
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202406_21(3).003 Vol.21(3)2023542

Special Issue-12th International Conference on Awareness Science and Technology (iCAST 2023)

OPEN ACCESS

Received: December 31, 2023

Revised: March 3, 2024

Accepted: June 3, 2024

Corresponding Author:

Nguyen Thi Ngoc Anh

anh.nguyenthingoc@hust.edu.vn

 Copyright: The Author(s).

This is an open access article

distributed under the terms of the

Creative Commons Attribution

License (CC BY 4.0), which

permits unrestricted distribution

provided the original author and

source are cited.

Publisher:

Chaoyang University of

Technology

ISSN: 1727-2394 (Print)

ISSN: 1727-7841 (Online)

Building the multi-objective periodic

recommendation system through integrating

optimistic linear support and user clustering

to multi-object reinforcement learning

Dang Tien Dat 1, Nguyen Anh Minh 1, Tran Ngoc Thang 1,

Rung-Ching Chen 2, Nguyen Linh Giang 3,

Nguyen Thi Ngoc Anh 1*

1 Faculty of Mathematics and Informatics, Hanoi University of Science and

Technology, Vietnam

2 Department of Information Management, Chaoyang University of

Technology, Taiwan
3 School of Information and Communication Technology, Hanoi University of

Science and Technology, Vietnam

ABSTRACT

Our study focuses on the diversity of user preferences and the dynamics of

the user-product relationship, particularly in the context of periodic product

usage. The principal objective of this research is to explore multi-objective

optimization for a recommendation system tailored to periodic products. Our

methodology employs a multi-objective reinforcement learning (MORL)

algorithm. Additionally, we have proposed integrating the optimistic linear

support algorithm into a MORL algorithm to collect good weight vectors. We

also proposed using user clustering to ensure the model remembers user’s

preferences in early episodes. The findings of this research demonstrate that our

proposed multi-objective approach yields significantly higher effectiveness

when contrasted with conventional single-objective methodologies.

Keywords: Deep reinforcement learning, Multi-objective recommendation

system, Optimistic linear support, Periodic product

1. INTRODUCTION

Recommender systems (RS) have become a highly studied and implemented

field in numerous domains in recent years. The main goal of RS is to offer a

customized experience and enhance the interaction between users and the

system by using interaction history, users’ demographic information, and other

factors to choose the most appropriate products from a large inventory. RS can

be considered a pivotal technology that has played a significant role in the

creation of billion-dollar empires like YouTube (Covington et al., 2016),

Amazon (Linden et al., 2003), Netflix (Gomez-Uribe and Hunt, 2015), and

others.

Periodic products (periodic items) refer to items that can be purchased and

selected by customers on a predetermined cycle. These products are also

recommended based on a schedule while ensuring their essential presence in the

market. In contrast to non-periodic products, such as those found on e-

commerce platforms or in the entertainment industry, where customers rarely

repurchase or select the same item, and these products are seldom resold in a

cyclical manner. An example of periodic products is telecommunications

packages. These are monthly subscription-based products that are automatically

https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 2

renewed, providing customers with the option to continue,

cancel, or switch to a different package at their discretion.

Some other examples include regularly used supplements or

seasonal household products and clothing. In this paper, we

focus on optimizing the recommender system for a group of

products known as periodic products.

Multi-object is understood as needing more than one goal

in each problem we want to solve, especially in the problem

of RS, multi-object is directly related to the product

suggested to customers usually a single goal is to suggest

products that match the user's preferences. However, with a

variety of products, some other potential goals can be

targeted such as suggesting high-value, profitable products

and suggesting new products. In particular, in the problem

of suggesting phone packages, applying a multi-object

solution will help customers receive a suitable package,

which can bring a lot of profit to both service providers.

In 2021, Zheng and Wang (2021) conducted a survey on

multi-objective recommendation system (MORS), where

not only the accuracy of predicting user-preferred products

but also the diversity, novelty, and fairness of the system

were modeled under objective functions and simultaneously

optimized during training. There are two main approaches

to solving multi-objective optimization problems in

recommender systems: Scalarization (Jahn, 1985) and

multi-objective evolutionary algorithms (MOEA) (Von

Lucken et al., 2014). For the first approach, a commonly

used method is weighted sum, where objective functions are

linearly combined into a sum function 𝐿 , and the

recommendation system is optimized based on 𝐿. Wu et al.

(2022) developed a fairness-aware recommendation system

that tailors recommendations to meet user needs while

ensuring fairness across different demographic user groups.

Cui et al. (2017) utilized the NSGA-II algorithm to avoid

conflicts when optimizing both accuracy and diversity

objective functions for recommended products

simultaneously.

Reinforcement learning (RL) is a subfield of machine

learning that investigates the optimal decision-making

process of an agent within a given environment in order to

maximize a certain long-term reward (Arulkumaran et al.,

2017). The combination of RS and RL has recently provided

new opportunities to improve the accuracy of predicting

client preferences for items (Afsar et al., 2022). The unique

ability of a RL agent to gain knowledge from incentives

provided by the environment without the need for training

data makes RL especially suitable for handling

recommendation problems. When discussing the

construction of RS, the term “agent” refers to the system

itself, the “environment” refers to the user-item dataset, and

the “reward” represents the level of satisfaction the user

experiences with the recommendation (Hou et al., 2023).

Leading IT firms are implementing RS based on RL to

improve the immediate user experience and consistently

refresh recommendations for the most appropriate products

(Mulani et al., 2020).

The first attempt to utilize RL to enhance the quality of

recommendations was likely WebWatcher (Joachims et al.,

1997). The authors framed the site recommendation

problem as a RL problem and employed Q-learning to

improve the precision of their underlying site

recommendation system. They utilized a similarity

algorithm, which relied on the TF-IDF index, to recommend

pages that demonstrate a substantial degree of resemblance

to the user’s interests. There is a growing emphasis on

recommendation models that include deep learning

approaches, such as deep Q-network (DQN), double deep

Q-network (DDQN), or deep deterministic policy gradient

(DDPG). The utilization of DDQN in deep recommendation

news (DRN) (Zheng et al., 2018) tackles the problem of

volatile changes in news content and user preferences. They

utilized two Q networks and partitioned the Q function into

distinct value and advantage functions; in addition to the

current indices, such as click through rate (CTR), the

incentives function now incorporates a new index termed

user engagement. This index quantifies the rate at which a

user engages with the system. Instead of employing greedy

algorithms with epsilon, the upper confidence bound is

utilized for probing. The list-wise recommendation

framework based on deep reinforcement learning (LIRD)

(Zhao et al., 2017) initially utilized a random environment

simulator to generate recommendations. They subsequently

employed an actor-critic framework to create these

recommendations. The simulator generated a reward by

considering a specific combination of state and action,

employing the principle of collaborative filtering. This

method implies that individuals with common interests are

likely to have a shared interest in similar products.

Furthermore, DDPG was utilized for parameter

optimization. Within the deep reinforcement

recommendation (DRR) architecture (Liu et al., 2018), the

agent acquires a state from the state representation module

and generates actions through the utilization of two rectified

linear unit (ReLU) layers and one hyperbolic tangent (Tanh)

layer. The state module comprised three structures: item-

based items, user-based items, and user-based average items.

The critic utilized a DQN module consisting of two rectified

linear unit (ReLU) layers to evaluate the action generated

by the actor. In the end, the DDPG method was used to train

the model.

In recent years, there have been numerous studies related

to multi-objective reinforcement learning (MORL). The

goal of MORL is to learn a policy that optimizes multiple

objectives where these objectives may conflict with each

other (Roijers et al., 2013). Unlike traditional RL, where the

agent optimizes a policy to achieve an optimal scalar reward

value, an agent in MORL learns to achieve an optimal vector

reward value based on predefined preference criteria among

multiple objectives (Hayes et al., 2022). However, there

have been few applications of MORL in RS due to the

complexity of designing objective functions and creating

reward functions that simultaneously ensure the accuracy of

predictions and other metrics like fairness, diversity, ... of

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 3

recommended products (Paparella et al., 2023). However, in

order to accomplish both goals, a differentiable function that

takes into account both objectives is necessary, which might

be challenging. Additionally, applying RL to RS faces

challenges when dealing with an immensely large number

of products and users, making the modeling of states

particularly challenging (Song et al., 2014). Furthermore,

when utilizing MORL frameworks, one must generate

corresponding sets of weights for each objective so that the

agent can prioritize the selection of products aligned with

those objectives (Hayes et al., 2022). However, creating an

excessively large search space for weights can escalate the

cost and training time of the model.

Modeling the recommendation of routes as a Markov

decision process (MDP) has introduced a new direction in

applying MORL to location-based and personalized route

recommendations (Sarker et al., 2020; Stamenkovic et al.,

2022). Sarker et al. (2020) constructed a multi-objective

route recommendation system to optimize travel routes with

respect to time, cost, and air quality simultaneously. A Q-

learning network was trained to maximize rewards,

considering user preferences and meeting multiple criteria

while simulating real geo-tagged data sources (traffic,

weather, points of interest, and GPS traces). Chen et al.

(2023) employed an actor - critic network to generate

optimal travel routes, simultaneously considering accuracy,

popularity, and diversity for locations, thereby maximizing

the composite reward. Stamenkovic et al. (2022), for the

first time, applied the MORL framework to create three Q-

value functions representing the accuracy, novelty, and

diversity of recommendations. The system optimization was

performed through scalarized deep Q-learning.

Constructing multiple rewards corresponding to each

criterion ensures that the system maintains accuracy in

predicting products while ensuring other criteria such as

fairness, novelty, diversity, etc. Recently, Keat et al. (2022)

proposed a framework applying deep reinforcement

learning (DRL) to optimize MORS with the aim of creating

an optimal system across conflicting metrics such as

precision, novelty, and diversity. The authors utilize DQN

to address the optimization problem for MORS, achieving

higher performance compared to optimizing recommender

systems using multi-objective optimization algorithms like

the probabilistic-based multi-objective approach based on

evolutionary algorithms (PMOEA).

In this paper, we will employ a novel MORL framework

to apply it to the construction of a recommender system. The

principal contributions of our study are delineated as

follows:

• Our research offers a comprehensive solution for the

effective implementation of reinforcement learning

algorithms within recommender systems. This involves

the meticulous organization of data, the precise definition

of state vectors, actions, and rewards that are closely

aligned with user preferences, and the careful preparation

of training datasets.

• We elaborate on the implementation of a user clustering

mechanism. This strategy is designed to expedite the

training process and enhance the efficacy of the training

outcomes. We introduce a unique representation for each

user based on their preference vector, taking into account

the frequency of interactions to identify the most

representative users.

• The study goes deeper into explaining the view of

leveraging the optimistic linear support (OLS) algorithm

in the MORL problem, and then our setup integrated OLS

algorithm to envelope multi-objective Q-learning (EMOQ)

algorithm to improve the training process.

In the remainder of this article, this paper presented basic

knowledge about multi-objective optimization problems,

reinforcement learning, MORL, and the optimistic linear

support algorithm. In section 2.2 - Proposed method about

modelling to reinforcement learning problem, we will

divide it into two parts: "modeling based on reinforcement

framework" details the modeling process, training, and

applying the trained model to the recommender system; Part

3 of section 2, "multi-object recommendation based on RL"

will present the application of the OLS algorithm to the

EMOQ algorithm to solve the MORL problem, and this part

also details the construction of the user clustering block.

Finally, in section 3 – Result and Discussion, we will present

the results on real data sets, both single-object and multi-

object cases.

2. MATERIALS AND METHODS

2.1 Materials and Methods

2.1.1 Multi-objective problem
Consider the unconstrained multi-objective optimization

problem (MOP):

𝑀𝑖𝑛𝜃∈ℝ𝑛ℱ(𝜃) = 𝑀𝑖𝑛𝜃∈ℝ𝑛 [

ℱ1(𝜃)

ℱ2(𝜃)
⋮

ℱ𝑚(𝜃)

],

where ℱ: ℝ𝑛 → ℝ𝑚 is a continuously differentiable vector

function, 𝑚 is the number of objectives and 𝜃 ∈ ℝ𝑛.

A solution 𝜃∗ is said to dominate another solution 𝜃 if

∀ℱ𝑖(𝜃∗) ≤ ℱ𝑖(𝜃), 𝑖 = 1, … , 𝑛 , and there exists ℱ𝑗(𝜃∗) <

ℱ𝑗(𝜃), 𝑖 = 1, … , 𝑚 . A solution 𝜃∗ is a Pareto solution if

there is no solution 𝜃 that dominates 𝜃∗ ; 𝜃∗ is a local

Pareto solution of the (MOP) if there exists a neighborhood

𝑈(𝜃∗) ⊂ ℝ𝑛 such that ∄𝜃 ∈ 𝑈(𝜃∗): ℱ(𝜃) < ℱ(𝜃∗).

In order to address the multi-objective optimization

problem, a viable approach is to employ a gradient-based

optimization strategy. Prior to introducing the algorithm, we

will elucidate the concept of common descent vectors and

outline the ideal circumstances for gradient-based solutions

in MOP. A conventional descent vector can be expressed as

a convex amalgamation of the gradients of each objective.

It can be accurately delineated as follows:

∇𝜃ℱ(θ) = ∑ 𝛼𝑖
𝑛
𝑖=1 ∇𝜃ℱ𝑖(𝜃) [*]

In the equation, 𝑛 represents the number of objectives,

𝜃 denotes the model parameters, ∇𝜃ℱ(θ) stands for the

common descent vector, ∇𝜃ℱ𝑖(𝜃) is the gradient of the 𝑖𝑡ℎ

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 4

objective function, and 𝛼𝑖 represents the weight of the 𝑖𝑡ℎ

gradient. Equation [*] adheres to the following conditions:

1. 𝛼1, … , 𝛼𝑛 ≥ 0

2. ∑ 𝛼𝑖
𝑛
𝑖=1 = 1

2.1.2 Reinforcement learning
RL addresses decision-making problems using a

mathematical model known as Markov decision process

(MDP). A MDP is characterized by five components in the

following manner: (𝒮, 𝒜, 𝒫(⋅∣⋅,⋅), 𝑅(⋅,⋅,⋅), 𝛾) which are the

state space, action space, transition probability model,

reward model and discount factor, respectively.

For a MDP (𝒮, 𝒜, 𝒫(⋅∣⋅,⋅), 𝑅(⋅,⋅,⋅), 𝛾) , the goal is to

construct a policy 𝜋 to optimize the long-term rewards

(also known as the return). The return 𝐺𝑡 with a discount

factor 𝛾 is defined as:

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + ⋯ = ∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1

where 𝐺𝑡 is the sum of all rewards received from state 𝑠𝑡

into the future, where 0 < 𝛾 < 1 discounts future rewards,

making rewards further in the future less significant.

Corresponding to the components of MDP, there are five

terms in RL: agent, environment, state, action, and reward.

Because often in real problems, the model of the

environment is not given, so current RL algorithms are

model-free algorithms, including traditional algorithms Q-

learning, and state-action-reward-state-action (SARSA)

(Sutton and Barto, 2018) to advanced algorithms. More

modern mathematics when integrating deep learning such

as deep Q-network (Mnih et al., 2013), dueling deep Q-

network (Wang et al., 2016).

2.1.3 Multi-objective reinforcement learning problem

and some approaches
Similar to the MDP, a multi-objective Markov decision

process (MOMDP) can be represented by a set of values

(𝒮, 𝒜, 𝒫, ℛ, 𝛷, 𝑔𝜙) where the 3 quantities (𝒮, 𝒜, 𝒫) have

the same meaning as in the conventional MDP while the

reward function ℛ returns the reward in the form of an 𝑚-

dimensional vector with 𝑚 being the number of objects

need to optimize.

𝑟(𝑠, 𝑎) = (𝑟𝑖(𝑠, 𝑎))
𝑖=1,𝑚

𝑇
= (

𝑟1(𝑠, 𝑎)

𝑟2(𝑠, 𝑎)
⋯

𝑟𝑚(𝑠, 𝑎)

) ∈ ℝ𝑚

The term 𝛷 is the space of the weight vector 𝜙 while

𝑔𝜙 is the preference function that functions to convert the

reward vector to a scalar value. This preference function

plays an important role in iterative algorithms when

supporting choosing actions for the agent. For example, we

have a linear preference function:

𝑔ϕ(r(𝑠, 𝑎)) = ϕ𝑇r(𝑠, 𝑎)

Under the change from scalar to vector of reward term,

other important terms of the Markov process such as the

return function of a trajectory, the value function of a state,

or the Q-value function of a pair action - state also change.

Specifically, the return value 𝐺(𝜏) of the trajectory 𝜏 =
(𝑠𝑖 , 𝑎𝑖)𝑖=1,2,...,𝑇−1 ∈ (𝒮 × 𝒜)𝑇−1 is the object function of

MOMDP problem:

G(τ) = r0 + 𝛾r1 + 𝛾2r2+. . . 𝛾𝑇−1rT−1 = ∑ 𝛾𝑡

𝑇−1

𝑡=0

rt

Because the trajectory τ consists of many states and

actions while the state and action space is often large, even

continuous, and the environment models are also unknown,

RL-based algorithms are often used. From the MOMDP

problem, put into real-life problems, we obtain the MORL

problem where the reward term is vector instead of scalar.

The two most common types of algorithms are the single-

policy and the multi-policy algorithm. For large state and

action spaces, the envelope multi-objective Q-learning

(EMOQ) (Yang et al., 2019) algorithm below is very

effective.

To simplify notation, let r̂ = G(𝜏). Then, the set of return

values is considered a Pareto surface set, defined as the set

of satisfactory return vectors with no return vector being

dominant.

C∗ = {r̂|∄r′̂ ≽ r̂}

where r̂ = ∑ 𝛾𝑡
𝑡 r(𝑠𝑡 , 𝑎𝑡) . We aim to find a policy to

optimize the expected value of the vector reward Vπ =
E(r̂) . A primary approach to solving the multi-objective

optimization problem for Vπ is scalarization. When

employing a linear function class for scalarization of

Vπ, the obtained optimal solution set is the convex coverage

sets (CCS) (Roijers et al., 2013). The CCS set is a subset of

the Pareto surface value set, and for each point in the CCS,

there always exists a weight vector that makes the

corresponding scalar value the largest.

𝙲𝙲𝚂 = {r̂ ∈ C∗|∃ϕ ∈ 𝛷, ϕ𝑇 r̂ ≥ ϕ𝑇r′̂, ∀r′̂ ∈ C∗}.

2.1.4 The envelope multi-objective Q learning

algorithm
The envelope multi-objective Q learning algorithm (Yang

et al., 2019) is a method developed to address the MORL

challenge. This algorithm is essentially an extension of deep

reinforcement learning algorithms, which are typically used

in single-objective contexts, but it modifies the updated

formula of the Q-network to suit scenarios involving

multiple objectives.

Specifically, looking from the perspective of contraction

mapping and using the Banach fixed point theorem (Yang et

al., 2019), the following mapping 𝒞 of the Q learning

algorithm is a contraction mapping and with each tuple

(state, action) (𝑠, 𝑎), the Q value gradually convergence to

the fixed point or the fixed value which is an exactly Q value

of that tuple. The definition of the contraction mapping 𝒞

and the fixed point of each tuple (𝑠, 𝑎) is illustrated by the

following formula:

(𝒞𝑄)(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎) sup
𝑎′∈𝒜

𝑄(𝑠′, 𝑎′)

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎) sup
𝑎′∈𝒜

𝑄∗(𝑠′, 𝑎′)

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 5

Along with other theorems about “generalized banach

fixed-point theorem” in that paper, the authors proved that

the Q value can still converge to a fixed point. The following

formula is expression for updating the Q value at 𝑘𝑡ℎ-loop.

𝑄𝑘+1(𝑠, 𝑎) = 𝒞𝑄𝑘(𝑠, 𝑎)

In the multi-object problem, Yang et al. (2019) redefined

variables such as contraction mapping, Q value space,

metric and fixed point and from there developed the

following convergence theorems:

1. The space 𝒳: is the Q-value space 𝒬 ⊆ (𝛷 → ℝ𝑚)𝒮×𝒜,

typically, the Q value vector is determined by a tuple

including three terms (𝑠, 𝑎, ϕ) ∈ ℝ𝒮×𝒜×𝛷 and

Q(𝑠, 𝑎, ϕ) ∈ ℝ𝑚 . Therefore, in the spirit of considering

𝒬 as a matrix of size 𝒮 × 𝒜, the value of each position

Q(𝑠, 𝑎) will be considered as a function of the vector of

the number 𝜙 or Q(𝑠, 𝑎) = ℎ(ϕ): 𝛷 ↦ ℝ𝑚.

2. Metric 𝑑 : metric in the space 𝒬 above is defined as

follows:

𝑑𝐸𝑀𝑂𝑄(Q, Q̂) = sup
𝑠∈𝒮,𝑎∈𝒜,ϕ∈𝛷

|ϕ𝑇[Q(𝑠, 𝑎, ϕ) − Q̂(𝑠, 𝑎, ϕ)]|

notice that the metric is pseudo-metric and the space

(𝒬, 𝑑) is the complete metric space. The value ϕ𝑇Q can

be understood as the compatibility between the Q-value

vector Q and the weight vector ϕ.

3. The mapping 𝒞: the mapping 𝒞 is defined as follows:

(𝒞Q)(𝑠, 𝑎, ϕ) = r(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎)(𝒱Q)(𝑠′, 𝜙)

where 𝒱 is called the optimal filter and has the role of

finding the convex hull of the current Pareto surface:

(𝒱Q)(𝑠′, 𝜙) = argQ sup
𝑎′∈𝒜,ϕ′∈𝛷

ϕ𝑇Q(𝑠, 𝑎′, ϕ′)

where arg
𝑄

 is the vector Q(𝑠′, 𝑎∗, ϕ∗) where

(𝑎∗, 𝜙∗) = argmax
𝑎′∈𝒜,ϕ′∈𝛷

ϕ𝑇Q(𝑠, 𝑎′, ϕ′).

Besides, the mapping 𝒱 is called an optimal filter for

each pair (𝑠, ϕ) then ϕ𝑇(𝒱Q)(𝑠, ϕ) ≥
ϕ𝑇Q(𝑠, 𝑎, ϕ)∀𝑎 ∈ 𝒜 so the set of points determined by

the filter 𝒱 will form the convex hull of all Q values,

thus also convex hull of the current set of Pareto surfaces.

Or in other words, for each weight vector ϕ , 𝒱 will

create the set of “most relevant” points, thus 𝒱 is the

convex hull.

4. The fixed point will be defined by the Q vector that

maximizes the scalar product between the weight vector

𝜙 and the expected vector of return value:

Q∗(𝑠, 𝑎, ϕ)

= arg𝑄sup
𝜋∈𝛱

ϕ𝑇𝔼𝑠′∼𝒫(.|𝑠0=𝑠,𝑎0=𝑎) [∑ 𝛾𝑡

∞

𝑡=0

r(𝑠𝑡 , 𝑎𝑡)]

There are three theorems in proved to show that Q∗ is

the fixed point that means 𝒞Q∗ = Q∗ , 𝒞 is a contraction

mapping and for any point Q ∈ 𝒬 will be convergence to

Q∗ where lim𝑛→∞𝑑𝐸𝑀𝑂𝑄(𝒞𝑛Q, Q∗) = 0.

The algorithm operates according to the same main steps

as regular DRL. At each step in each episode in the DQN

algorithm training process, we will need to determine a new

action and then perform that action in the environment,

obtaining a response including a reward. In the new state,

save it to the replay buffer and randomly get data from the

replay buffer for training. In addition, the EMOQ algorithm

to solve the MORL problem requires additional steps to

determine a weight vector in each episode. After the

interaction, use the hindsight experience replay (HER)

(Andrychowicz et al., 2017) algorithm to increase

experience to make training more diverse. The new

updating label in training is as follows:

Q𝑘+1(𝑠, 𝑎, ϕ) = 𝒞Q𝑘(𝑠, 𝑎, ϕ)
= r(𝑠, 𝑎) + 𝛾𝐸𝑠′∼𝒫(.|𝑠,𝑎)(𝒱Q)(𝑠′, 𝜙)

and to apply updates according to each experience gained,

the updated label is:

y(𝑠, 𝑎, ϕ) = r(𝑠, 𝑎) + 𝛾arg𝑄 max
𝑎′∈𝒜,ϕ′∈𝑊

𝜙𝑇Q(𝑠, 𝑎, ϕ′)

Where W is a set of weight vectors sampled according to

a certain distribution, this method is called hindsight

experience replay (HER) (Andrychowicz et al., 2017); the

goal of using this method is to effectively support the

process of using experience from replay buffers in the off-

policy algorithm.

The loss function is also modified with the contribution

of two functions:

ℒ𝙰(𝜃) = 𝔼𝑠,𝑎,ϕ[||y − Q(𝑠, 𝑎, ϕ; 𝜃)||2
2]

ℒ𝙱(𝜃) = 𝔼𝑠,𝑎,ϕ[|ϕ𝑇y − ϕ𝑇Q(𝑠, 𝑎, ϕ; 𝜃)|]

ℒ(𝜃) = (1 − 𝜆)ℒ𝙰(𝜃) + 𝜆ℒ𝙱(𝜃)

The effectiveness of this algorithm is that after training,

the Q network can flexibly find good enough policies with

any weight vector corresponding to the goals. We will use

this EMOQ algorithm as the main part to solve the MORL

problem. In the following section, we will analyze in more

detail how installing the OLS algorithm according to

intuition will help the algorithm work well.

2.1.5 Optimistic linear support algorithm
A partial set of CCS, S is defined as a subset of CCS and

is built based on an iterative algorithm. In this article, when

using the OLS algorithm (Roijers et al., 2015), we will apply

it on 2 objects, so each return vector (reward) will be a 2-

dimensional vector.

A corner weight vector is determined based on the

intersection of two reward vectors. Let the weight vector be

w𝑐𝑜𝑟𝑛𝑒𝑟 and the two reward vectors be 𝑢1(𝑎, 𝑏), 𝑢2(𝑐, 𝑑)

𝑤1 =
1

|
𝑏 − 𝑑
𝑎 − 𝑐

| + 1
⇒ w𝑐𝑜𝑟𝑛𝑒𝑟 = [1 − 𝑤1, 𝑤1]

= [
|𝑏 − 𝑑|

|𝑏 − 𝑑| + |𝑎 − 𝑐|
,

|𝑎 − 𝑐|

|𝑏 − 𝑑| + |𝑎 − 𝑐|
]

The above definition is a way to determine a new corner

weight vector from the intersection of two reward vectors.

Based on this determination, the goal of the OLS algorithm

is to build a CCS partial set quickly. The spirit of the OLS

algorithm considers the new corner weight vector

(determined according to the above definition) as potential,

puts it into the problem obtains the corresponding reward

vector, processes the selection through a number of

conditions, and then repeats it. Continue the loop until there

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 6

are no more vectors among the potential angles that satisfy

the condition. The OLS algorithm can be presented by the

following Fig. 1 which illustrated for the pseudocode for

OLS algorithm.

In the pseudocode part of OLS, 𝚅𝚎𝚌𝚝𝚘𝚛 𝚁𝚎𝚠𝚊𝚛𝚍 (w)

is a function that returns the reward vector corresponding to

the set of weights w while the function

𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝑑𝑒𝑙 , 𝑆, u) has the role

of updating the set 𝑆, determining the new corner weight

vectors.

2.2 Proposed Method about Modelling to

Reinforcement Learning Problem

Fig. 2 illustrates our proposed framework. Our

framework consists of two main components: the RL block

and the clustering block. The RL block is constructed from

user information, product information, and interactions

between users and products. This block generates four

feature vectors to represent the dataset’s information and the

five essential components of the RL model: agent,

environment, state, action, and reward. When applying RL

to build a RS, we encounter the challenge of a vast number

of users. Therefore, when training the RL model

traditionally, treating each user as an environment may lead

to significant training time. To address this, we cluster users,

identify representative users, and train the RL model with

reduced computational cost. Clustering users helps reduce

computation costs, train the model with fewer user

interactions, and accelerate policy convergence.

.

Fig. 1. The pseudo-code of the optimistic linear support (OLS) algorithm

Fig. 2. Proposed framework

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 7

2.2.1 Creating four types of feature vectors
It is essential to create four unique kinds of feature

vectors in order to effectively capture and describe

information about things, such as users and items, as well as

their interactions. These vectors attempt to offer effective

representations, particularly for periodic product such as

telecommunication package and user activity. There are four

categories of feature vectors:

• Item vector:

– Representation: 𝐼𝑖 . Detail of item vector will be shown

in Fig. 3.

– Description: Every item in the dataset has distinct

features, and vector 𝐼𝑖 is used to represent the individual

qualities of item 𝑖.

Fig. 3. Detail of item vector

• User transaction vector:

– Representation: 𝑈𝑇𝑢. Detail of User Transaction vector

will be shown in Fig. 4.

– Description: User preferences are sent by means of

transactions, and 𝑈𝑇𝑢 is introduced for this specific

objective. The time intervals included are "1 month ago"

and "3 months ago" relative to the present moment. The

vector records user preferences by creating lists of items

that the user engaged with, connected to the

corresponding item vectors.

Fig. 4. Detail of user transaction vector

• User-item vector:

– Representation: 𝑈𝐼𝑢𝑖 . Detail of user transaction vector

will be shown in Fig. 5.

– Description: There are various ways to represent the

information about the relationship between users and

products. However, we utilize two factors: the quantity

of product 𝑖 purchased by user 𝑢 and the ranking

order of product 𝑖 in the list of products that user 𝑢 has

purchased, sorted by the number of purchases.

Fig. 5. Detail of user transaction vector

• User vector:

– Representation: 𝑈𝑢. Detail of user vector will be shown

in Fig. 6.

– Description: Incorporating both explicit feedback (e.g.,

subscription status) and hidden feedback (e.g., spending

amount and data usage), the user vector 𝑈𝑢 represents

the combination of these features.

Fig. 6. Detail of user vector

2.2.2 Definition of 5 components
Fig. 7 illustrates the 5 essential components of every RL

model.

System components will be specified as follows:

• Agent: The agent operates as a recommender, with the

explicit aim of offering consumers recommended products.

• Environment: The environment is constructed from

customer (user) information. The RL model will learn how

to recommend products that best match the customer’s

preferences.

• Action: Actions are designated as the recommended items

for consumers. The action is indicated by the combination

of the item vector and the user-item vector [𝐼𝑖 , 𝑈𝐼𝑢𝑖]. The

variable 𝑢 denotes the customer receiving the service,

whereas 𝑖 represents the recommended item.

• State: States are used to represent customer interactions.

We will combine the user vector and user transaction

vector, denoted as [𝑈𝑇𝑢 , 𝑈𝑢].
• Reward: We define the reward in two cases: single-

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 8

objective and multi-objective. The reward formula for

single-objective problems is expressed as the product of

𝑥 and the exponentiated value of (1 − 𝑦) raised to the

power of 𝑎 . Here, 𝑎 represents the time elapsed since

the user 𝑢 last interacted with the item 𝑖 at the time of

recommendation 𝑡 . The parameter 𝑦 is a small value

less than 1, and 𝑥 indicates the magnitude of the reward.

The reward value falls within the ranges of (0, 𝑥], and the

reward will be higher when the model recommends the

product that the user likes the most at time 𝑡, specifically

when 𝑎 = 0 . In the case of the multi-objective reward

function, in addition to the first component, which is the

reward as in the single-objective case, we aim to maximize

the daily profit for the company from package purchases.

Therefore, we combine the information 𝐶𝑖 representing

the price and 𝑇𝑖 representing the duration of using item

𝑖 to create the second component of the reward.

Some advantages of our reward function are as follows:

• This is a completely new reward function for periodic

items. Currently, there is not much RL research for this

type of item.

• Continuous value easily accurately evaluates user

feedback.

• This applies to items not selected at the time of suggestion

because the user may not have seen the recommended

item at that timestamp.

• The reward function has many meanings as a weighted

sum, showing that items that have been used recently are

more suitable to the user's preferences, while for items that

have not been used for a long time, the reward is small.

After having the 5 RL components, we will use RL

algorithms to train the model.

Fig. 7. System components

2.2.3 Using trained Q network to generate

recommendation sets
Utilizing the RL approach for the recommendation

problem necessitates a training process that is more intricate

than that of typical RL problems. The reason stems from the

delineation of each user’s environment, which may

encompass a subordinate sub-environment. Hence, it is

imperative to accurately update the appropriate state for the

user being attended to during the process of transitioning

between states. Fig. 8 depicts the proposed Q network

training process, which utilizes preexisting data, hence

constituting an offline training methodology.

In the illustration above, two initial users are 𝑢0 and 𝑢1

with corresponding interaction counts 𝑀 and 𝑁. Each step

corresponds to 𝑡0𝑖 with 𝑖 ∈ 1,2, . . . , 𝑀 for 𝑢0 , and 𝑡1𝑗

with 𝑗 ∈ 1,2, . . . , 𝑁 for 𝑢1. The PROCESS block is where

the algorithm starts training, and at each step, there are three

subtasks:

• Set up feature vectors: The feature vectors for the state

of user 𝑢0 at the current step [𝑈𝑇𝑢0
, 𝑈𝑢0

] and the set of

candidate items 𝐾0 for recommendation to user 𝑢0

with 𝐾0 = 2 × 𝑁𝑅0 , where 𝑁𝑅0 is the number of

items that user 𝑢0 has interacted with in the entire

interaction file. Since each user can only see a limited

number of items at any given time, setting 𝐾0 results in

effective training.

• Process: After normalizing the state description vectors

for user 𝑢0 : [𝑈𝑇𝑢0
, 𝑈𝑢0

] and the set of items 𝐾0 =

[𝐼𝑖𝑗
, 𝑈𝐼𝑢0𝑖𝑗

] |𝑗 ∈ 1,2, . . . , 𝐾0, these vectors are passed into

a pre-designed Q network that outputs the item with the

highest Q value ("highest" based on either real value in

single-objective tasks or the inner item with test weights

in multi-objective tasks) in that training set.

• Push recommendation sets to users and update their new

states: The recommendation system, after obtaining the

output of the Process, sends the recommended items to

user 𝑢0 at the current step. Then, it compares these

recommendations with the actual interactions of user 𝑢0

at that moment, calculates the reward to train the Q

network, and updates the state of user 𝑢0 for the next

step.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 9

It is crucial to acknowledge that the length of each set will

vary because each user has a unique amount of interactions.

Therefore, the epsilon value in the 𝜖- greedy algorithm is

modified individually for each user, adhering to a

requirement of 50% exploration and 50% exploitation.

Fig. 8. Illustration of the training process of the algorithm

2.3 Proposed Method About Multi-object

Recommendation Based on Reinforcement Learning

2.3.1 Fine-tuning and installing the OLS algorithm in

training EMOQ
In the original EMOQ algorithm, at each episode, we

choose a weight vector that follows a given distribution for

testing, this can lead to a prolongation of training time while

not being very effective because if we test nearly identical

weight vectors will intuitively replicate quite similar

experiences of interacting with the environment. Besides,

the OLS algorithm provides a way to build a partial set of

CCS, a set of "potential" weight vectors, and between the

weight vectors there will be a distinction because each

vector is calculated based on the intersection of reward

vectors, intuitively this will help each experience when

exploring the environment be different, leading to more

effective training.

For MORL problems, the calculation for the reward

vector is often "dynamic" (u ← 𝚅𝚎𝚌𝚝𝚘𝚛 𝚁𝚎𝚠𝚊𝚛𝚍(w))

because the environment usually has the stochastic factor.

This leads to some differences when wanting to apply OLS

to the MORL problem:

• Note that at each execution of the OLS algorithm, only

one result is obtained from the small set of the CCS due to

each weight vector can corresponding to many reward

vectors, for example, the simple vectors 𝚠𝚎 = [1,0] (are

vectors that only focus on a single target) then vector. The

corresponding reward will be of the form (max𝑜𝑏𝑗1, 𝑥)

for any x belonging to the admissible set. Furthermore,

because the environment in real life as a recommendation

system always has a stochastic factor, so performing an

action only once can’t obtain the expected reward vector,

which makes some errors in evaluation.

• Set of “outdated” corner weight vectors 𝒲𝑑𝑒𝑙 helps

eliminate ineffective corner weight vectors to reduce

training time, however, due to the above-mentioned

stochastic property of the environment, the weight vector

w𝚒 which is determined by the intersection of two reward

vectors is not ensured be the lowest corner weight vector.

• Computing the new corner weight vector 𝒲𝑢 =
𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝚍𝚎𝚕, 𝚂, u) requires

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 10

certain conditions because u is uncertain to be a CCS

point, so the particle set CCS (𝑆) is not only possible to

add points but also able to remove points when the policy

is improved and reward vectors have a higher value.

• The selection of vectors from 𝒲𝑢 is based on the

percentage improvement value 𝛥𝑟(w) , which becomes

difficult because points belonging to 𝑆 are not

necessarily true CCS points and the algorithm needs to be

explored, so vectors are eliminated corner weights can

make policy training difficult.

The proposed method refines OLS into multi-object

reinforcement learning. The title suggests the following

changes:

• Removing the percentage improvement value term

𝛥𝑟(𝜙) for selection corner weight vector in 𝒲𝑢 . We

proposed to use all these weight vectors.

• After each 𝒦 = ∅ queue, performing the OLS algorithm

again from step 2 (Determine simple vectors 𝚠𝚎).

• Removing the “outdated” set of vectors 𝒲𝑑𝑒𝑙 , every

corner weight vector is tested.

• 𝙿𝚘𝚝𝚎𝚗𝚝𝚒𝚊𝚕 𝙲𝚘𝚛𝚗𝚎𝚛 𝚆𝚎𝚒𝚐𝚑𝚝(𝒲𝚍𝚎𝚕 , 𝚂, u𝚒) is

designed with the following requirements: When the

reward vector u𝑖 = (𝑢𝑖1, 𝑢𝑖2) where 𝑢𝑖𝑘 is the 𝑘 th

target value of u𝑖. This vector will be compared with each

s = (𝑠1, 𝑠2) ∈ 𝑆:

– If all target values of u𝑖 are equal better than s

(denoted u𝑖 ≥ s) then eliminate s and if u𝑖 ≤ s

then ignore u𝑖. Execute a new loop.

– Let (𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑) be the interval of the value of

the second weight corresponding to the second object

with the following property:

∀ 𝚠𝚛 ∈ [𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑], w𝑟 = (1 − 𝚠𝚛, 𝚠𝚛) → w𝑟
𝑇s

≥ w𝑟
𝑇s′ ∀s′ ∈ 𝑆

– When u𝑖 can intersect with vector s at point with

coordinates ∈ [0,1] then the intervals

(𝚠𝚜,𝚕𝚘𝚠, 𝚠𝚜,𝚑𝚒𝚐𝚑) of each s and u𝑖 will be updated.

– 𝑆 ← 𝑆 ∪ {u𝑖}

Based on the above sections, in the final part of the

proposed algorithm. The report will summarize the steps of

the proposed method in pseudocode snippet in Fig. 9 below.

The pseudocode for Algorithm 2 in Fig. 9 can be

summarized by the following overview Fig.10.

The Fig. 10 above shows that in each training set, there

are four blocks including: Determining the weight vector,

training the Q network, and then using the result that has

just been trained to estimate the reward vector

corresponding to the weight vector, and finally creating the

new weight vectors for the next training sets. The first and

fourth block is directly related to the implementation of the

OLS algorithm while two others are related to the deep Q

network algorithm. The details of each block correspond to

each part in the pseudocode code. The work block

“Determine weight vector” has the role of deciding the type

of target that the agent will perform in the training set. These

weight vectors will be taken according to the queue 𝒦. As

explained in the above section on OLS, each application of

OLS only yields 𝑆 which is a subset of CCS and the

duration for performing one OLS pass is very small

compared to the number of steps that can be trained in RL.

Therefore, every time the OLS algorithm stops or 𝒦 = ∅,

the algorithm is re-executed with the simple addition of

weight vectors to 𝒦. However, the set 𝑆 remains the same

due to its role in supporting the finding of angle weight

vectors, helping to avoid too many repetitions of testing on

one vector in the number.

The second block of work plays a major role in policy

training. Based on the results of proving the convergence

theorem, we can see that using deep reinforcement learning

algorithms will be approximately 𝒞𝑄 in a complex space.

The DQN algorithm is used and combined with the label

update formula for training along with the combination of

the HER algorithm and the design of a new loss function.

Next, the third main block of work has a similar role to

the 𝑉𝑒𝑐𝑡𝑜𝑟𝑅 𝑒𝑤𝑎𝑟𝑑(𝑤𝑒) function in the pure OLS

algorithm. However, because the environment in

reinforcement learning is random and the algorithm used is

model-free, after each training session, the reward vector

after 100 steps will be considered with other reward vectors

in the component set 𝑆. Finally, the fourth block of work is

the OLS algorithm presented in the above section with the

role of multiplying the new reward vector and then editing

the set 𝑆, determining new corner weight vectors.

2.3.2 User clustering block
Our research focuses on the issue of model memory

retention during episodic interactions. We specifically

observe that the model’s ability to recall information from

earlier episodes, such as the 1000𝑡ℎ episode, is

significantly reduced in later stages. This phenomena

reflects the challenges faced in the transmission of

information across a sequence of processing units in

recurrent neural network (RNN) (Sherstinsky, 2020)

architectures. The large amount of data encountered in

successive user encounters poses considerable hurdles in

terms of representation. The intricacy here is comparable to

the process of enclosing a wide range of information within

a single cell state in an RNN. This, in turn, makes it

challenging to directly apply tactics commonly utilized in

LSTM (Hochreiter and Schmidhuber, 1997) networks or

transformer models.

Training a reinforcement learning model requires setting

values for episodes and steps for each episode. If we

associate each episode with a single user, and each step

represents a user transaction, it can lead to issues when

dealing with a large number of users. Training the model

over many episodes may result in the model forgetting the

preferences of users from the initial episodes (Yalnizyan-

Carson and Richards, 2022). Therefore, employing

clustering becomes crucial to identify characteristic users

within a group, aiding the model in understanding the

general preferences of customers. This approach reduces

training time for the MORL framework when dealing with

a significantly smaller number of virtual customers

compared to the actual customer base.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 11

Fig. 9. The pseudo-code of integrating OLS to MORL algorithm.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 12

Fig. 10. Diagram overview of work blocks in a training set

In order to tackle this problem, our research presents a

more sophisticated methodology. One component of this

strategy entails limiting the number of episodes or

decreasing the user sample size for model training. A more

innovative approach entails the development of "virtual"

user profiles. These profiles combine and express the

collective features and preferences of a group of people.

This approach provides a practical way to handle the

challenges that arise from a large amount of information

being exchanged, guaranteeing the preservation of

important knowledge gained from the user community.

The following part is our design for user clustering vector.

The user vector for the clustering problem will be different

from the user vector for RL training in the above section

because the user vector is temporal, changes continuously,

and the task of the user clustering vector will be to

generalize the characteristics of each user in the entire data.

The user-clustering vector will be created similarly to the

user transaction vector, which is a weighted sum of user

vectors. Each vector has a main component that is the user

vector within 10 months with a coefficient depending on the

time, the farther the time, the smaller the contribution:

𝑈𝐶𝑢 = ∑(1 + 𝑏)𝑡−2

12

𝑡=3

𝑈𝑢𝑡

With 𝑈𝐶𝑢 being the user-clustering vector, 𝑈𝑢𝑡 is the

user vector at month 𝑡 in 2020, and the coefficient 𝑏 > 0

to represent recent months is more meaningful in expressing

user preferences.

This paragraph presents the clustering algorithm and

metric: The clustering algorithm that the proposed method

uses is Kmeans with the clustering metric being the cosine

similarity between 2 user clustering vectors corresponding

to 2 users. The number of clusters to be divided is examined

through two evaluation metrics for clustering: Silhouette

and Elbow. At each cluster, the method determines the user

center - the user closest to the center of the cluster after

implementing the Kmeans algorithm. Because training RL

requires a certain number of training episodes and each

episode needs to have a large enough number of steps to be

able to explore and exploit effectively. To select the users

closest to the user center and have a large enough number

of interactions, the article proposes a way to calculate the

similarity number interaction score:

𝑆𝑁𝐼(𝑢) = 0.5 × 𝑐𝑜𝑠(𝑣𝑢 , 𝑣𝑢𝑐𝑐𝑒𝑛𝑡𝑒𝑟
) + 0.5 ×

𝑁𝐼𝑢

max𝑢𝑁𝐼𝑢

where 𝑢 is the user whose score needs to be calculated,

𝑢𝑐𝑒𝑛𝑡𝑒𝑟 is the center corresponding to the cluster to which

user 𝑢 belongs, 𝑣𝑢 is the corresponding user clustering

vector, and 𝑁𝐼𝑢 is the number of interactions of user 𝑢 .

The coefficient 0.5 shows that the method considers two

factors close to the central user and the number of

interactions to be equally important.

3. RESULTS AND DISCUSSION

In this section 3, we will detail the installation,

experiments, and results. Specifically, regarding the

installation part, our proposed model includes the three most

important components preprocessing data, reinforcement

learning framework, and clustering part. Each component’s

setting is shown in a subsection: preprocessing settings in

subsection 3.2; RL settings include everything related to

applying the RL framework in section 3.3; and user

clustering settings in section 3.5. In the RL setting section,

there are 3 subparts: state, action setting in part 3.3.1, reward

setting: in part 3.3.2, and model Q Network in part 3.3.3.

The experiment part is shown in two subsections 3.6 and 3.7.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 13

3.1 Dataset
The data set used in this paper is the interaction data set

of users using a phone network in Vietnam from March

2020 to December 2020. The data set includes three files:

• User profile: The first file contains monthly data for a

period of ten months, detailing records of 1000 users.

Each record represents the consumption of each user in

1 month in 2020. This consumption information

encompasses user IDs, provincial details, total

expenditure, and the breakdown of expenses by primary

purposes. Additionally, it covers the total amount of data

consumed and short message service (SMS) usage.

• Package profile: The second file provides details on 275

different packages, each record is corresponding to

profile of each package. The profile information of each

package consists of various elements such as package ID,

registration cost, the quantity of data included, type of

package, expiration date, and other related information.

• Transaction: The final file documents over 170,000

transactions between 1000 users and the 275 mobile

packages, each record is corresponding to one

transaction. The detailed information of each transaction

consists of the date of interaction, ItemID (representing

the package), AccountID (identifying the user), and the

price associated with the interaction.

The dataset is split into two subsets: a training set and a

test set. The training set encompasses data from a 9-month

period, spanning from March 2020 to November 2020. The

test set, on the other hand, is focused on data from a specific

date, December 1, 2020.

3.2 Normalizing Feature Vectors
Because of the diversity of dataset, we need to preprocess

feature vectors before utilizing these vectors for training.

There are two common types of features: non-seasonal

features and seasonal features. Our preprocessing steps as

follow:

• Non-seasonal features: 𝑣𝑛𝑒𝑤 =
𝑣−min𝑣

max𝑣−min𝑣
, which is max

min-normalization, 𝑣𝑛𝑒𝑤 is the new normalized value of

𝑣.

• Seasonal features: 𝑢𝑛𝑒𝑤 = cos (2𝜋 ×
𝑢

𝑆𝑗
) , where 𝑆𝑗

denotes the cycle of the feature.

3.3 Reinforcement Learning Setting

3.3.1 Settings with 4 vectors and preprocessing the

features of the vectors

The following settings were obtained through multiple

trials of various parameter sets, selecting the optimal

parameter set. This approach is similar to that used in papers

on DRL (Lillicrap et al., 2015; Zhao et al., 2017; Hu et al.,

2018). The four vectors in the proposed method will be set

up with the custom dimensions and meanings. The detailed

meaning is as follows:

• Product vector: 𝐼𝑖 ∈ ℝ6 includes features such as price,

supply data flow level, intra-network traffic, off-network

traffic, allowed number of sms messages, time limit.

• User vector: 𝑈𝑢 ∈ ℝ19 includes features such as the

amount of money used for calls, internet access, texting,

numbers call, time.

• User-item vector: 𝑈𝐼𝑢𝑖 ∈ ℝ2 includes 2 information

corresponding to a pair (𝑢, 𝑖) is the number of

interactions that user 𝑢 has registered for package 𝑖
and the rank of package 𝑖 in all packages that the user

has registered within the last 3 months.

• User transaction vector: 𝑈𝑇𝑢 ∈ ℝ12 includes 2 time

periods: 1 month ago and 3 months ago to describe user

preferences according to characteristics of product.

Among the features in all 4 vectors, only the time features

are cyclically normalized, while the remaining features are

normalized so that the value is in the range [0,1] as

presented in the methodology section.

3.3.2 Reward settings
The first setting is for single objective case: With the

reward formula defined as 𝑟(𝑢, 𝑖, 𝑡) = 𝑥 × (1 − 𝑦)𝑎 , the

values for 𝑥 = 1 and 𝑦 = 0.02 are set. Thus, the reward

formula becomes 𝑟(𝑢, 𝑖, 𝑡) = 0.98𝑎 , where 𝑎 represents

the time distance from the recommendation timestamp 𝑡 to

the nearest date when the user interacted with item 𝑖 in the

interaction file.

Next, in the multi objective case: this paper proposed the

additional object about the obtained profit which is defined

as the ratio between the price of an item divided by the

period of that item. However, to avoid the case that the

recommender only focuses on the profit, which makes the

recommended item does not fit to user’s preference, we set

the condition requiring a positive user response to that item,

denoted as 𝑟1 > 0:

r = [𝑟1, 𝑟2] = [𝑥 × (1 − 𝑦)𝑎,
𝐶𝑖

𝑇𝑖

× {𝑟1 > 0}]

where
𝐶𝑖

𝑇𝑖
 is the ratio between the cost (price) of item 𝒊

divided by the period (duration) of that item.

3.3.3 Q network settings
The Q network is designed with 2 hidden layers with the

number of units 64 and 32 respectively. The activation

functions are both ReLU.

3.4 Evaluation Metrics
We have a set of five recommend items 𝐼′ =

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) for user 𝑢 at timestamp 𝑡 , and the real

items user 𝑢 interacting at that time is 𝐼𝑟𝑒𝑎𝑙 . In this paper,

two common metrics to evaluating the quality of the

recommendation system are hit rate which presents the ratio

of the real item in the recommended list, and discounted

cumulative gain (DCG) which presents the ranking of the

real item in list (both the range of value of two metrics is
[0,1]).

To evaluate all recommended item list to all user 𝑈, we

denote the number of users to test is 𝑛, the rank score of the

real item 𝐼𝑟𝑒𝑎𝑙 in the list 𝐼′ is 𝑙𝑘 with 𝑘 is the order of

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 14

recommendation for that user. The formula of two evaluated

metrics as follow:

ℎ𝑖𝑡𝑘 = {
1 if 𝑖𝑟𝑒𝑎𝑙 ∈ 𝐼′

0 if 𝑖𝑟𝑒𝑎𝑙 ∉ 𝐼′
⇒ ℎ𝑖𝑡@5 =

1

𝑛
𝛴𝑘=1,𝑛ℎ𝑖𝑡𝑘

𝑑𝑐𝑔𝑘 = {

1

𝑙𝑜𝑔2(𝑙𝑘 + 2)
if 𝐼𝑟𝑒𝑎𝑙 ∈ 𝐼′

0 if 𝐼𝑟𝑒𝑎𝑙 ∉ 𝐼′

⇒ 𝑑𝑐𝑔@5

=
1

𝑛
𝛴𝑘=1,𝑛𝑑𝑘

3.5 User Clustering Setting
In the formula for computing user-clustering vector:

𝑈𝐶𝑢 = ∑ (1 + 𝑏)𝑚−2

12

𝑚=3

𝑈𝑢𝑚

The value is set to 𝑏 = 0.1 to show that the months

closer to December have a greater influence. Then, based on

the survey results of the number of clusters from 2 to 20 of

the two metrics Silhouette and Elbow, the number of user

clusters is 5.

3.6 Single Objective Results
To illustrate the effectiveness of modeling from the

perspective of reinforcement learning in the recurring

product recommendation problem, for simplicity, we will

experiment with the case of a single target first. Here, we

have a table of experiments like Table 1, where we compare

the reward vector with our continuous value 𝑟 = 𝑥 ×
(1 − 𝑦)𝑎 with discrete values from 0 to 1, this discrete

reward formula is based on the reward setting of models

DRR (Liu et al., 2018) and LIRD (Zhao et al., 2017) for

single-use products such as movies, news or songs.

Specifically, value 𝑟 = 0.5 represents user 𝑢 has ever

interacted with item 𝑖 but not at the time of suggestion

while 𝑟 = 0 means user 𝑢 hasn’t ever chosen that item

and 𝑟 = 1 means recommend right the real item to user at

the timestamp 𝑡.

Besides, we also want to see the effectiveness of the user

clustering block. Furthermore, to evaluate the impact of user

clustering, a scenario utilizing only cosine similarity scores

is tested, without considering the number of user

interactions in the comparison. There are 5 main

experiments conducted in the following Table 1.

Table 1. Table of experiment list

Experiment Reward formula User clustering

1 ∈ {0,0.5,1} None

2 ∈ {0,0.5,1} None but with

embedding features

3 𝑥 × (1 − 𝑦)𝑎 None

4 𝑥 × (1 − 𝑦)𝑎 Only using cosine

similarity scores

5 𝑥 × (1 − 𝑦)𝑎 With user clustering -

our proposed model

Comparison between experiments: The results from the

five experiments mentioned above have demonstrated the

effectiveness of the proposed model. The two Fig. 11 and

Fig. 12 below show the results of the experiments with the

hit and dcg metrics across each training episode. The yellow

line corresponds to the model in experiment 1, red -

experiment 2, purple - experiment 3, blue - experiment 4,

and green - the proposed model.

From the results of both metrics for the five experiments,

it can be observed that the values of hit@5 and dcg@5

exhibit minimal changes in the later episodes for all five

experiments. The effectiveness of considering the

interaction time with recommended items, as proposed in

the "change_reward" model, is evident since even in the

early training episodes, the hit@5 and dcg@5 values of the

"change_reward" model (experiment 3 in Table 1) are

consistently higher compared to the other two models

(experiments 1 and 2), where the rewards are not time-

differentiated. Specifically, the initialization values of the

"change_reward" model (representing different reward

formulas) start at around 0.85, while the other two models

remain at 0.4 and below 0.2.

On the other hand, the effectiveness of user clustering is

also demonstrated, as the proposed model achieves higher

values after the initial training episodes compared to the

"change_reward" model (without clustering) and

significantly higher than the model in experiment 4 (which

has clustering but score based on interactions is omitted),

indicating improved exploration and exploitation due to the

heavy influence.

Fig. 11. Training results for each episode of the

experiments with the HIT metric

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 15

Fig. 12. Training results for each episode of the

experiments with the DCG metric

Stability of user clustering: From Fig. 11 and Fig. 12, we

can see that our proposed model starts better than other

models, leading to faster stabilization. However, that is only

the result of running 1 time, to evaluate more objectively,

we test each experiment by running the first training episode

(in total we run 30 times). To demonstrate the reliability of

the proposed model, the paper showcases the following box

plots of two metrics to evaluate the stability of our model

(change_reward 2) in Fig. 13 and Fig. 14.

The box plots display a compilation of experiments along

with their related names. Implementation details are

provided in Table 2.

Table 2. Compilation of trials assessing the durability of

the model

Experiment Reward User clustering

change_reward_2 𝑥 × (1 − 𝑦)𝑎 With score as in the

proposed model

change_reward_1 𝑥 × (1 − 𝑦)𝑎 None

standard_2 ∈ {0,0.5,1} With score as in the

proposed model

standard_1 ∈ {0,0.5,1} None

Fig. 13. The box plot corresponds to the HIT metrics

Fig. 14. The box plot corresponds to the DCG metrics

It is clear that both the median value and the max value

of our proposed are higher than other experiments, which

means our model "often" have the initial point better than

other models.

Comparison with another methods: The proposed method

was also tested with the DRR algorithm and the Table 3 is

the result. Note that, to test with the DRR algorithm, we

need to convert the interaction dataset to the rating dataset,

so we can also see that which algorithm only receive the

rating dataset to be input can not generalized as our

proposed model, our model only can received interaction

dataset. Furthermore, from the result in Table 3, we see that

our model is better both on hit metric and dcg metric.

Table 3. Single-objective: Comparison with the DRR

method

Method 𝒉𝒊𝒕@𝟓 𝒅𝒄𝒈@𝟓

Proposed method 0.95 0.95

DRR algorithm 0.81 0.77

3.7 Multi-Objective Results
To optimize training efficiency, the user clustering

results are applied, reducing the amount of training

required. During this process, two metrics are plotted for

each trained set to assess performance: hit@5 and dcg@5

(discounted cumulative gain at 5). The best-case scenario

demonstrated a hit@5 of 0.93 and a dcg@5 of 0.71,

indicating a high level of accuracy in the

recommendations. This is depicted in a Fig. 15 illustrating

the training process of the proposed algorithm across each

training set.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 16

Fig. 15. Training results through each episode with multi-

object modeling

We know that we can check that the first component of

the reward vector corresponds to user preferences, that is,

the relationship between that product and the user, while the

second component is more difficult to evaluate when we do

not know what users actually choose if we recommend a

product list. Therefore, we evaluate based on the average

value of a package in the recommendation list, that is, for

each recommendation, we calculate the following value:

(PPI - profit per item)

𝑃𝑃𝐼 =
1

5
∑ (

𝐶𝐼𝑗

𝑇𝐼𝑗

× (𝑠𝑔𝑛 (𝑟1

𝐼𝑗
)))

5

𝑗=1

where 𝑠𝑔𝑛 (𝑟1

𝐼𝑗
) ∈ {1,0} is the sign of the first element

in the reward vector.

Figs. 16(a) and 16(b) show Kernerl density estimation for

the average price of each recommendation to users for the

two cases single-object and multi-obj. The multi-objective

framework generally leads to a higher average price of

products than the single-objective method. With the single-

objective model, the recommended products tend to be

cheaper, mostly within the 0 to 25 price range, dominating

the recommendation lists. In contrast, applying the multi-

objective framework results in recommendations with

notably higher average prices when mostly within from

around 50 to 200.

(a) (b)

Fig. 16. Kernel density estimator of the average price for five recommended items:

(a) Single-object (b) Multi-objective

Furthermore, both metrics, hit@5 and dcg@5, achieve

notable levels, signifying that the actual items users are

interested in frequently appear high in the recommended list.

This indicates not just the relevance in the recommendations

but also their potential for higher engagement and

satisfaction from the users.

3.8 Discussion
According to our understanding, there is limited research

applying MORL to recommender system (Paparella et al.,

2023). In this study, we introduce a novel MORL framework

into the RS, enhancing recommendation performance and

simultaneously boosting company revenue compared to a

focus solely on improving recommendation accuracy. While

constructing MORS with various objective functions, a

straightforward method is employing the Scalarization

approach (Zheng and Wang, 2021). However, existing

approaches often fix the weights for each objective function

in advance (Stamenkovic et al., 2022), or they do not

address rapid adaptation to continuous changes in task

priorities in practical scenarios. To address this, we leverage

the MORL framework proposed by Yang et al. (2019) for

application in RS, enabling the system to dynamically adapt

to continuous shifts in priority among objectives.

Additionally, to swiftly determine optimal preference

weights, we incorporate the OLS algorithm, optimizing the

training process in a shorter timeframe and expediting the

identification of the CCS. Notably, in contrast to typical RL

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 17

approaches in RS, we do not train the agent for each

individual customer to assist in recommending suitable

products (Afsar et al., 2022). Instead, we employ a

clustering methodology to identify representative customers.

This approach facilitates rapid training, computational cost

savings, and accelerates the convergence speed of the

MORL algorithm in deriving optimal recommendations.

Our framework introduces a comprehensive approach to

integrating MORL into RS, offering flexibility, efficiency,

and enhanced adaptability to changing objectives, thereby

contributing to the advancement of recommendation system

research.

4. CONCLUSION

Our research presents details from modeling to

integrating other algorithms to increase efficiency in

training to building a multi-target personalized

recommendation system for periodic products. Our

modeling includes defining terms in reinforcement learning,

especially defining vectors that represent user preferences

and identifying optimization goals. The two goals that we

identify for a recommendation system are recommended

products that match user preferences and profit optimization

(high value of the product). Our approach is to extract

characteristic users from building a user clustering block

and, after that, explain and integrate the OLS algorithm into

envelope multi-object Q-learning. Our proposed method is

tested on real datasets, the results show that our model is

remarkable and has potential.

ACKNOWLEDGMENT

This work was supported by the Vietnam Ministry of

Education and Training [grant number B2023-BKA-07]

REFERENCES

Afsar, M.M., Crump, T., Far, B., 2022. Reinforcement

learning based recommender systems: A survey. ACM

Computing Surveys, 55(7), 1–38.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P.,

Zaremba, W., 2017. Hindsight experience replay.

Advances in Neural Information Processing Systems, 30.

Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath,

A.A., 2017. Deep reinforcement learning: A brief survey.

IEEE Signal Processing Magazine, 34(6), 26–38.

Chen, L., Zhu, G., Liang, W., Wang, Y., 2023. Multi-

objective reinforcement learning approach for trip

recommendation. Expert Systems with Applications, 226,

120145.

Covington, P., Adams, J., Sargin, E., 2016. Deep neural

networks for YouTube recommendations. In Proceedings

of the 10th ACM conference on recommender systems,

pp. 191–198.

Cui, L., Ou, P., Fu, X., Wen, Z., Lu, N., 2017. A novel multi-

objective evolutionary algorithm for recommendation

systems. Journal of Parallel and Distributed Computing,

103, 53–63.

Gomez-Uribe, C.A., Hunt, N., 2015. The Netflix

recommender system: Algorithms, business value, and

innovation. ACM Transactions on Management

Information Systems, 6(4), 1–19.

Hayes, C.F., Rădulescu, R., Bargiacchi, E., Källström, J.,

Macfarlane, M., Reymond, M., Roijers, D.M., 2022. A

practical guide to multi-objective reinforcement learning

and planning. Autonomous Agents and Multi-Agent

Systems, 36(1), 26.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term

memory. Neural Computation, 9(8), 1735–1780.

Hou, Y., Gu, W., Dong, W., Dang, L., 2023. A deep

reinforcement learning real-time recommendation model

based on long and short-term preference. International

Journal of Computational Intelligence Systems, 16(1), 4.

Hu, Y., Da, Q., Zeng, A., Yu, Y., Xu, Y., 2018.

Reinforcement learning to rank in e-commerce search

engine: Formalization, analysis, and application. In

Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp.

368–377.

Jahn, J., 1985. Scalarization in multi objective optimization.

Springer Vienna, pp. 45–88.

Joachims, T., Freitag, D., Mitchell, T., 1997. Webwatcher: A

tour guide for the world wide web. International Joint

Conference on Artificial Intelligence, pp. 770–777.

Keat, E.Y., Sharef, N.M., Yaakob, R., Kasmiran, K.A.,

Marlisah, E., Mustapha, N., Zolkepli, M., 2022.

Multiobjective deep reinforcement learning for

recommendation systems. IEEE Access, 10, 65011–

65027.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D., Wierstra, D., 2015. Continuous

control with deep reinforcement learning. International

Conference on Learning Representations,

abs/1509.02971.

Linden, G., Smith, B., York, J., 2003. Amazon.com

recommendations: Item-to-item collaborative filtering.

IEEE Internet computing, 7(1), 76–80.

Liu, F., Tang, R., Li, X., Ye, Y., Chen, H., Guo, H., Zhang,

Z., 2018. Deep reinforcement learning based

recommendation with explicit user-item interactions

modeling. Neurocomputing, 307, 139–150.

Mulani, J., Heda, S., Tumdi, K., Patel, J., Chhinkaniwala,

H., Patel, J., 2020. Deep reinforcement learning based

personalized health recommendations. “Deep learning

techniques for biomedical and health informatics”,

Springer, pp. 231–255.

Paparella, V., Anelli, V.W., Boratto, L., Di Noia, T., 2023.

Reproducibility of multiobjective reinforcement learning

recommendation: Interplay between effectiveness and

beyond-accuracy perspectives. In Proceedings of the 17th

ACM Conference on Recommender Systems, pp. 467–

478.

Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R., 2013.

International Journal of Applied Science and Engineering

Dat et al., International Journal of Applied Science and Engineering, 21(3), 2023542

https://doi.org/10.6703/IJASE.202406_21(3).003 18

A survey of multi-objective sequential decision-making.

Journal of Artificial Intelligence Research, 48, 67–113.

Roijers, D.M., Whiteson, S., Oliehoek, F.A., 2015.

Computing convex coverage sets for faster multi-

objective coordination. Journal of Artificial Intelligence

Research, 52, 399–443.

Sarker, A., Shen, H., Kowsari, K., 2020. A data-driven

reinforcement learning based multiobjective route

recommendation system. IEEE 17th international

conference on mobile ad hoc and sensor systems (mass),

pp. 103–111.

Sherstinsky, A., 2020. Fundamentals of recurrent neural

network (RNN) and long short-term memory (LSTM)

network. Physica D: Nonlinear Phenomena, 404, 132306.

Song, L., Tekin, C., Van Der Schaar, M., 2014. Online

learning in large-scale contextual recommender systems.

IEEE Transactions on Services Computing, 9(3), 433–

445.

Stamenkovic, D., Karatzoglou, A., Arapakis, I., Xin, X.,

Katevas, K., 2022. Choosing the best of both worlds:

Diverse and novel recommendations through multi-

objective reinforcement learning. In Proceedings of the

Fifteenth ACM International Conference on Web Search

and Data Mining, pp. 957–965.

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An

introduction. MIT press.

Von Lucken, C., Baran, B., Brizuela, C., 2014. A survey on

multi-objective evolutionary algorithms for many-

objective problems. Computational optimization and

applications, 58, 707–756.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M.,

De Freitas, N., 2016. Dueling network architectures for

deep reinforcement learning. In Proceedings of the 33rd

International Conference on International Conference on

Machine Learning-Volume 48, pp. 1995–2003.

Wu, H., Ma, C., Mitra, B., Diaz, F., Liu, X., 2022. A multi-

objective optimization framework for multi-stakeholder

fairness-aware recommendation. ACM Transactions on

Information Systems, 41(2), 1–29.

Yalnizyan-Carson, A., Richards, B.A., 2022. Forgetting

enhances episodic control with structured memories.

Frontiers in Computational Neuroscience, 16, 757244.

Yang, R., Sun, X., Narasimhan, K., 2019. A generalized

algorithm for multi-objective reinforcement learning and

policy adaptation. Proceedings of the 33rd International

Conference on Neural Information Processing Systems.

Curran Associates Inc., Red Hook, NY, USA, Article

1311, 14636–14647.

Zhao, X., Zhang, L., Xia, L., Ding, Z., Yin, D., Tang, J.,

2017. Deep reinforcement learning for list-wise

recommendations. In Proceedings of the 12th ACM

Conference on Recommender Systems. Association for

Computing Machinery, New York, NY, USA, 95–103.

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie,

X., Li, Z., 2018. DRN: A deep reinforcement learning

framework for news recommendation. In Proceedings of

the 2018 world wide web conference, pp. 167–176.

Zheng, Y., Wang, D.X., 2021. A survey of recommender

systems with multi-objective optimization.

Neurocomputing, 474, 141–153.

