × 𝒜)𝑇−1  is the object function of 

MOMDP problem: 

G(τ) = r0 + 𝛾r1 + 𝛾2r2+. . . 𝛾𝑇−1rT−1 = ∑ 𝛾𝑡

𝑇−1

𝑡=0

rt 

Because the trajectory τ consists of many states and 

actions while the state and action space is often large, even 

continuous, and the environment models are also unknown, 

RL-based algorithms are often used. From the MOMDP 

problem, put into real-life problems, we obtain the MORL 

problem where the reward term is vector instead of scalar. 

The two most common types of algorithms are the single-

policy and the multi-policy algorithm. For large state and 

action spaces, the envelope multi-objective Q-learning 

(EMOQ) (Yang et al., 2019) algorithm below is very 

effective. 

To simplify notation, let r̂ = G(𝜏). Then, the set of return 

values is considered a Pareto surface set, defined as the set 

of satisfactory return vectors with no return vector being 

dominant. 

C∗ = {r̂|∄r′̂ ≽ r̂} 

where r̂ = ∑ 𝛾𝑡
𝑡 r(𝑠𝑡 , 𝑎𝑡) . We aim to find a policy to 

optimize the expected value of the vector reward Vπ =
E(r̂) . A primary approach to solving the multi-objective 

optimization problem for Vπ  is scalarization. When 

employing a linear function class for scalarization of 

Vπ, the obtained optimal solution set is the convex coverage 

sets (CCS) (Roijers et al., 2013). The CCS set is a subset of 

the Pareto surface value set, and for each point in the CCS, 

there always exists a weight vector that makes the 

corresponding scalar value the largest. 

𝙲𝙲𝚂 = {r̂ ∈ C∗|∃ϕ ∈ 𝛷, ϕ𝑇 r̂ ≥ ϕ𝑇r′̂, ∀r′̂ ∈ C∗}. 

 

2.1.4 The envelope multi-objective Q learning 

algorithm 
The envelope multi-objective Q learning algorithm (Yang 

et al., 2019) is a method developed to address the MORL 

challenge. This algorithm is essentially an extension of deep 

reinforcement learning algorithms, which are typically used 

in single-objective contexts, but it modifies the updated 

formula of the Q-network to suit scenarios involving 

multiple objectives. 

Specifically, looking from the perspective of contraction 

mapping and using the Banach fixed point theorem (Yang et 

al., 2019), the following mapping 𝒞  of the Q learning 

algorithm is a contraction mapping and with each tuple 

(state, action) (𝑠, 𝑎), the Q value gradually convergence to 

the fixed point or the fixed value which is an exactly Q value 

of that tuple. The definition of the contraction mapping 𝒞 

and the fixed point of each tuple (𝑠, 𝑎) is illustrated by the 

following formula: 

(𝒞𝑄)(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎) sup
𝑎′∈𝒜

𝑄(𝑠′, 𝑎′) 

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎) sup
𝑎′∈𝒜

𝑄∗(𝑠′, 𝑎′) 
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Along with other theorems about “generalized banach 

fixed-point theorem” in that paper, the authors proved that 

the Q value can still converge to a fixed point. The following 

formula is expression for updating the Q value at 𝑘𝑡ℎ-loop. 

𝑄𝑘+1(𝑠, 𝑎) = 𝒞𝑄𝑘(𝑠, 𝑎) 

In the multi-object problem, Yang et al. (2019) redefined 

variables such as contraction mapping, Q value space, 

metric and fixed point and from there developed the 

following convergence theorems: 

1. The space 𝒳: is the Q-value space 𝒬 ⊆ (𝛷 → ℝ𝑚)𝒮×𝒜, 

typically, the Q value vector is determined by a tuple 

including three terms (𝑠, 𝑎, ϕ) ∈ ℝ𝒮×𝒜×𝛷  and 

Q(𝑠, 𝑎, ϕ) ∈ ℝ𝑚 . Therefore, in the spirit of considering 

𝒬 as a matrix of size 𝒮 × 𝒜, the value of each position 

Q(𝑠, 𝑎) will be considered as a function of the vector of 

the number 𝜙 or Q(𝑠, 𝑎) = ℎ(ϕ): 𝛷 ↦ ℝ𝑚. 

2. Metric 𝑑 : metric in the space 𝒬  above is defined as 

follows: 

𝑑𝐸𝑀𝑂𝑄(Q, Q̂) = sup
𝑠∈𝒮,𝑎∈𝒜,ϕ∈𝛷

|ϕ𝑇[Q(𝑠, 𝑎, ϕ) − Q̂(𝑠, 𝑎, ϕ)]| 

notice that the metric is pseudo-metric and the space 

(𝒬, 𝑑) is the complete metric space. The value ϕ𝑇Q can 

be understood as the compatibility between the Q-value 

vector Q and the weight vector ϕ. 

3. The mapping 𝒞: the mapping 𝒞 is defined as follows: 

(𝒞Q)(𝑠, 𝑎, ϕ) = r(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎)(𝒱Q)(𝑠′, 𝜙) 

where 𝒱 is called the optimal filter and has the role of 

finding the convex hull of the current Pareto surface: 

(𝒱Q)(𝑠′, 𝜙) = argQ sup
𝑎′∈𝒜,ϕ′∈𝛷

ϕ𝑇Q(𝑠, 𝑎′, ϕ′) 

where arg
𝑄

 is the vector Q(𝑠′, 𝑎∗, ϕ∗) where  

(𝑎∗, 𝜙∗) =  argmax
𝑎′∈𝒜,ϕ′∈𝛷

ϕ𝑇Q(𝑠, 𝑎′, ϕ′). 

Besides, the mapping 𝒱 is called an optimal filter for 

each pair (𝑠, ϕ)  then ϕ𝑇(𝒱Q)(𝑠, ϕ) ≥
ϕ𝑇Q(𝑠, 𝑎, ϕ)∀𝑎 ∈ 𝒜 so the set of points determined by 

the filter 𝒱 will form the convex hull of all Q values, 

thus also convex hull of the current set of Pareto surfaces. 

Or in other words, for each weight vector ϕ , 𝒱  will 

create the set of “most relevant” points, thus 𝒱 is the 

convex hull. 

4. The fixed point will be defined by the Q vector that 

maximizes the scalar product between the weight vector 

𝜙 and the expected vector of return value: 

Q∗(𝑠, 𝑎, ϕ)

= arg𝑄sup
𝜋∈𝛱

ϕ𝑇𝔼𝑠′∼𝒫(.|𝑠0=𝑠,𝑎0=𝑎) [∑ 𝛾𝑡

∞

𝑡=0

r(𝑠𝑡 , 𝑎𝑡)] 

 

There are three theorems in proved to show that Q∗ is 

the fixed point that means 𝒞Q∗ = Q∗ , 𝒞  is a contraction 

mapping and for any point Q ∈ 𝒬 will be convergence to 

Q∗ where lim𝑛→∞𝑑𝐸𝑀𝑂𝑄(𝒞𝑛Q, Q∗) = 0. 

The algorithm operates according to the same main steps 

as regular DRL. At each step in each episode in the DQN 

algorithm training process, we will need to determine a new 

action and then perform that action in the environment, 

obtaining a response including a reward. In the new state, 

save it to the replay buffer and randomly get data from the 

replay buffer for training. In addition, the EMOQ algorithm 

to solve the MORL problem requires additional steps to 

determine a weight vector in each episode. After the 

interaction, use the hindsight experience replay (HER) 

(Andrychowicz et al., 2017) algorithm to increase 

experience to make training more diverse. The new 

updating label in training is as follows: 

Q𝑘+1(𝑠, 𝑎, ϕ) = 𝒞Q𝑘(𝑠, 𝑎, ϕ)
= r(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎)(𝒱Q)(𝑠′, 𝜙) 

and to apply updates according to each experience gained, 

the updated label is: 

y(𝑠, 𝑎, ϕ) = r(𝑠, 𝑎) + 𝛾arg𝑄 max
𝑎′∈𝒜,ϕ′∈𝑊

𝜙𝑇Q(𝑠, 𝑎, ϕ′) 

Where W is a set of weight vectors sampled according to 

a certain distribution, this method is called hindsight 

experience replay (HER) (Andrychowicz et al., 2017); the 

goal of using this method is to effectively support the 

process of using experience from replay buffers in the off-

policy algorithm. 

The loss function is also modified with the contribution 

of two functions: 

ℒ𝙰(𝜃) = 𝔼𝑠,𝑎,ϕ[||y − Q(𝑠, 𝑎, ϕ; 𝜃)||2
2] 

ℒ𝙱(𝜃) = 𝔼𝑠,𝑎,ϕ[|ϕ𝑇y − ϕ𝑇Q(𝑠, 𝑎, ϕ; 𝜃)|] 

ℒ(𝜃) = (1 − 𝜆)ℒ𝙰(𝜃) + 𝜆ℒ𝙱(𝜃) 

The effectiveness of this algorithm is that after training, 

the Q network can flexibly find good enough policies with 

any weight vector corresponding to the goals. We will use 

this EMOQ algorithm as the main part to solve the MORL 

problem. In the following section, we will analyze in more 

detail how installing the OLS algorithm according to 

intuition will help the algorithm work well. 

 

2.1.5 Optimistic linear support algorithm 
A partial set of CCS, S is defined as a subset of CCS and 

is built based on an iterative algorithm. In this article, when 

using the OLS algorithm (Roijers et al., 2015), we will apply 

it on 2 objects, so each return vector (reward) will be a 2-

dimensional vector. 

A corner weight vector is determined based on the 

intersection of two reward vectors. Let the weight vector be 

w𝑐𝑜𝑟𝑛𝑒𝑟  and the two reward vectors be 𝑢1(𝑎, 𝑏), 𝑢2(𝑐, 𝑑) 

𝑤1 =
1

|
𝑏 − 𝑑
𝑎 − 𝑐

| + 1
⇒ w𝑐𝑜𝑟𝑛𝑒𝑟 = [1 − 𝑤1, 𝑤1]

= [
|𝑏 − 𝑑|

|𝑏 − 𝑑| + |𝑎 − 𝑐|
,

|𝑎 − 𝑐|

|𝑏 − 𝑑| + |𝑎 − 𝑐|
]  

 

The above definition is a way to determine a new corner 

weight vector from the intersection of two reward vectors. 

Based on this determination, the goal of the OLS algorithm 

is to build a CCS partial set quickly. The spirit of the OLS 

algorithm considers the new corner weight vector 

(determined according to the above definition) as potential, 

puts it into the problem obtains the corresponding reward 

vector, processes the selection through a number of 

conditions, and then repeats it. Continue the loop until there 
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are no more vectors among the potential angles that satisfy 

the condition. The OLS algorithm can be presented by the 

following Fig. 1 which illustrated for the pseudocode for 

OLS algorithm. 

In the pseudocode part of OLS, 𝚅𝚎𝚌𝚝𝚘𝚛 𝚁𝚎𝚠𝚊𝚛𝚍 (w) 

is a function that returns the reward vector corresponding to 

the set of weights w  while the function 

𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝑑𝑒𝑙 , 𝑆, u)  has the role 

of updating the set 𝑆, determining the new corner weight 

vectors. 

 

2.2 Proposed Method about Modelling to 

Reinforcement Learning Problem 
 

Fig. 2 illustrates our proposed framework. Our 

framework consists of two main components: the RL block 

and the clustering block. The RL block is constructed from 

user information, product information, and interactions 

between users and products. This block generates four 

feature vectors to represent the dataset’s information and the 

five essential components of the RL model: agent, 

environment, state, action, and reward. When applying RL  

to build a RS, we encounter the challenge of a vast number 

of users. Therefore, when training the RL model 

traditionally, treating each user as an environment may lead 

to significant training time. To address this, we cluster users, 

identify representative users, and train the RL model with 

reduced computational cost. Clustering users helps reduce 

computation costs, train the model with fewer user 

interactions, and accelerate policy convergence. 

.

 
Fig. 1. The pseudo-code of the optimistic linear support (OLS) algorithm 

 

 

 
Fig. 2. Proposed framework 
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2.2.1 Creating four types of feature vectors 
It is essential to create four unique kinds of feature 

vectors in order to effectively capture and describe 

information about things, such as users and items, as well as 

their interactions. These vectors attempt to offer effective 

representations, particularly for periodic product such as 

telecommunication package and user activity. There are four 

categories of feature vectors: 

• Item vector: 

– Representation: 𝐼𝑖 . Detail of item vector will be shown 

in Fig. 3. 

– Description: Every item in the dataset has distinct 

features, and vector 𝐼𝑖  is used to represent the individual 

qualities of item 𝑖.  

 
Fig. 3. Detail of item vector 

 

• User transaction vector: 

– Representation: 𝑈𝑇𝑢. Detail of User Transaction vector 

will be shown in Fig. 4. 

– Description: User preferences are sent by means of 

transactions, and 𝑈𝑇𝑢  is introduced for this specific 

objective. The time intervals included are "1 month ago" 

and "3 months ago" relative to the present moment. The 

vector records user preferences by creating lists of items 

that the user engaged with, connected to the 

corresponding item vectors. 

 

 
Fig. 4. Detail of user transaction vector 

 

• User-item vector: 

– Representation: 𝑈𝐼𝑢𝑖 . Detail of user transaction vector 

will be shown in Fig. 5. 

– Description: There are various ways to represent the 

information about the relationship between users and 

products. However, we utilize two factors: the quantity 

of product 𝑖   purchased by user 𝑢  and the ranking 

order of product 𝑖 in the list of products that user 𝑢 has 

purchased, sorted by the number of purchases. 

 
Fig. 5. Detail of user transaction vector 

 

• User vector: 

– Representation: 𝑈𝑢. Detail of user vector will be shown 

in Fig. 6. 

– Description: Incorporating both explicit feedback (e.g., 

subscription status) and hidden feedback (e.g., spending 

amount and data usage), the user vector 𝑈𝑢 represents 

the combination of these features. 

 

 
Fig. 6. Detail of user vector 

 

2.2.2 Definition of 5 components 
Fig. 7 illustrates the 5 essential components of every RL 

model. 

System components will be specified as follows: 

• Agent: The agent operates as a recommender, with the 

explicit aim of offering consumers recommended products. 

• Environment: The environment is constructed from 

customer (user) information. The RL model will learn how 

to recommend products that best match the customer’s 

preferences. 

• Action: Actions are designated as the recommended items 

for consumers. The action is indicated by the combination 

of the item vector and the user-item vector [𝐼𝑖 , 𝑈𝐼𝑢𝑖]. The 

variable 𝑢  denotes the customer receiving the service, 

whereas 𝑖 represents the recommended item. 

• State: States are used to represent customer interactions. 

We will combine the user vector and user transaction 

vector, denoted as [𝑈𝑇𝑢 , 𝑈𝑢]. 
• Reward: We define the reward in two cases: single-
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objective and multi-objective. The reward formula for 

single-objective problems is expressed as the product of 

𝑥 and the exponentiated value of (1 − 𝑦) raised to the 

power of 𝑎 . Here, 𝑎  represents the time elapsed since 

the user 𝑢 last interacted with the item 𝑖 at the time of 

recommendation 𝑡 . The parameter 𝑦  is a small value 

less than 1, and 𝑥 indicates the magnitude of the reward. 

The reward value falls within the ranges of (0, 𝑥], and the 

reward will be higher when the model recommends the 

product that the user likes the most at time 𝑡, specifically 

when 𝑎 = 0 . In the case of the multi-objective reward 

function, in addition to the first component, which is the 

reward as in the single-objective case, we aim to maximize 

the daily profit for the company from package purchases. 

Therefore, we combine the information 𝐶𝑖 representing 

the price and 𝑇𝑖  representing the duration of using item 

𝑖 to create the second component of the reward. 

Some advantages of our reward function are as follows: 

• This is a completely new reward function for periodic 

items. Currently, there is not much RL research for this 

type of item. 

• Continuous value easily accurately evaluates user 

feedback. 

• This applies to items not selected at the time of suggestion 

because the user may not have seen the recommended 

item at that timestamp. 

• The reward function has many meanings as a weighted 

sum, showing that items that have been used recently are 

more suitable to the user's preferences, while for items that 

have not been used for a long time, the reward is small. 

After having the 5 RL components, we will use RL 

algorithms to train the model.

 

 
Fig. 7. System components 

 

2.2.3 Using trained Q network to generate 

recommendation sets 
Utilizing the RL approach for the recommendation 

problem necessitates a training process that is more intricate 

than that of typical RL problems. The reason stems from the 

delineation of each user’s environment, which may 

encompass a subordinate sub-environment. Hence, it is 

imperative to accurately update the appropriate state for the 

user being attended to during the process of transitioning 

between states. Fig. 8 depicts the proposed Q network 

training process, which utilizes preexisting data, hence 

constituting an offline training methodology. 

In the illustration above, two initial users are 𝑢0 and 𝑢1 

with corresponding interaction counts 𝑀 and 𝑁. Each step 

corresponds to 𝑡0𝑖  with 𝑖 ∈ 1,2, . . . , 𝑀  for 𝑢0 , and 𝑡1𝑗 

with 𝑗 ∈ 1,2, . . . , 𝑁 for 𝑢1. The PROCESS block is where 

the algorithm starts training, and at each step, there are three 

subtasks: 

• Set up feature vectors: The feature vectors for the state 

of user 𝑢0 at the current step [𝑈𝑇𝑢0
, 𝑈𝑢0

] and the set of 

candidate items 𝐾0  for recommendation to user 𝑢0 

with 𝐾0 = 2 × 𝑁𝑅0 , where 𝑁𝑅0  is the number of 

items that user 𝑢0  has interacted with in the entire 

interaction file. Since each user can only see a limited 

number of items at any given time, setting 𝐾0 results in 

effective training. 

• Process: After normalizing the state description vectors 

for user 𝑢0 : [𝑈𝑇𝑢0
, 𝑈𝑢0

]  and the set of items 𝐾0 =

[𝐼𝑖𝑗
, 𝑈𝐼𝑢0𝑖𝑗

] |𝑗 ∈ 1,2, . . . , 𝐾0, these vectors are passed into 

a pre-designed Q network that outputs the item with the 

highest Q value ("highest" based on either real value in 

single-objective tasks or the inner item with test weights 

in multi-objective tasks) in that training set. 

• Push recommendation sets to users and update their new 

states: The recommendation system, after obtaining the 

output of the Process, sends the recommended items to 

user 𝑢0  at the current step. Then, it compares these 

recommendations with the actual interactions of user 𝑢0 

at that moment, calculates the reward to train the Q 

network, and updates the state of user 𝑢0 for the next 

step. 
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It is crucial to acknowledge that the length of each set will 

vary because each user has a unique amount of interactions. 

Therefore, the epsilon value in the 𝜖- greedy algorithm is 

modified individually for each user, adhering to a 

requirement of 50% exploration and 50% exploitation. 

 

 
Fig. 8. Illustration of the training process of the algorithm 

 

2.3 Proposed Method About Multi-object 

Recommendation Based on Reinforcement Learning 

2.3.1 Fine-tuning and installing the OLS algorithm in 

training EMOQ 
In the original EMOQ algorithm, at each episode, we 

choose a weight vector that follows a given distribution for 

testing, this can lead to a prolongation of training time while 

not being very effective because if we test nearly identical 

weight vectors will intuitively replicate quite similar 

experiences of interacting with the environment. Besides, 

the OLS algorithm provides a way to build a partial set of 

CCS, a set of "potential" weight vectors, and between the 

weight vectors there will be a distinction because each 

vector is calculated based on the intersection of reward 

vectors, intuitively this will help each experience when 

exploring the environment be different, leading to more 

effective training. 

For MORL problems, the calculation for the reward 

vector is often "dynamic" (u ← 𝚅𝚎𝚌𝚝𝚘𝚛 𝚁𝚎𝚠𝚊𝚛𝚍(w)) 

because the environment usually has the stochastic factor. 

This leads to some differences when wanting to apply OLS 

to the MORL problem: 

• Note that at each execution of the OLS algorithm, only 

one result is obtained from the small set of the CCS due to 

each weight vector can corresponding to many reward 

vectors, for example, the simple vectors 𝚠𝚎 = [1,0] (are 

vectors that only focus on a single target) then vector. The 

corresponding reward will be of the form (max𝑜𝑏𝑗1, 𝑥) 

for any x belonging to the admissible set. Furthermore, 

because the environment in real life as a recommendation 

system always has a stochastic factor, so performing an 

action only once can’t obtain the expected reward vector, 

which makes some errors in evaluation. 

• Set of “outdated” corner weight vectors 𝒲𝑑𝑒𝑙   helps 

eliminate ineffective corner weight vectors to reduce 

training time, however, due to the above-mentioned 

stochastic property of the environment, the weight vector 

w𝚒 which is determined by the intersection of two reward 

vectors is not ensured be the lowest corner weight vector. 

• Computing the new corner weight vector 𝒲𝑢 =
𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝚍𝚎𝚕, 𝚂, u)  requires 
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certain conditions because u  is uncertain to be a CCS 

point, so the particle set CCS (𝑆) is not only possible to 

add points but also able to remove points when the policy 

is improved and reward vectors have a higher value. 

• The selection of vectors from 𝒲𝑢  is based on the 

percentage improvement value 𝛥𝑟(w) , which becomes 

difficult because points belonging to 𝑆  are not 

necessarily true CCS points and the algorithm needs to be 

explored, so vectors are eliminated corner weights can 

make policy training difficult. 

The proposed method refines OLS into multi-object 

reinforcement learning. The title suggests the following 

changes: 

• Removing the percentage improvement value term 

𝛥𝑟(𝜙)  for selection corner weight vector in 𝒲𝑢 . We 

proposed to use all these weight vectors. 

• After each 𝒦 = ∅ queue, performing the OLS algorithm 

again from step 2 (Determine simple vectors 𝚠𝚎). 

• Removing the “outdated” set of vectors 𝒲𝑑𝑒𝑙  , every 

corner weight vector is tested. 

• 𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝚍𝚎𝚕 , 𝚂, u𝚒)  is 

designed with the following requirements: When the 

reward vector u𝑖 = (𝑢𝑖1, 𝑢𝑖2)  where 𝑢𝑖𝑘  is the 𝑘 th 

target value of u𝑖. This vector will be compared with each 

s = (𝑠1, 𝑠2) ∈ 𝑆: 

– If all target values of u𝑖  are equal better than s 

(denoted u𝑖 ≥ s ) then eliminate s  and if u𝑖 ≤ s 

then ignore u𝑖. Execute a new loop. 

– Let (𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑)  be the interval of the value of 

the second weight corresponding to the second object 

with the following property: 

∀ 𝚠𝚛 ∈ [𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑], w𝑟 = (1 − 𝚠𝚛, 𝚠𝚛) → w𝑟
𝑇s

≥ w𝑟
𝑇s′ ∀s′ ∈ 𝑆 

– When u𝑖  can intersect with vector s  at point with 

coordinates ∈ [0,1]  then the intervals 

(𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑) of each s and u𝑖 will be updated. 

– 𝑆 ← 𝑆 ∪ {u𝑖} 

Based on the above sections, in the final part of the 

proposed algorithm. The report will summarize the steps of 

the proposed method in pseudocode snippet in Fig. 9 below. 

The pseudocode for Algorithm 2 in Fig. 9 can be 

summarized by the following overview Fig.10. 

The Fig. 10 above shows that in each training set, there 

are four blocks including: Determining the weight vector, 

training the Q network, and then using the result that has 

just been trained to estimate the reward vector 

corresponding to the weight vector, and finally creating the 

new weight vectors for the next training sets. The first and 

fourth block is directly related to the implementation of the 

OLS algorithm while two others are related to the deep Q 

network algorithm. The details of each block correspond to 

each part in the pseudocode code. The work block 

“Determine weight vector” has the role of deciding the type 

of target that the agent will perform in the training set. These 

weight vectors will be taken according to the queue 𝒦. As 

explained in the above section on OLS, each application of 

OLS only yields 𝑆  which is a subset of CCS and the 

duration for performing one OLS pass is very small 

compared to the number of steps that can be trained in RL. 

Therefore, every time the OLS algorithm stops or 𝒦 = ∅, 

the algorithm is re-executed with the simple addition of 

weight vectors to 𝒦. However, the set 𝑆 remains the same 

due to its role in supporting the finding of angle weight 

vectors, helping to avoid too many repetitions of testing on 

one vector in the number. 

The second block of work plays a major role in policy 

training. Based on the results of proving the convergence 

theorem, we can see that using deep reinforcement learning 

algorithms will be approximately 𝒞𝑄 in a complex space. 

The DQN algorithm is used and combined with the label 

update formula for training along with the combination of 

the HER algorithm and the design of a new loss function. 

Next, the third main block of work has a similar role to 

the 𝑉𝑒𝑐𝑡𝑜𝑟𝑅 𝑒𝑤𝑎𝑟𝑑(𝑤𝑒)  function in the pure OLS 

algorithm. However, because the environment in 

reinforcement learning is random and the algorithm used is 

model-free, after each training session, the reward vector 

after 100 steps will be considered with other reward vectors 

in the component set 𝑆. Finally, the fourth block of work is 

the OLS algorithm presented in the above section with the 

role of multiplying the new reward vector and then editing 

the set 𝑆, determining new corner weight vectors. 

 

2.3.2 User clustering block  
Our research focuses on the issue of model memory 

retention during episodic interactions. We specifically 

observe that the model’s ability to recall information from 

earlier episodes, such as the 1000𝑡ℎ  episode, is 

significantly reduced in later stages. This phenomena 

reflects the challenges faced in the transmission of 

information across a sequence of processing units in 

recurrent neural network (RNN) (Sherstinsky, 2020) 

architectures. The large amount of data encountered in 

successive user encounters poses considerable hurdles in 

terms of representation. The intricacy here is comparable to 

the process of enclosing a wide range of information within 

a single cell state in an RNN. This, in turn, makes it 

challenging to directly apply tactics commonly utilized in 

LSTM (Hochreiter and Schmidhuber, 1997) networks or 

transformer models. 

Training a reinforcement learning model requires setting 

values for episodes and steps for each episode. If we 

associate each episode with a single user, and each step 

represents a user transaction, it can lead to issues when 

dealing with a large number of users. Training the model 

over many episodes may result in the model forgetting the 

preferences of users from the initial episodes (Yalnizyan-

Carson and Richards, 2022). Therefore, employing 

clustering becomes crucial to identify characteristic users 

within a group, aiding the model in understanding the 

general preferences of customers. This approach reduces 

training time for the MORL framework when dealing with 

a significantly smaller number of virtual customers 

compared to the actual customer base. 
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Fig. 9. The pseudo-code of integrating OLS to MORL algorithm. 
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Fig. 10. Diagram overview of work blocks in a training set 

 

In order to tackle this problem, our research presents a 

more sophisticated methodology. One component of this 

strategy entails limiting the number of episodes or 

decreasing the user sample size for model training. A more 

innovative approach entails the development of "virtual" 

user profiles. These profiles combine and express the 

collective features and preferences of a group of people. 

This approach provides a practical way to handle the 

challenges that arise from a large amount of information 

being exchanged, guaranteeing the preservation of 

important knowledge gained from the user community. 

The following part is our design for user clustering vector. 

The user vector for the clustering problem will be different 

from the user vector for RL training in the above section 

because the user vector is temporal, changes continuously, 

and the task of the user clustering vector will be to 

generalize the characteristics of each user in the entire data. 

The user-clustering vector will be created similarly to the 

user transaction vector, which is a weighted sum of user 

vectors. Each vector has a main component that is the user 

vector within 10 months with a coefficient depending on the 

time, the farther the time, the smaller the contribution: 

𝑈𝐶𝑢 = ∑(1 + 𝑏)𝑡−2

12

𝑡=3

𝑈𝑢𝑡 

With 𝑈𝐶𝑢  being the user-clustering vector, 𝑈𝑢𝑡  is the 

user vector at month 𝑡 in 2020, and the coefficient 𝑏 > 0 

to represent recent months is more meaningful in expressing 

user preferences. 

This paragraph presents the clustering algorithm and 

metric: The clustering algorithm that the proposed method 

uses is Kmeans with the clustering metric being the cosine 

similarity between 2 user clustering vectors corresponding 

to 2 users. The number of clusters to be divided is examined 

through two evaluation metrics for clustering: Silhouette 

and Elbow. At each cluster, the method determines the user 

center - the user closest to the center of the cluster after 

implementing the Kmeans algorithm. Because training RL 

requires a certain number of training episodes and each 

episode needs to have a large enough number of steps to be 

able to explore and exploit effectively. To select the users 

closest to the user center and have a large enough number 

of interactions, the article proposes a way to calculate the 

similarity number interaction score: 

𝑆𝑁𝐼(𝑢) = 0.5 × 𝑐𝑜𝑠(𝑣𝑢 , 𝑣𝑢𝑐𝑐𝑒𝑛𝑡𝑒𝑟
) + 0.5 ×

𝑁𝐼𝑢

max𝑢𝑁𝐼𝑢

 

where 𝑢 is the user whose score needs to be calculated, 

𝑢𝑐𝑒𝑛𝑡𝑒𝑟  is the center corresponding to the cluster to which 

user 𝑢  belongs, 𝑣𝑢  is the corresponding user clustering 

vector, and 𝑁𝐼𝑢  is the number of interactions of user 𝑢 . 

The coefficient 0.5 shows that the method considers two 

factors close to the central user and the number of 

interactions to be equally important. 

 

3. RESULTS AND DISCUSSION 
 

In this section 3, we will detail the installation, 

experiments, and results. Specifically, regarding the 

installation part, our proposed model includes the three most 

important components preprocessing data, reinforcement 

learning framework, and clustering part. Each component’s 

setting is shown in a subsection: preprocessing settings in 

subsection 3.2; RL settings include everything related to 

applying the RL framework in section 3.3; and user 

clustering settings in section 3.5. In the RL setting section, 

there are 3 subparts: state, action setting in part 3.3.1, reward 

setting: in part 3.3.2, and model Q Network in part 3.3.3. 

The experiment part is shown in two subsections 3.6 and 3.7. 
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3.1 Dataset 
The data set used in this paper is the interaction data set 

of users using a phone network in Vietnam from March 

2020 to December 2020. The data set includes three files: 

• User profile: The first file contains monthly data for a 

period of ten months, detailing records of 1000 users. 

Each record represents the consumption of each user in 

1 month in 2020. This consumption information 

encompasses user IDs, provincial details, total 

expenditure, and the breakdown of expenses by primary 

purposes. Additionally, it covers the total amount of data 

consumed and short message service (SMS) usage. 

• Package profile: The second file provides details on 275 

different packages, each record is corresponding to 

profile of each package. The profile information of each 

package consists of various elements such as package ID, 

registration cost, the quantity of data included, type of 

package, expiration date, and other related information. 

• Transaction: The final file documents over 170,000 

transactions between 1000 users and the 275 mobile 

packages, each record is corresponding to one 

transaction. The detailed information of each transaction 

consists of the date of interaction, ItemID (representing 

the package), AccountID (identifying the user), and the 

price associated with the interaction. 

The dataset is split into two subsets: a training set and a 

test set. The training set encompasses data from a 9-month 

period, spanning from March 2020 to November 2020. The 

test set, on the other hand, is focused on data from a specific 

date, December 1, 2020. 

 

3.2 Normalizing Feature Vectors 
Because of the diversity of dataset, we need to preprocess 

feature vectors before utilizing these vectors for training. 

There are two common types of features: non-seasonal 

features and seasonal features. Our preprocessing steps as 

follow: 

• Non-seasonal features: 𝑣𝑛𝑒𝑤 =
𝑣−min𝑣

max𝑣−min𝑣
, which is max 

min-normalization, 𝑣𝑛𝑒𝑤 is the new normalized value of 

𝑣. 

• Seasonal features: 𝑢𝑛𝑒𝑤 = cos (2𝜋 ×
𝑢

𝑆𝑗
) , where 𝑆𝑗 

denotes the cycle of the feature. 

 

3.3 Reinforcement Learning Setting 

3.3.1 Settings with 4 vectors and preprocessing the 

features of the vectors 

The following settings were obtained through multiple 

trials of various parameter sets, selecting the optimal 

parameter set. This approach is similar to that used in papers 

on DRL (Lillicrap et al., 2015; Zhao et al., 2017; Hu et al., 

2018). The four vectors in the proposed method will be set 

up with the custom dimensions and meanings. The detailed 

meaning is as follows: 

• Product vector: 𝐼𝑖 ∈ ℝ6 includes features such as price, 

supply data flow level, intra-network traffic, off-network 

traffic, allowed number of sms messages, time limit. 

• User vector: 𝑈𝑢 ∈ ℝ19  includes features such as the 

amount of money used for calls, internet access, texting, 

numbers call, time. 

• User-item vector: 𝑈𝐼𝑢𝑖 ∈ ℝ2  includes 2 information 

corresponding to a pair (𝑢, 𝑖)  is the number of 

interactions that user 𝑢  has registered for package 𝑖 
and the rank of package 𝑖 in all packages that the user 

has registered within the last 3 months. 

• User transaction vector: 𝑈𝑇𝑢 ∈ ℝ12  includes 2 time 

periods: 1 month ago and 3 months ago to describe user 

preferences according to characteristics of product. 

Among the features in all 4 vectors, only the time features 

are cyclically normalized, while the remaining features are 

normalized so that the value is in the range [0,1]  as 

presented in the methodology section. 

 

3.3.2 Reward settings 
The first setting is for single objective case: With the 

reward formula defined as 𝑟(𝑢, 𝑖, 𝑡) = 𝑥 × (1 − 𝑦)𝑎 , the 

values for 𝑥 = 1 and 𝑦 = 0.02 are set. Thus, the reward 

formula becomes 𝑟(𝑢, 𝑖, 𝑡) = 0.98𝑎 , where 𝑎  represents 

the time distance from the recommendation timestamp 𝑡 to 

the nearest date when the user interacted with item 𝑖 in the 

interaction file. 

Next, in the multi objective case: this paper proposed the 

additional object about the obtained profit which is defined 

as the ratio between the price of an item divided by the 

period of that item. However, to avoid the case that the 

recommender only focuses on the profit, which makes the 

recommended item does not fit to user’s preference, we set 

the condition requiring a positive user response to that item, 

denoted as 𝑟1 > 0: 

r = [𝑟1, 𝑟2] = [𝑥 × (1 − 𝑦)𝑎,
𝐶𝑖

𝑇𝑖

× {𝑟1 > 0}] 

where 
𝐶𝑖

𝑇𝑖
  is the ratio between the cost (price) of item 𝒊 

divided by the period (duration) of that item. 

 

3.3.3 Q network settings 
The Q network is designed with 2 hidden layers with the 

number of units 64 and 32 respectively. The activation 

functions are both ReLU. 

 

3.4 Evaluation Metrics 
We have a set of five recommend items 𝐼′ =

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5)  for user 𝑢  at timestamp 𝑡 , and the real 

items user 𝑢 interacting at that time is 𝐼𝑟𝑒𝑎𝑙 . In this paper, 

two common metrics to evaluating the quality of the 

recommendation system are hit rate which presents the ratio 

of the real item in the recommended list, and discounted 

cumulative gain (DCG) which presents the ranking of the 

real item in list (both the range of value of two metrics is 
[0,1]). 

To evaluate all recommended item list to all user 𝑈, we 

denote the number of users to test is 𝑛, the rank score of the 

real item 𝐼𝑟𝑒𝑎𝑙  in the list 𝐼′ is 𝑙𝑘 with 𝑘 is the order of 
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recommendation for that user. The formula of two evaluated 

metrics as follow: 

ℎ𝑖𝑡𝑘 = {
1 if 𝑖𝑟𝑒𝑎𝑙 ∈ 𝐼′

0 if 𝑖𝑟𝑒𝑎𝑙 ∉ 𝐼′
⇒ ℎ𝑖𝑡@5 =

1

𝑛
𝛴𝑘=1,𝑛ℎ𝑖𝑡𝑘 

𝑑𝑐𝑔𝑘 = {

1

𝑙𝑜𝑔2(𝑙𝑘 + 2)
if 𝐼𝑟𝑒𝑎𝑙 ∈ 𝐼′

0 if 𝐼𝑟𝑒𝑎𝑙 ∉ 𝐼′

⇒ 𝑑𝑐𝑔@5

=
1

𝑛
𝛴𝑘=1,𝑛𝑑𝑘 

 

3.5 User Clustering Setting 
In the formula for computing user-clustering vector: 

𝑈𝐶𝑢 = ∑ (1 + 𝑏)𝑚−2

12

𝑚=3

𝑈𝑢𝑚 

The value is set to 𝑏 = 0.1  to show that the months 

closer to December have a greater influence. Then, based on 

the survey results of the number of clusters from 2 to 20 of 

the two metrics Silhouette and Elbow, the number of user 

clusters is 5. 

 

3.6 Single Objective Results 
To illustrate the effectiveness of modeling from the 

perspective of reinforcement learning in the recurring 

product recommendation problem, for simplicity, we will 

experiment with the case of a single target first. Here, we 

have a table of experiments like Table 1, where we compare 

the reward vector with our continuous value 𝑟 = 𝑥 ×
(1 − 𝑦)𝑎  with discrete values from 0 to 1, this discrete 

reward formula is based on the reward setting of models 

DRR (Liu et al., 2018) and LIRD (Zhao et al., 2017) for 

single-use products such as movies, news or songs. 

Specifically, value 𝑟 = 0.5  represents user 𝑢  has ever 

interacted with item 𝑖  but not at the time of suggestion 

while 𝑟 = 0  means user 𝑢  hasn’t ever chosen that item 

and 𝑟 = 1 means recommend right the real item to user at 

the timestamp 𝑡. 

Besides, we also want to see the effectiveness of the user 

clustering block. Furthermore, to evaluate the impact of user 

clustering, a scenario utilizing only cosine similarity scores 

is tested, without considering the number of user 

interactions in the comparison. There are 5 main 

experiments conducted in the following Table 1. 

 

Table 1. Table of experiment list 

Experiment Reward formula User clustering 

1 ∈ {0,0.5,1} None 

2 ∈ {0,0.5,1} None but with 

embedding features 

3 𝑥 × (1 − 𝑦)𝑎 None 

4 𝑥 × (1 − 𝑦)𝑎 Only using cosine 

similarity scores 

5 𝑥 × (1 − 𝑦)𝑎 With user clustering - 

our proposed model 

 

 

 

Comparison between experiments: The results from the 

five experiments mentioned above have demonstrated the 

effectiveness of the proposed model. The two Fig. 11 and 

Fig. 12 below show the results of the experiments with the 

hit and dcg metrics across each training episode. The yellow 

line corresponds to the model in experiment 1, red - 

experiment 2, purple - experiment 3, blue - experiment 4, 

and green - the proposed model. 

From the results of both metrics for the five experiments, 

it can be observed that the values of hit@5 and dcg@5 

exhibit minimal changes in the later episodes for all five 

experiments. The effectiveness of considering the 

interaction time with recommended items, as proposed in 

the "change_reward" model, is evident since even in the 

early training episodes, the hit@5 and dcg@5 values of the 

"change_reward" model (experiment 3 in Table 1) are 

consistently higher compared to the other two models 

(experiments 1 and 2), where the rewards are not time-

differentiated. Specifically, the initialization values of the 

"change_reward" model (representing different reward 

formulas) start at around 0.85, while the other two models 

remain at 0.4 and below 0.2. 

On the other hand, the effectiveness of user clustering is 

also demonstrated, as the proposed model achieves higher 

values after the initial training episodes compared to the 

"change_reward" model (without clustering) and 

significantly higher than the model in experiment 4 (which 

has clustering but score based on interactions is omitted), 

indicating improved exploration and exploitation due to the 

heavy influence. 

 

 
Fig. 11. Training results for each episode of the 

experiments with the HIT metric 
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Fig. 12. Training results for each episode of the 

experiments with the DCG metric 

 

Stability of user clustering: From Fig. 11 and Fig. 12, we 

can see that our proposed model starts better than other 

models, leading to faster stabilization. However, that is only 

the result of running 1 time, to evaluate more objectively, 

we test each experiment by running the first training episode 

(in total we run 30 times). To demonstrate the reliability of 

the proposed model, the paper showcases the following box 

plots of two metrics to evaluate the stability of our model 

(change_reward 2) in Fig. 13 and Fig. 14. 

The box plots display a compilation of experiments along 

with their related names. Implementation details are 

provided in Table 2. 

 

 

Table 2. Compilation of trials assessing the durability of 

the model 

Experiment Reward User clustering 

change_reward_2 𝑥 × (1 − 𝑦)𝑎 With score as in the 

proposed model 

change_reward_1 𝑥 × (1 − 𝑦)𝑎 None 

standard_2 ∈ {0,0.5,1} With score as in the 

proposed model 

standard_1 ∈ {0,0.5,1} None 

 

 
Fig. 13. The box plot corresponds to the HIT metrics 

 

 
Fig. 14. The box plot corresponds to the DCG metrics 

 

It is clear that both the median value and the max value 

of our proposed are higher than other experiments, which 

means our model "often" have the initial point better than 

other models. 

Comparison with another methods: The proposed method 

was also tested with the DRR algorithm and the Table 3 is 

the result. Note that, to test with the DRR algorithm, we 

need to convert the interaction dataset to the rating dataset, 

so we can also see that which algorithm only receive the 

rating dataset to be input can not generalized as our 

proposed model, our model only can received interaction 

dataset. Furthermore, from the result in Table 3, we see that 

our model is better both on hit metric and dcg metric. 

 

Table 3. Single-objective: Comparison with the DRR 

method 

Method 𝒉𝒊𝒕@𝟓 𝒅𝒄𝒈@𝟓 

Proposed method 0.95 0.95 

DRR algorithm 0.81 0.77 

 

3.7 Multi-Objective Results 
To optimize training efficiency, the user clustering 

results are applied, reducing the amount of training 

required. During this process, two metrics are plotted for 

each trained set to assess performance: hit@5 and dcg@5 

(discounted cumulative gain at 5). The best-case scenario 

demonstrated a hit@5 of 0.93 and a dcg@5 of 0.71, 

indicating a high level of accuracy in the 

recommendations. This is depicted in a Fig. 15 illustrating 

the training process of the proposed algorithm across each 

training set. 
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Fig. 15. Training results through each episode with multi-

object modeling 

 

We know that we can check that the first component of 

the reward vector corresponds to user preferences, that is, 

the relationship between that product and the user, while the 

second component is more difficult to evaluate when we do 

not know what users actually choose if we recommend a 

product list. Therefore, we evaluate based on the average 

value of a package in the recommendation list, that is, for 

each recommendation, we calculate the following value: 

(PPI - profit per item) 

𝑃𝑃𝐼 =
1

5
∑ (

𝐶𝐼𝑗

𝑇𝐼𝑗

× (𝑠𝑔𝑛 (𝑟1

𝐼𝑗
)))

5

𝑗=1

 

where 𝑠𝑔𝑛 (𝑟1

𝐼𝑗
) ∈ {1,0} is the sign of the first element 

in the reward vector. 

Figs. 16(a) and 16(b) show Kernerl density estimation for 

the average price of each recommendation to users for the 

two cases single-object and multi-obj. The multi-objective 

framework generally leads to a higher average price of 

products than the single-objective method. With the single-

objective model, the recommended products tend to be 

cheaper, mostly within the 0 to 25 price range, dominating 

the recommendation lists. In contrast, applying the multi-

objective framework results in recommendations with 

notably higher average prices when mostly within from 

around 50 to 200. 

 

 

 

 

(a)                                                (b) 

Fig. 16. Kernel density estimator of the average price for five recommended items: 

(a) Single-object (b) Multi-objective 

 

Furthermore, both metrics, hit@5 and dcg@5, achieve 

notable levels, signifying that the actual items users are 

interested in frequently appear high in the recommended list. 

This indicates not just the relevance in the recommendations 

but also their potential for higher engagement and 

satisfaction from the users. 

 

3.8 Discussion 
According to our understanding, there is limited research 

applying MORL to recommender system (Paparella et al., 

2023). In this study, we introduce a novel MORL framework 

into the RS, enhancing recommendation performance and 

simultaneously boosting company revenue compared to a 

focus solely on improving recommendation accuracy. While 

constructing MORS with various objective functions, a 

straightforward method is employing the Scalarization 

approach (Zheng and Wang, 2021). However, existing 

approaches often fix the weights for each objective function 

in advance (Stamenkovic et al., 2022), or they do not 

address rapid adaptation to continuous changes in task 

priorities in practical scenarios. To address this, we leverage 

the MORL framework proposed by Yang et al. (2019) for 

application in RS, enabling the system to dynamically adapt 

to continuous shifts in priority among objectives.  

Additionally, to swiftly determine optimal preference 

weights, we incorporate the OLS algorithm, optimizing the 

training process in a shorter timeframe and expediting the 

identification of the CCS. Notably, in contrast to typical RL 
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approaches in RS, we do not train the agent for each 

individual customer to assist in recommending suitable 

products (Afsar et al., 2022). Instead, we employ a 

clustering methodology to identify representative customers. 

This approach facilitates rapid training, computational cost 

savings, and accelerates the convergence speed of the 

MORL algorithm in deriving optimal recommendations.  

Our framework introduces a comprehensive approach to 

integrating MORL into RS, offering flexibility, efficiency, 

and enhanced adaptability to changing objectives, thereby 

contributing to the advancement of recommendation system 

research. 

 

4. CONCLUSION 
 

Our research presents details from modeling to 

integrating other algorithms to increase efficiency in 

training to building a multi-target personalized 

recommendation system for periodic products. Our 

modeling includes defining terms in reinforcement learning, 

especially defining vectors that represent user preferences 

and identifying optimization goals. The two goals that we 

identify for a recommendation system are recommended 

products that match user preferences and profit optimization 

(high value of the product). Our approach is to extract 

characteristic users from building a user clustering block 

and, after that, explain and integrate the OLS algorithm into 

envelope multi-object Q-learning. Our proposed method is 

tested on real datasets, the results show that our model is 

remarkable and has potential. 
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