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ABSTRACT 
 
 A transformer is a device used for electricity-related purposes, one of which is to 
distribute electricity from a supplier, in this case the State Electricity Company (PLN), 
to customers or the community. Considering the transformer’s essential role, it is crucial 
to conduct research to minimize damage to this device, which can be caused by a variety 
of factors, where gas and electrical conditions of the transformer, among other things, 
can be used as indicators of damage. Therefore, this study focused on creating models 
using Artificial Neural Network (ANN) algorithms to assess transformer conditions 
based on data obtained from transformers. In this study, correlation analysis was used to 
determine six features that served as leading indicators in evaluating the condition of the 
transformer. The six features were dibenzyl disulfide (DBDS), interfacial voltage, 
hydrogen, methane, ethylene, and water content. In modelling and testing, 80% of the 
data was distributed for the training dataset and 20% was for the testing dataset, with a 
total of 470 data points. This study also applied the Synthetic Minority Oversampling 
Technique-Rechecked, Reused, and Edited (SMOTE-R2E) method, which is an 
improvement of the SMOTE method. SMOTE-R2E is proposed in this study to 
overcome the limitations of unbalanced transformer data. In this study, model training 
was carried out using three approaches, i.e., model training using a training dataset 
obtained without the SMOTE method, model training using a training dataset obtained 
with the SMOTE method, and model training using a training dataset obtained with the 
SMOTE-R2E method. Each training approach was performed 100 times. Based on 
model testing on the testing dataset, the best model was the model obtained by applying 
the SMOTE-R2E method, with average accuracy and F1-score obtained from 100 
iterations of 83.04% and 81.96%, respectively. 
 

Keywords: Artificial Neural Network, SMOTE, SMOTE-R2E, Transformer 
 

 

1. INTRODUCTION 
 
 Machine learning can be applied in many fields, such as image detection, fraud 
detection, recommendation systems, etc. For image detection, especially in the 
healthcare field, some methods have been proposed, including wheat disease recognition 
by combining the VGG-16 CNN model and WeChat (Wang et al., 2023), acute 
lymphoblastic leukemia disease identification by using a CNN model (Saeed et al., 2024),
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atrial fibrillation detection using the combination of one-
dimensional dense residual network and bidirectional RNN 
(Laghari et al., 2023), and patient medical image collection 
and interpretation (Laghari et al., 2024). 
 Nowadays, machine learning is also combined with IoT. 
For example, this combination has been utilized to develop 
smart systems to help the elderly and the disabled with their 
daily activities (Das et al., 2023), detect anomalies using 
deep auto-encoder and capsule graph convolution via the 
sparrow search algorithm in 6G IoT (Yin et al., 2024), and 
track the accuracy of the train to the target speed in 
automatic train operations (Liu et al., 2023). Machine 
learning can also be applied in online video streaming to 
optimize the streaming quality and increase the revenue for 
service providers (Laghari et al., 2023). In addition, 
machine learning can be integrated with augmented reality 
to develop games. Integrating machine learning and 
augmented reality will expand the range of AR experiences 
and add a more personal touch (Laghari et al., 2024). 
 Machine learning can be used to detect transformer 
condition. A transformer is a device with magnetic coupling, 
which channels electric energy from one electric circuit to 
another, based on the principle of electromagnetic induction 
while maintaining the frequency (Syahfitra et al., 2017). 
This device is one of the crucial components in the 
distribution of electricity from the State Electricity 
Company (PLN) to the community, with electric power 
distribution structures located at several points, including 
power substations (El-Harbawi, 2022). Considering the 
importance of the transformer and its continuous use, it is 
necessary to pay more attention to the condition of the 
transformer, as damage to this device results in losses for 
both the customers and PLN. Previous research has shown 
that various things can damage the transformer, for example, 
thermal disturbances caused by transformer overload, poor 
bolt connections with cables, poor oil flow in the 
transformer, water content in the oil, and sludge in oil 
(Hoole et al., 2017). In addition, several gases are produced 
on the transformer, some of which are hydrocarbon gases 
such as hydrogen (H2), methane (CH4), ethane (C2H6), 
ethylene (C2H4), and acetylene (C2H2) (Nanfak et al., 2021). 
Seeing the impact and danger of these flammable gases, in 
addition to electrical data on the transformer, a device is 
needed to provide information about the gases on the 
transformer in real-time to determine the condition of the 
transformer. One of the parameters used to see the condition 
of the transformer is the Health Index (HI), which is the 
value deriving from analyzing various data based on test 
data in the field or the laboratory, considering the time of 
use of the tool (Zhengwei et al., 2018). 
 Previous studies have predicted HI values, such as a study 
Abdullah et al. (2021) that performed HI value prediction 
using Condition Situation Monitoring (CSM) diagnostic 
techniques. One study Alqudsi et al. (2019) also classified 
transformer conditions into three classes (based on HI 
values), with ten and four features, using eight classification 
methods: Random Forest (RF), Decision Tree (J48), 

Support Vector Machines (SVMs), k-Nearest Neighbor (k-
NN), OneR, Multinomial Logistic Regression (MLR), 
Naïve Bayes (NB), and Artificial Neural Networks (ANNs). 
However, some others classified HI into four (Bohatyrewicz 
and Banaszak, 2022) and five categories (Hernanda et al., 
2014). 
 Keeping in mind the losses caused when a transformer is 
damaged and the importance of checking the condition of 
the transformer based on HI in real-time, data to be used as 
indicators of transformer condition classification is needed. 
However, such data is not easily available. Because the price 
of the transformer is very high, the company will constantly 
keep the transformer in good condition, and therefore, data 
indicating the transformer’s good condition that is necessary 
for developing the classification model will be much less 
than data indicating its poor condition. In addition, it will 
take a long time to obtain a large amount of data on the 
transformer’s poor conditions. Therefore, a method for 
developing a transformer condition classification model 
with existing unbalanced transformer data is proposed. 
 This research used existing data, where the data obtained 
for each category in this study was unbalanced, with the 
amount of data on good transformer conditions being much 
less than the amount of data on poor transformer conditions. 
Therefore, to create a classification model, it was deemed 
necessary to first generate synthetic data. In previous studies, 
no synthetic data were generated to overcome the problem 
of unbalanced transformer condition data. Therefore, this 
study explored the classification of transformer conditions, 
which were grouped into four categories, with six features 
using the ANN method, where a model was trained by 
applying the Synthetic Minority Oversampling Technique 
(SMOTE) method. SMOTE has been proven to improve 
classification accuracy on unbalanced data (Pribadi et al., 
2022, Lopo and Hartomo, 2023). Another model was trained 
by applying the Synthetic Minority Oversampling 
Technique-Rechecked, Reused, and Edited (SMOTE-R2E) 
method, an improvement of the SMOTE method proposed 
in this study. We also trained another model with the 
existing data without generating synthetic data to observe 
the differences. 

 
2. MATERIALS AND METHODS 

 
The data used in this study was not privately derived from 

the transformer site. Instead, it was public data with limited 
detailed information. Therefore, a literature study regarding 
data use was conducted. However, we found no research 
that used data for classification, including classification 
with the SMOTE method. Fig. 1 outlines the research 
method employed in this study to achieve the following 
research objectives: 
 To demonstrate a new synthetic data generation method 

named SMOTE-R2E to address unbalanced data in ANN 
model creation. 

 To demonstrate the use of the SMOTE method to address 
unbalanced data in ANN model creation. 
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 To compare the ANN classification model generated with 
SMOTE, the ANN model generated with SMOTE-R2E, 
and the ANN model generated without SMOTE.  

The details of each research step are provided in the 
following sections. 

 
2.1 Transformer 

A transformer is an electrical device that uses the 
principle of electromagnetic induction to transfer energy 
from one electrical circuit to another (Abdullah et al., 2021). 

There are several components in the transformer, including 
iron core, transformer coils, transformer oil, insulation, and 
conservator tank. Transformer oil in particular is vital in the 
transformer as a cooling medium (Hoole et al., 2017). An 
electric field or thermal loads originating from the windings 
or transformer core can cause various dissolved gases to be 
present in transformer oil at a certain level (Bustamante et 
al., 2019). Therefore, these gases can be used as an indicator 
to assess the condition of the transformer. 

  
 

 

 Fig. 1. The outline of the research method 

2.2 Artificial Neural Networks (ANNs)
 An ANN is an algorithm that works like a human neural 
network (Stangierski et al., 2019). In an ANN, several 
parameters need to be found through a training process, 

namely weight and bias. The ANN algorithm is generally 
described in Fig. 2 and mathematically represented as 
Equation (1) (Wang et al., 2020).  
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Fig. 2. ANN scheme (Wang et al., 2020) 
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 where 𝑉ெ௅ represents the prediction results with 𝑁 
hidden layers, 𝑀௡ represents the number of nodes on each 
hidden layer with 𝑛 ∈ {1, 2, . . 𝑁} , 𝑀௜௡௣௨௧ represents the 
number of nodes on the input layer, and 𝑤௜,௝

 ௡  is the weight 
parameter connecting two layers with 𝑗 ∈ {1, 2, . . , 𝑀}.  By 
looking at the number of nodes and biases present in the 
architecture, the total parameters can be calculated with 
Equation (2). 
 

The sum of all parameters = ෍(𝑀௡ + 1) × 𝑀௡ାଵ

ேିଵ

௡ୀ଴

(2) 

 
where the value of 1 expresses the sum of the biases, 𝑀଴ =
𝑀௜௡௣௨௧ , and 𝑀ே = 𝑀௢௨௧௣௨௧. 
 The ANN model architecture also uses activation 
functions to determine the number of hidden layers and the 
number of nodes on every hidden layer. The activation 

functions used in this study were ReLU and Softmax. The 
ReLU function is represented as Equation (3), and Softmax 
function is represented as Equation (4) (Sharma et al., 2020). 
 

𝑓(𝑥) = max(0, 𝑥) (3) 
 

𝑓௝(𝑥) =
𝑒௫ೕ

∑ 𝑒௫೔௄
௜ୀଵ

(4) 

 
with 𝑗 = 1, … , 𝐾, where 𝐾 is the number of classes used. 
 

2.3 Data Collection 
This study used transformer and HI data from the website 

https://www.kaggle.com with the format *.csv (Velásquez 
and Lara, 2020). Based on the information on the page, the 
HI can be divided into five conditions. Samples of the data 
obtained from the site are shown in the Tables 1A and 1B 
(Alqudsi and  El-Hag, 2019). 

 
Table 1A. Transformer data samples 

Index data Hydrogen Oxygen Nitrogen Methane CO CO2 Ethylene  Ethane 
1 14 514 70600 11 674    11700 13 5 
2 13 12300 43400 0 309 908 0 0 
3 38 3127 16464 11 177 727 28 3 
4 36 2950 63300 101 525 4080 193 35 
5 488 11861 48353 13 85 1957 29 23 
6 4 26100 60600 1 206 1440 13 0 
7 13500 343 36500 3150 113 984 5 1230 
8 16 2470 59600 8 520 2660 5 8 
9 2845 5860 27842 7406 32 1344 16684 5467 
10 3210 3570 47900 160 360 2130 4 43 
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Table 1B. Transformer data samples (cont.) 

Index Data Acetylene 
Dibenzyl 
disulfide 

Power 
factor 

Interfacial  
voltage 

Dielectric  
rigidity 

Water 
content 

Health  
index 

 Condition 

1 1 0.0 0.62 42 45 21 28.1 0 
2 0 0.0 1.00 42 47 26 26.7 0 
3 19 0.0 1.00 47 75 38 49.9 1 
4 0 127.0 0.37 40 53 6 49.2 1 
5 0 164.0 0.27 37 72 10 68.0 2 
6 13 5.0 1.32 40 56 4 63.4 2 
7 1 1.0 4.93 37 52 6 75.6 3 
8 2 164.0 0.29 44 56 4 72.8 3 
9 7 19.0 1.00 45 55 0 95.2 4 
10 4 1.0 0.77 44 55 3 85.2 4 

 
2.4 Data Cleaning and Class Merging 
 Data cleaning was carried out first in data processing, 
where missing data samples were deleted. After cleaning the 
data, we analyzed the amount of data available for each 
class. As described in the Introduction section, many 
previous studies have applied various classification 
methods to transformer data. One study used the ANN 
method to classify three classes using ten and four features. 
 However, to control transformer conditions routinely, the 
use of more classes would be more favorable, as shown in 
the study by Hernanda et al. (2014) and Table 2A. Since the 
amount of transformer data for the "good" and "very good" 
conditions was small, this study combined both conditions 
into one condition (see Table 2B). 
 

Table 2A. Transformer health index categorization 
Health index Condition 

85–100 Very good 
70–85 Good 
50–70 Fair 
30–50 Poor 
0–30 Very poor 

 
Table 2B. New transformer health index categorization 

Health index Condition 
70–100 Good 
50–70 Fair 
30–50 Poor 
0–30 Very poor 

 
2.4 Features Determination 
 The selection of features was performed based on 
correlation analysis according to Indrajaya et al. (2022). The 
study showed that selecting features using correlation 
analysis could provide high accuracy with only a few 
features, applying the k-Nearest Neighbors and Naïve 
Bayes methods for classification. The correlation 
coefficient 𝑟 from correlation analysis expresses the 
relationship between two variables, ranging from −1 up to 
1, where the correlation coefficient 𝑟 = 0 means there is no 
relationship, and 𝑟 = ± 1 shows a perfect relationship 
(Schober and Schwarte, 2018). Equation (5) gives Pearson’s 

correlation coefficient formula. 
 

𝑟௫௬ =
∑ 𝑥௜𝑦௜

ඥ∑ 𝑥௜
ଶ ∑ 𝑦௜

ଶ
(5) 

 
Using Pearson’s correlation formula, the correlation 

coefficient between transformer and HI data was obtained 
(see Table 3). The purpose of creating this classification 
model was to monitor the condition of the transformer in 
real-time. Therefore, computational speed was deemed 
important. One way to enhance computational speed is to 
utilize relatively few features. As a result, only six features 
were used in this study because the correlation values 
obtained from the correlation analysis were relatively low. 
The six features were Dibenzyl Disulfide (DBDS), 
Interfacial Voltage, Hydrogen, Methane, Ethylene, and 
Water Content. 

 
Table 3. Correlation coefficients of sensor data and 

transformer health index 
Data name Correlation coefficient (𝑟) 

DBDS 0.47 
Interfacial V 0.40 
Hydrogen 0.38 
Methane 0.36 
Ethylene 0.27 
Acetylene 0.24 
Ethane 0.24 
CO2 0.17 
Oxygen 0.12 
CO 0.11 
Power factor 0.09 
Nitrogen 0.09 
Dielectric rigidity - 0.10 
Water content - 0.28 

 
2.5 Data Normalization 

In addition to data cleaning and selection, data 
normalization was also performed at this stage. Various 
formulas can be used in data normalization, one of which is 
provided as Equation (6), which has been applied in many 
previous studies on machine learning (Jamal et al., 2014). 
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𝑥ᇱ =
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
(6) 

 
2.6 Data Distribution 

The data used in this study was distributed as 80% for the 
training dataset (376 data points) and 20% for the testing 
dataset (94 data points). By distributing data into training and 
testing datasets, each class had at least one sample. The amount 
of data for each class in the training and testing datasets is 
shown in Table 4. 

 
Table 4. Dataset distribution summary 

Class Class code 
Training dataset  

(80%) 
Testing dataset  

(20%) 
 Very poor 0 8 1 

Poor 1 32 10 
Fair 2 104 30 

Good 3 232 53 
 

2.7 Synthetic Data Generation 
Synthetic data generation could improve the goodness of 

fit of the model by modelling the classification of 
unbalanced transformer conditions for each class. One 
method to create synthetic data is called SMOTE, which 
works by applying k-nearest neighbors. Here are the steps 
for implementing SMOTE. 
1. For each data point 𝑋଴ of the minority class, select one of 

its closest neighbors 𝑋  (which also belongs to the 
minority class); 

2. Create a new data point 𝑍 at a random point on a line 
segment connecting the selected pattern and the neighbor 
with the formula shown in Equation (7). 

 
𝑍 = 𝑋଴ + 𝑤(𝑋 − 𝑋଴) (7) 

 
where 𝑤 is a uniformly distributed random value having a 
limit 0 ≤ 𝑤 ≤ 1. 

 Applying SMOTE will generate new data points, each 
being between two data points, as shown by Equation (7), 
where the two data points are 𝑋଴ and 𝑋ଵ ∈ 𝑋. 
 The synthetic data obtained will have a poor distribution 
in this process, especially if the data with minor classes used 
is too small. In addition, SMOTE also makes it possible to 
generate data with incorrect classes. Therefore, a new 
synthetic data generation approach was developed by 
applying an improvement of SMOTE. The new method is 
called Synthetic Minority Oversampling Technique-
Rechecked, Reused, and Edited (SMOTE-R2E). The 
following are steps to apply SMOTE-R2E, and the idea 
behind SMOTE-R2E is outlined in Fig. 3. 
1. Prepare the data that needs up-sampling by using 

SMOTE-R2E; 
2. Define the targeted amount of data to be created for each 

class; 
3. For each data point 𝑋଴  of the minority class, whose 

amount of data does not reach the targeted amount of data, 
randomly select one neighbor that also belongs to the 
minority class; 

4. Create a new data point 𝑍 at a random point on a line 
segment connecting the selected data point and its 
neighbor with the formula shown in Equation (7); 

5. Check whether the new data point 𝑍  is from among 𝑘 
neighbors in the same class as the new data point 𝑍. If 
appropriate, the data point is used; otherwise, it is not 
used; 

6. Repeat steps 1 to 5 until the amount of synthetic data 
meets the target or all data points from the synthetic data 
generation are used; 

7. If all data has been used and the amount of synthetic data 
has not met the targeted amount of data, combine the 
obtained synthetic data with the previous data used for the 
generation of further synthetic data; 

8. Repeat steps 1 to 7 until the amount of data for each class 
reaches the targeted amount of data; 

9. Output data meeting the targeted amount is obtained. 

 

Fig. 3. The idea behind the SMOTE-R2E method 

  

The difference in synthetic data obtained with the 
SMOTE and SMOTE-R2E methods can be seen more 
clearly in Fig. 4 and 5. The transformer data samples 
without the addition of synthetic data are shown in Fig. 3. 
These graphs show that the distribution of the synthetic data 
generated with SMOTE-R2E is more spread out than the 

distribution of the synthetic data generated with SMOTE. 
This is because SMOTE only creates new data points from 
the actual data, which means that if there are only three data 
points in the actual data, then the location of the synthetic 
data generated will be very limited to the three-line 
segments generated from those three data points. 
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Meanwhile, with SMOTE-R2E, the resulting synthetic data 
can be used to create new line segments, which means that 

the distribution of the new synthetic data generated is more 
spread out.  

  
Fig. 4. Sample graph of the original hydrogen and DBDS data (features) on the transformer and its classes 

  
Fig. 5. Sample graph of hydrogen and DBDS data (features) from SMOTE results on the transformer and its classes 

   
Fig. 6. Sample graph of hydrogen and DBDS data (features) from SMOTE-R2E results on the transformer and its classes 
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2.8 Model Creation 
This study used the ANN method for classification with 

an architecture as shown in Table 5. There was a total of 
1,236 parameters used. According to Table 5, the input layer 
had six nodes, indicating the number of features used, 
namely Dibenzyl Disulfide (DBDS), Interfacial Voltage, 
Hydrogen, Methane, Ethylene, and Water Content. The first, 
second, and third hidden layers contained 16, 32, and 16 
nodes, respectively. Finally, the output layer contained four 
nodes, which indicate the final results of the classification 
(probability for each class). The "Activation Function" 
column contains information on the activation functions 
used to obtain computational results on the layers where 
these functions were respectively applied as shown in the 
Table 5. 

 
Table 5. ANN architecture for classification 

Layer type 
Number of 

nodes 
Activation  

function 
Number of 
parameters 

Input layer 6 - - 
1st hidden layer 16 ReLU 112 
2nd hidden layer  32 ReLU 544 
3rd hidden layer  16 ReLU 528 
Output layer 4 Softmax 68 
 

 The training parameters used in this study for the ANN 
are shown in Table 6. The weight and bias parameter values 
were to be determined during the training process, but 
initialization of both parameters was required before the 
training process started. A better initialization value close to 
the expected solution would make the optimal model faster. 
 There are several methods to determine the initial values. 
In this study, the He uniform variance scaling initializer was 
used (Bingham and Miikkulainen, 2021). The distribution 
of the initial value for each weight (𝑤௜,௝

௡ ) obtained by the 
method is formulated as Equation (8). 
 

Table 6. Training parameter values 

Parameter 
ANN for transformer condition 

classification 
Initiation value He Uniform 
Number of epochs 300 
Batch size 256 
Loss function Categorical cross-entropy 
Optimizer Adam 

 
൫𝑤௜,௝

௡ ൯ = [−𝑏, 𝑏] (8) 
 

 where 𝑏 = ට
଺

௡௨௠௕௘௥ ௢௙ ௜௡௣௨௧ ௡௢ௗ௘௦
 . The number of input 

nodes is the number of n-layer nodes used as input to obtain 
the value on the (n+1)th layer, as presented in Fig. 2. The 
initial value for all bias parameters used in this study was 0. 

In the training process, the Categorical Cross-entropy 
loss function calculated the loss value of the parameter for 
each update, as shown in Equation (9). Categorical Cross-
entropy was used in the ANN algorithm for classification, 

which resulted in more than two classes. The activation 
function used was Softmax (Ho and Wookey, 2020). 

 

𝐿஼஼ா =  −
1

𝑛
෍(𝑦௜ ln(𝑝௜) + (1 − 𝑦௜) ln(1 − 𝑝௜))

௡

௜ୀଵ

(9) 

 
 where n is the number of samples in the training dataset, 
𝑦௜  is the actual data with a value of 0 or 1, and 𝑝௜   is the 
probability of the Softmax activation function. 
 In this study, Adam was used as an optimizer in the ANN 
method. This optimizer is an evolution of stochastic 
gradient descent (Jais et al., 2019). In this optimizer, the 
parameter values broadly affect all weight updates. The 
parameters used in this optimizer are learning rate, 𝛽ଵ, 𝛽ଶ, 
and 𝜀. The values for each of these parameters in this study 
were as follows: learning rate = 0.001, 𝛽ଵ = 0.9, 𝛽ଶ =
0.999, and 𝜀 = 10ି଼. 

 
2.9 Analysis and Evaluation 

The obtained results were analyzed to see the correlation 
between the feature selection and the evaluation of the 
obtained models. The values that became a reference in the 
evaluation of the models were the accuracy and F1-score for 
the transformer condition resulting from the classification 
models. The evaluation of the classification models was 
based on the numbers of correctly and incorrectly classified 
objects in the testing and training datasets. The numbers 
were tabulated in a matrix called Confusion Matrix 
(Gorunescu, 2011). A Table 7 is an example of the confusion 
matrix that contains True Positive (TP), False Negative (FN), 
False Positive (FP), and True Negative (TN) values. These 
values are used to obtain the accuracy value that indicates 
the performance of the classifier method. Equation (10) is 
the formula for obtaining accuracy, and Equation (11) is the 
formula for obtaining F1-score. 

 
Table 7. Example of a confusion matrix 

Actual 
Predictions 

Category 1 Category 2 
Category 1 
Category 2 

TP 
FP 

FN 
TN 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑛
(10) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
(11) 

 
3. RESULTS AND DISCUSSION 

 
 This section will elaborate on the models created in this 
study using different approaches. The models were designed 
to classify transformer conditions into four classes using 
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ANNs. One model was trained using the dataset generated 
by SMOTE, one model was trained using the dataset 
generated by SMOTE-R2E, and one model was trained 
using the initial dataset. The model architecture designed 
was the same across the three models. Each model was 
trained 100 times with random data distribution on the 
training and testing datasets. This section also presents the 
results of the analysis of the models’ classification abilities. 

 
3.1 Classification Results Using ANN Method Only 
 In the model that used the initial dataset without SMOTE 
data generation, 80% of the total data was used as a training 
dataset (see Table 4). The training process was performed 
using only the existing transformer data without creating 
synthesis data based on the training dataset. In light of the 
varying accuracy values and F1-scores yielded by the ANN 
method in each training process, this study diluted the 
training process 100 times with the architecture and 
hyperparameters shown in Tables 5 and 6. Histograms of the 

accuracy values and F1-scores obtained from testing the 
training and testing datasets are shown in Fig. 7.  
 Histograms of accuracy values and F1-scores from the 
testing on the training dataset, with a tendency towards left 
skewness, are depicted in Fig. 7(A). These histograms show 
that models generated with various data distributions tend 
to yield high results within the distribution of the accuracy 
values and F1-scores obtained. Compared to the histograms 
depicted in Fig. 7(A), the histograms depicted in Fig. 7(B), 
which represent the results of the testing on the testing 
dataset, appear to be more symmetric, indicating that many 
models provide average accuracy values and F1-scores 
within the distribution of the accuracy values and F1-scores 
obtained. It should also be noted that the ranges between 
minimum and maximum values shown in the histograms in 
Fig. 7(B) are still quite large and that the majority of 
accuracy values and F1-scores are relatively low in the 
distribution of the accuracy values and F1-scores obtained. 
 
 

 
Fig. 7. Accuracy and F1-score graphs from 100 iterations of training on original data only; (A) Testing on the training 

dataset; (B) Testing on the testing dataset 

 Based on the results of the 100 iterations of training 
shown in Fig. 7, the mean, minimum, and maximum testing 
values obtained from the training and testing datasets were 
obtained, as summarized in Table 8. The average accuracy 
obtained from the 100 iterations of testing using the testing 
dataset was 80.03%, while the average F1-score was 
78.46%. The highest accuracy and F1-score were 84.04% 
and 82.83%, respectively. However, it is worth noting that 
the values from testing the model on the training dataset 
were relatively lower than those obtained from testing the 
model on the testing dataset. The data used, which was 

randomly distributed, was assumed to have a role in this 
result.  
 

Table 8. Confusion matrix for the testing dataset 

Parameter 
Training dataset Testing dataset 

Accuracy F1-Score Accuracy F1-Score 

Mean 79.01% 78.20% 80.03% 78.46% 

Min 75.53% 74.42% 75.53% 74.65% 

Max 81.38% 80.89% 84.04% 82.83% 
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Table 9. Example classification results for the testing 
dataset  

Actual 
 Predictions 
Very poor Poor Fair Good 

Very poor 56 3  0 0 
Poor 11 17  0 0 
Fair 1 1  3 0 

Good 0 0  2 0 
 
 The results of data classification on the testing dataset in 
one iteration are shown in Table 9. The classified conditions 
ranged in level from "very poor" to "good". The results were 
quite good, since the majority of errors were found between  

two adjacent levels. For example, a "very poor" condition 
was mistakenly predicted as "poor". 

 
3.2 Classification Results Using the ANN and SMOTE 

methods 
 ANN modelling in this section was combined with the 
SMOTE method, which generated synthetic data until the 
data for each class in the training dataset reached 500 data 
points. Using the architecture and hyperparameters shown 
in Tables 5 and 6, histograms of accuracy values and F1-
scores from the testing on the initial training dataset, testing 
dataset, and training dataset obtained from the SMOTE 
process were created. 

 
Fig. 8. Accuracy and F1-score graphs from 100 iterations of training. (A) testing on the initial training dataset; (B) testing 

on the testing dataset; (C) testing on the training dataset from SMOTE results 

Based on the histograms of the results of the tests on 
various datasets shown in Fig. 8, the accuracy values and 
F1-scores obtained from various data distributions appear to 
be symmetric. This indicates that the data used to build the 
model was sufficiently good, in that the generated model 
could provide average accuracy values and F1-scores within 
the distribution of the accuracy values and F1-scores 
obtained. However, it should be noted that as shown in the 
histograms of results of the testing on the training and 
testing datasets in Fig. 8(A) and Fig. 8(B), the ranges 
between the minimum and maximum values obtained were 
large. Therefore, although the histograms have a symmetric 

look, the accuracy was relatively low. This was also the case 
with the histogram shown in Fig. 8(C). 

A summary of the mean, minimum, and maximum values 
from the testing on the training and testing datasets with 100 
iterations is provided in Table 10. The average accuracy and 
F1-score obtained from testing on the training dataset 
generated with the SMOTE method were higher than the 
average accuracy and F1-score values obtained from testing 
on the initial training dataset and the testing dataset. This 
was also the case with the maximum values. Notably, the 
testing on the testing dataset yielded a lowered minimum 
value of 69.15%. 
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Table 10. Confusion matrix for the testing dataset 

 

 

Table 11. Confusion matrix for the testing dataset 

Actual 
Predictions 

Very poor Poor Fair Good 
Very Poor 50 9 0 0 

Poor 3 22 0 3 
Fair 0 1 4 0 

Good 0 0 1 1 
 
 Although from 100 iterations of training the accuracy 
values and F1-scores obtained using the testing dataset were 
low, the misclassification performed by the model was not 
too severe (still within one-level difference). For example, 
one instance might be classified as “poor”, while it actually 
was “very poor”. However, a severe error (beyond a 1-level  
 

difference) was still found, as in the misclassification of 
“poor” conditions as “good” (shown in Table 11). 

 
3.3 Classification Results Using the ANN and 

SMOTE-R2E Methods 
 In making models with the combination of the ANN and 
SMOTE-R2E methods, the same architecture and 
hyperparameters as those in the previous two models were 
used. The target number of data points generated for training 
was also the same, i.e., 500 data points for each class. From 
the testing of the model on the initial training dataset, testing 
dataset, and training dataset from the SMOTE-R2E process, 
accuracy and F1-score histograms were created, as shown 
in Fig. 9. 

 
Fig. 9. Accuracy and F1-score graphs from 100 iterations of training. (A) testing on the initial training dataset; (B) testing 

on the testing dataset; (C) testing on the training dataset from SMOTE-R2E results

Parameter 
Training dataset Testing dataset SMOTE dataset 

Accuracy F1 score Accuracy F1 score Accuracy F1 score 

Mean 79.64% 80.34% 76.57% 77.48% 86.65% 86.88% 

Min 75.80% 76.80% 69.15% 70.14% 83.75% 84.03% 

Max 83.51% 83.92% 85.11% 85.36% 89.30% 89.47% 
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The histograms depicted in Fig. 9 vary in skewness’s. In 
Fig. 9(A), the accuracy histogram is right-skewed, 
indicating that the 100 iterations of training with the training 
dataset yielded relatively low accuracy values in the 
distribution of accuracy values obtained. However, this does 
not necessarily imply poor performance because if we 
observe closely, the range between minimum and maximum 
values was not large, and the minimum value was above 
80%. As for the F1-score, the histogram in Fig. 9(A) appears 
symmetric with a relatively narrow range between 
minimum and maximum values. Meanwhile, as shown in 
Fig. 9(B), the histograms of the results of the testing on the 
testing dataset exhibit left-skewed distributions, indicating 
that the accuracy values and F1-scores obtained tended to 
be high within the distribution of the accuracy values and 
F1-scores obtained. However, it is still important to note that 
the range between the maximum and minimum values 

yielded with the testing dataset was quite large, although 
there were fewer low accuracy values and F1-scores in that 
distribution. As shown in Fig. 9(C), the application of 
SMOTE-R2E yielded fairly good results because the 
various data distribution for the model training process 
could provide accuracy values and F1-scores that tended to 
be high. In addition, the range between minimum and 
maximum values was relatively narrow, with a minimum 
value above 93%. 

A summary of the minimum, maximum, and mean values 
obtained is provided in Table 12. The values obtained with 
the model where SMOTE-R2E was applied to the training 
dataset demonstrated increases. The average accuracy was 
quite high compared to the accuracy of the two other models. 
In addition, there were also increments in the maximum and 
minimum values on all three types of datasets

 
Table 12. Confusion matrix for the testing dataset 

  

 
 The increased accuracy and F1-scores were in 
correspondence with reductions in classification errors. 
However, misclassifications that occurred still need to be 
considered. In this model, the misclassifications were still 
tolerable because they did not exceed a one-level difference. 
For example, the misclassifications between “very poor” 
and “fair” (more than one-level difference) were not as 
frequent as in the other two models. The results of one 
iteration using this model are shown in Table 13. 

 
Table 13. Confusion matrix for the testing dataset 

Actual 
Predictions 

Very poor Poor Fair Good 
Very Poor 56 1 2 0 

Poor 8 20 0 0 
Fair 0 2 3 0 

Good 0 0 2 0 
 
 

Based on the results, the ANN method with the 
architecture used in this study is viable for classifying 
transformer conditions with fairly good results. However, in 
this study, the data used was not balanced, which affected 
the model obtained. Therefore, SMOTE and SMOTE-R2E 
synthetic data generation techniques were used in this study. 
The evaluation results showed that the SMOTE-R2E 
method was able to increase the average accuracy and F1-
score from testing the training and testing datasets: the 
average accuracy and F1-score for the training dataset were 
82.67% and 82.40%, respectively, and the average accuracy 

and F1-score for the testing dataset were 83.04% and 
81.96%, respectively. A complete comparison can be seen 
in Table 14 and Table 15. 
 

Table 14. Summary of accuracy results 

Dataset 
The model mean accuracy 

With Without 
SMOTE-R2E SMOTE SMOTE 

Training dataset (376 
data points) 

82.67% 79.64% 79.01% 

Testing dataset (94 
data points) 

83.04% 76.57% 80.03% 

 Table 15. Summary of F1 score results 

Dataset 
The model mean F1 score 

With Without 
SMOTE-R2E SMOTE SMOTE 

Training dataset (376 
data points) 

82.40% 80.34% 78.20% 

Testing dataset (94 
data points) 

81.96% 77.48% 78.46% 

 
 Martinez-Gil et al. (2022) used the ANN method and 
achieved a high accuracy, but more data was required. A 
similar data limitation was encountered by Velásquez and 
Lara (2020). It can be inferred from these reports that the 
direct use of the ANN method with limited data will not 
yield good results (see Table 15). Hence, synthetic data 
generation is needed to overcome limited data. One of the 
synthetic data generation methods commonly used in 
previous studies is SMOTE (Pribadi et al., 2022; Lopo and 

Parameter 
Training dataset Testing dataset SMOTE-R2E dataset 

Accuracy F1-score Accuracy F1-score Accuracy F1-score 

Mean 82.67% 82.40% 83.04% 81.96% 94.74% 94.75% 

Min 81.12% 80.31% 76.60% 75.79% 93.30% 93.27% 

Max 84.57% 84.41% 87.23% 85.95% 95.95% 95.95% 
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Hartomo, 2023). These studies have shown that SMOTE 
could improve the goodness of fit of various classification 
models. However, in this study, the accuracy and F1-score 
derived from the evaluation using the testing dataset 
generated with SMOTE were lower than those derived from 
the evaluation using the testing dataset without SMOTE, 
although the evaluation using the training dataset generated 
with SMOTE showed better results. This indicates that 
using SMOTE on the dataset yielded less optimal results 
because the generated synthetic data was not evenly 
distributed. The drawbacks of SMOTE are addressed with a 
method developed in this study, namely SMOTE-R2E. 
Using this novel method, better accuracy and F1-score were 
obtained from the testing on both the testing and training 
datasets (Table 14 and Table 15). 

Martinez-Gil et al. (2022) have demonstrated the 
applicability of various methods for classification using 
Velásquez’s dataset. They obtained an accuracy of 81.4% 
with the SWRL (expert rules) and Random Forest methods 
to detect machine failure (transformer), with a total of two 
classes, higher than the accuracy obtained with other 
methods, including the Multilayer Perceptron, Support 
Vector Machine, and k-Nearest Neighbors methods. 
However, in comparison to Martinez-Gil et al.’s accuracy, 
the present study showed better accuracy from the testing 
on the testing dataset (Table 16). Additionally, this study 
also used more classes than the number of classes used by 
Martinez-Gil et al. (four vs. two), which also means higher 
complexity. Therefore, it is possible that SMOTE-R2E will 
yield an even higher accuracy when two classes are used as 
in the previous study. Thus, a future study can be conducted 
using two classes and the same features as the previous 
study to see the effectiveness of the SMOTE-R2E method. 

 
Table 16. Classification accuracy values using 

Velásquez’s dataset 

 Method Accuracy 

Multilayer perceptron 76.30% 

Support vector machine 78.00% 

k-Nearest neighbors 79.70% 

Random forest 81.40% 

SWRL (expert rules) 81.40% 

ANN with SMOTE-R2E 81.96% 

 
SMOTE has had variations as it develops. For example, 

SMOTE-Edited Nearest Neighbors (SMOTE-ENN) deletes 
data obtained by SMOTE if the data allows 
misclassifications (Nishat et al., 2022). Then, SMOTE-
Tomek Link Removal (SMOTE-Tomek) implements 
sample removals, in which case a pair of very close minority 
and majority samples are removed (Sasada et al., 2020). 
There is also SVM-SMOTE, which is a combination of 
SMOTE and SVM (Almajid, 2022). The present study did 
not use the aforementioned SMOTE variants but developed 

a novel method called SMOTE-R2E. Certainly, this novel 
method took an inspiration from previous development 
ideas since it includes data deletion and combines SMOTE 
with other methods. The novelty, which is the focus of the 
SMOTE-R2E method, lies in the distribution of more varied 
synthesis data, as shown in Fig. 6, involving the checking of 
synthesis data and the combination of synthesis and actual 
data, performed repeatedly until the desired amount of data 
is reached. In addition, selecting the correct k value for the 
synthesis data checking process in the SMOTE-R2E method 
could prevent an inappropriate data point on a line segment 
between two outliers or data points in inappropriate 
positions (data with incorrect classification). 
 The results of this study can be maximized by changing 
various parameters in the ANN architecture. In addition, the 
number of categories used is essential; four categories were 
used in this study. The categories were created based on the 
HI value of the transformer condition, which means that the 
categories can be changed. Fewer categories in previous 
studies provided better accuracy in classifying transformer 
conditions. For example, Alqudsi and El-Hag (2019) 
achieved a 95.1% accuracy with three categories. The better 
accuracy with these three categories was obtained because 
of more balanced data for each category. In addition, when 
carefully examined, similar data points obtained in this 
study fell into different categories: "poor" and "very poor". 
Merging these two categories into one could result in better 
accuracy. 

 
4. CONCLUSION 

 
 Using the ANN method with the architecture designed in 
this study, four categories of transformer conditions were 
classified using six features. The test results showed that 
using the proposed method could overcome the problem of 
unbalanced data and provide better results than yielded by 
the SMOTE method. One hundred iterations of training with 
SMOTE-R2E on the testing dataset resulted in average 
accuracy and F1-score of 83.04% and 81.96%, respectively. 
The average accuracy value was 6.47% higher than the 
accuracy value obtained by the model trained on the dataset 
generated using the SMOTE method, and 3.01% higher than 
the accuracy value obtained by the model trained only on 
the existing training dataset without using the SMOTE 
method. Meanwhile, the F1-score was 4.48% higher than 
the F-score obtained by model trained on dataset generated 
using the SMOTE method, and 3.5% higher than the F1-
score obtained by the model trained using the unbalanced 
training dataset that did not apply the SMOTE method. 
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