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ABSTRACT 
  

      Productivity improvement is a more complicated and challenging issue to resolve. 
There is a solution to the multi-response optimization problem. This study proposes a 
novel approach to optimizing parameters in the cotton swab process using a hybrid 
Multiple criteria decision-making (MCDM) method based on Response surface 
methodology (RSM). Simultaneously enhance decision-making efficiency by integrating 
Technique for order preference by similarity to ideal solution (TOPSIS) and Weighted 
aggregated sum product assessment (WASPAS) methodology. The optimal conditions 
were a speed rate of 1300 rpm, a thickness of 1.5 g/m, and a slidver gap of 20 cm, while 
the defect and downtime were 2.54 kg and 360.67 mins, respectively. The confirmation 
demonstrates that the actual practical and predicted results were similar. The proposed 
method's total cost improves from condition A to condition B by 33.86% and 2.45%, 
respectively. Furthermore, the energy consumption of cotton was found to be 6,208.08 
MJ. The total energy consumption may be divided into three main categories: electric 
energy, thermal energy, and manual energy, which account for 43.12%, 55.73%, and 
1.15%, respectively. The entropy reaches its maximum value in the drying and packaging 
units, which have inefficiencies of 91.24% and 4.35%, respectively, while the combined 
inefficiencies in the other five units are only 4.41%. This study contributes to advancing 
decision-making processes and offers insights for enhancing operational efficiency in the 
pharmaceutical or other manufacturer sector. 

 

Keywords: Energy consumption, Multiple criteria decision-making, Response surface 
methodology, Weighted aggregated sum product assessment 
 

 

1. INTRODUCTION 
 
    The pharmaceutical industry is a critical component of the medical field. This is 
particularly apparent during the COVID-19 pandemic, a global health issue that 
negatively impacts individuals worldwide (Kunovjanek et al., 2021). In the fight against 
the transmission of this pathogen, the use of technological advances and materials in the 
medical and scientific fields is necessary to contain the transmission of this virus. The   
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pharmaceutical field uses cotton swabs as valuable 
materials for COVID-19 prevention and treatment, as well 
as for virus analysis (Rokooei et al., 2022). Cotton swabs, a 
beneficial material for medical therapy, have a long history 
in medicine (Chadaga et al., 2021). At the same time, the 
crisis has led to a surge in demand for cotton swabs, 
resulting in a shortage of production capacity (Jauhari et al., 
2017). In this study, we conducted a problem analysis. The 
aim of implementing the multi-response optimization 
(MRO) problem (Sriburum et al., 2023) in manufacturing 
cotton swabs in Thailand is to minimize losses of machines 
and raw materials. This results in appropriate production 
quantities and improves productivity in the pharmaceutical 
sector (O’Mahony et al., 2023). MRO problems require 
concurrently optimizing multiple goals or responses 
(Sharma et al., 2020). The need for MRO arises from the 
inherent complexity and uncertainty surrounding decision 
problems (Kundu et al., 2016; Zhao et al., 2022) in diverse 
fields such as engineering (Majumder et al., 2014), 
management (Zhou et al., 2022), economics (Jeong et al., 
2022), environmental studies (Stefanini et al., 2022), and 
public policy (Vazquez Hernandez et al., 2023). This is 
problematic because finding a solution that satisfies all 
responses is difficult due to compromises between 
alternatives (Stević et al., 2020). By giving each objective a 
weight, multiple-response optimization methods like the 
weighted sum technique turn MRO problems into single-
objective problems (Jeong et al., 2024). Evolutionary 
algorithms use selection, mutation, and crossover operators 
to find new solutions (Deng et al., 2021; Hua et al., 2021). 
Goal programming (GP) uses deviational variables to 
optimize the objective function (Hocine et al., 2020; 
Kouaissah et al., 2020). And multi-criteria decision-making 
(MCDM) (Emovon et al., 2021) is a strategy that looks at 
and evaluates possible solutions by using tools for decision-
making (Koohathongsumrit et al., 2022; Wicaksono et al., 
2022). 
    MCDM, a robust analytical framework, assists decision-
makers in selecting the most suitable alternative from a set 
of options (Ghaleb et al., 2020), considering multiple 
conflicting criteria or objectives (Sotoudeh-Anvari, 2022). 
In many real-world scenarios, decisions involve cost, 
quality, time, and risk trade-offs. The techniques offer 
systematic approaches to navigate this complexity and 
facilitate informed decision-making (Sahoo et al., 2023). 
Traditional decision-making approaches, often based on 
single criteria or simplistic heuristics, may overlook critical 
dimensions of the problem or fail to account for 
stakeholders' preferences and uncertainties. Therefore, 
MCDM is a systematic method for making decisions that 
includes establishing decision criteria, measuring the 
performance of different options, evaluating trade-offs, 
prioritizing alternatives, and dealing with ambiguity 
(Chowdhury et al., 2020). These also allow for sensitivity 
analysis, which evaluates the resilience of decision 
outcomes to changes in criteria weights or input data. 

Additionally, it offers tools to tackle uncertainty by utilizing 
probabilistic modeling, scenario analysis, or optimization 
methods. MCDM uses many methods, including analytic 
hierarchy process (AHP), TOPSIS, Electre, and 
PROMETHEE (Sałabun et al., 2020). Each has benefits and 
works best in certain decision situations, depending on 
criteria, preferences, and available data. 

The literature discovered that decision analysis 
frequently uses the Technique for order preference by 
similarity to ideal solution (TOPSIS) method, an MCDM 
technique, to determine the optimal alternative by 
considering various criteria. Each criterion has distinct units. 
The additional study is as follows: This study explores the 
TOPSIS method's limitations and theoretical underpinnings 
using simulation and experimental analysis, emphasizing 
the importance of selecting the right decision-making 
approach for individuals and businesses (Çelikbilek et al., 
2020). The study introduces a MCDM approach to prioritize 
industrial arc welding robots, demonstrating its value in 
choosing suitable industrial robots (Chodha et al., 2022). 
The study explores TOPSIS, a materials science and 
engineering decision-making strategy to optimize 
competitive supply chains in eleven Indian sectors (Singh et 
al., 2023). It provides a comprehensive framework and 
compares outcomes with other MCDM techniques. The 
paper comprehensively assesses green outsourcing by 
applying MCDM approaches (Liaw et al., 2020).  

For improved decision-making clarity, providers are 
classified into four distinct tiers using DEMATEL, inter-
criteria correlation, and classifiable TOPSIS approaches. 
Using FAHP-FTOPSIS, the study ranks 21 barriers to 
sustainable manufacturing in SMEs (Abdullah et al., 2023). 
Insufficient legislative enforcement, 6R application issues, 
control systems, carbon audits, and dependence on fossil 
fuels are significant impediments. Lean, environmentally 
friendly production, and industry-standard evaluation are 
effective tactics. The study uses AHP and TOPSIS to 
compare green manufacturing adoption ranks to identify 
decision-making factors in a globalized economy (Singh et 
al., 2020). Furthermore, the MCDM method incorporates a 
unique approach known as the weighted aggregated sum 
product assessment (WASPAS). WASPAS is a methodical 
approach for evaluating multiple criteria and making 
decisions, particularly useful in strategic business planning, 
project selection, and policy formulation, assisting decision-
makers in navigating complexities. The research 
investigates the influence of spot-welding parameters on the 
tensile-shear force of steel and aluminum sheets (Bagal et 
al., 2021). It reveals that employing WASPAS and input 
parameters can enhance the joint's strength, with welding 
current and time playing crucial roles in determining the 
outcome.  

This study utilizes MCDM to rank five aluminum metal 
matrix composites (AMMCs) based on their weight 
percentages of coconut shell ash (Sapkota et al., 2023). The 
entropy technique generates weights for criteria, and all 
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MCDM methods suggest a 15% CSA+Al composite. The 
EDAS, MOORA, and WASPAS MCDM approaches 
exhibited a perfect correlation of 100%. This study 
demonstrates that the mechanical characteristics of resin-
bound sand molds and cores improve with more binder and 
longer curing times but degrade with finer grain size 
(Behera et al., 2022). WASPAS improved the results, laying 
the groundwork for optimizing molding settings to produce 
high-quality metal components. This study aims to develop 
a decision support system, based on the WASPAS method, 
to assist motorbike owners in selecting the most suitable 
engine oil for 150 cc sports motorbikes (Hutagalung et al., 
2022). The system intends to enhance friction and engine 
performance. This study assesses the efficacy of two 
optimization methods (Panda et al., 2023), WASPAS and 
the Multi-Objective Genetic Algorithm, in wire electric 
discharge machining. The evaluation uses Taguchi's L9 
orthogonal array for exponential trend line analysis. The 
study created a decision matrix, compared the ranking 
results from the WASPAS and VIKOR methodologies 
(Altın, 2020), and compared them with the ranking of the 
life quality index. The findings indicated that the 
approaches were highly favorable and interchangeable with 
the values, proving the validity of the index.  

Despite its common use in decision-making, WASPAS is 
not without its limitations. One of the primary critiques is 
the inherent subjectivity in the process of allocating weights 
to each criterion. Various decision-makers may allocate 
various weights based on their individual biases or 
viewpoints, resulting in potentially biased results. Therefore, 
the principal contribution of this study is to employ a hybrid 
MCDM approach to enhance decision-making efficiency 
(Alizadeh et al., 2020). This new method combines TOPSIS 
with linear programming and the WASPAS method, which 
is based on the Response Surface Methodology (RSM) 
(Sreeraj et al., 2022). It works well even when decision data 
is uncertain or changes over time. Simultaneously, RSM is 
essential for designing experiments, modeling intricate 
systems, and optimizing processes. It improves 
performance and productivity in a wide range of fields. The 
models are utilized to determine the most favorable 
conditions for response variables, employing strategies such 
as gradient-based methods, desirability functions (Dutta et 
al., 2024), or numerical optimization algorithms. 

The case study assessed optimal conditions. The analysis 
includes the collection of relevant data related to machine 
productivity, which influences the efficiency of cotton swab 
manufacturing. Key performance metrics are established to 
evaluate defects and downtime. Meanwhile, root cause 
analysis techniques (Sakdiyah et al., 2022), such as Pareto 
analysis, fishbone diagrams, or 5-whys analysis, can help 
identify the primary reasons for production. Then, we can 
optimize the process using the hybrid MCDM approach, 
which involves adjusting machine settings to streamline 
operations and increase throughput. Energy is crucial for 
generating and providing the necessary power for 
production processes. Moreover, it constitutes a significant 
portion of manufacturing costs and plays a role in the 

emission of greenhouse gases. Particularly, it pertains to the 
creation and application of electrical, thermal, and manual 
energy (Mousavi et al., 2016; Yusuf et al., 2021). For long-
term sustainability, the research has focused on improving 
efficiency, reducing manufacturing costs, and addressing 
environmental concerns related to energy usage in 
production. The production planning process can utilize 
power analysis of machinery and plants to generate distinct 
power predictions for each unit. We allocate resources 
optimally for strategic production, planning, and energy 
efficiency control, thereby maximizing our potential 
(Dietmair et al., 2009; Sweeting et al., 2011). The focus is 
on optimizing the energy efficiency of the chosen machine 
or industrial system. The significance of machine reliability 
and decreased production time has been emphasized to 
enhance efficiency in industrial manufacturing.  

The following paragraph describes the study's framework 
(Fig. 1). Section 2: outlines the research approach and 
discusses the utilization of the RSM, TOPSIS, and 
WASPAS methodologies. Section 3: Determining the 
optimal operating parameters by integrating the TOPSIS 
and WASPAS concepts with RSM methods is the objective 
of the proposed method and the energy consumption 
analysis phase of the factory. Section 4 contains a 
conclusion, limitation and future work. 
 

 
Fig. 1. The framework of this paper 

 
2. MATERIALS AND METHODS 

 
2.1 Cotton Swab Process 
    There are three primary stages to the process, as shown 
in Fig. 2. 
(1) Slidver process: lint and fuzz are manufactured from  

cotton orders. Pure and genuine. To satisfy quality 
standards, 16–18 mL. Fibers are bleached and broken. 
Before making cotton swabs, high-quality fibers 
undergo a carding process to adjust their size.  

(2) Plastic rods: The factory in the case study combines
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 paint and glue with plastic resins purchased from the 
manufacturer. It is hollow molded using plastic rod 
injection. A cutting machine will transform molded 
plastic into regular plastic rods. The factory sends the 
scattered and untidy plastic stems to the stem 
consolidation department, which then combines them 
into bags. Inspect for standard size and strength. 

 (3) Before entering the next cotton swab manufacturing 
process, third step is to combine cotton swabs after 
obtaining the raw materials from steps (1) and (2), a 
head wrapping machine mixes the raw materials with 
glue to produce cotton swabs. The exam will use a 
sample acceptance plan as a decision criterion. 

 

                                 
Fig. 2. Operation process chart of cotton swab 

 

 2.2 Root Cause Analysis
Identifying and analyzing problems. The case study 

indicates that equipment defects and delays resulted in a 
decrease in productivity. Through conducting interviews 
with production managers, quality engineers, and 

employees, researchers can ascertain the underlying cause 
of the problems and validate their impact on productivity. 
The example employs a 5-whys analysis of defects, as 
illustrated in Fig. 3. 

                                                                                                             
 

Fig. 3. Five-whys analysis of defects 
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    The examination conducted using the 5-whys method 
revealed that the variables speed rate, thickness, and slidver 
gap, which influence defects and downtime, align with the 
functioning of the factory under investigation. Further 
analysis is to follow. In Fig. 4. the plastic rod is not bonded 
and becomes entangled with the slidver, causing problems 
during the production process 

 

Fig. 4. Defects in production result in machine downtime 
 
2.3 RSM and Experiment Design 

 RSM is invaluable for designing experiments, modeling 
intricate systems, and optimizing processes in various 
industries (Li et al., 2021). The systematic approach of 
investigating and analyzing the interactions between 
variables makes it an essential tool for researchers and 
practitioners who want to improve their processes and 
products. The primary objective of the RSM is to identify a 
reliable estimation for the functional correlation between 
independent and response variables. The quadratic model is 
sufficient for the optimum region. It employs experimental 
designs such as the central composite design (CCD) or the 
box-behnken design (BBD) to pinpoint crucial factors 
influencing interactions, steer subsequent experiments, and 
pinpoint any gaps. The BBD is a more economical and 
practical alternative to the CCD (Alıemeke et al., 2020). 
However, it requires three levels for each component, 
reducing the number of experimental trials required to study 
many factors. The BBD was the experimental framework, 
which comprised three levels of coding for each variable 
and three components. A non-linear regression approach 
was used to reveal relevant model terms that fit the model. 
Assigned to the obtained mathematical model is Equation 
(1).         
                         
𝑌෠ = 𝛽଴ + ∑ 𝛽௜𝑋௜

௞
௜ୀଵ + ∑ ∑ 𝛽௜௝𝑋௜

௞
௝ୀଶ 𝑋௝ +௞ିଵ

௜ୀଵ ∑ 𝛽௜௜𝑋௜
ଶ௞

௜ୀଵ 𝑌 + 𝜀 (1)   

   Ŷ is the predicted response, 𝛽଴  the offset term, 𝛽௜ the 

linear effect, 𝛽ij the squared effect and 𝛽௜௜  is the interaction 
effect. The RSM optimization was carried out using the 
desirability function provided in Equation (2): 

                     m1
m21 )dd(dD                     (2) 

 
    Where, d is the desirability and m are the no. of 

responses. In individual desirability (dm), the parameters 
optimize a solitary response and a collection of composite 
desirability (D). The purpose of computing the desirability 
function was to minimize defects and downtime. The most 
desirable settings were determined by selecting the tasks 
with the highest desirability value. This study investigates 
the impact of two independent variables on developing and 
optimizing cotton swab manufacturing. BBD and RSM are 
employed for this purpose. As demonstrated in Table 1, the 
data analysis comprises three factors and three levels. 
Minitab and Design Expert were utilized to analyze the 
parameters. The present study comprised a total of 
seventeen trials. 

 
Table 1. The parameters for experiments 

Factor Unit Symbol 
Levels 

-1 0 1 
Speed rate rpm     A 1300 1400 1500 
Thickness g/m     B 1.3 1.4 1.5 
Slidver gap cm     C 20 30 40 

 
2.4 A Novel TOPSIS  

The concept of TOPSIS linear programming is converted 
to an equivalent form (Hajduk, 2021; Pawaree et al., 2024). 
This evaluation aims to assess the efficiency of the iteration 
proximity. yij is the normalized performance of option i with 
respect to criterion j. Equations (3) and (4) compute the 
normalized performance of options i and j regarding the 
benefit and cost criteria, respectively.   

 

         Beneficial criteria:    𝑦௜௝ = 𝑥௜௝ ට∑ 𝑥௜௝
ଶ௡

௜ୀଵൗ               (3) 

 
 

             Cost criteria: 𝑦௜௝ = 1 − ൬𝑥௜௝ ට∑ 𝑥௜௝
ଶ௡

௜ୀଵൗ ൰         (4) 

    
    The weights of relevant criteria are denoted by wj based 
on decision maker. The optimal weights for aggregating the 
distances between the ideal solution in the negative and the 
ideal solution in the positive, while taking alternative i into 
account, are represented by the variables as λi

- and λi
+. Let 

yi
- and yi

+ denote the negative and positive ideal values, 
respectively, for each criterion j. 
    yi

- = min{yij}  j, and yi
+= max{xij}  j, j = 1, 2, ..., m. 

The relative closeness coefficient value (CCi) for a set of 
alternatives i (1 ≤ i ≤ n) can be defined by Equation (5):  
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஛౟
షቌ∑ ඨ୵ౠ

మ൬൫୷౟ౠ൯
మ

ିቀ୷ౠ
షቁ

మ
൰ౣ

ౠసభ ቍ

஛౟
షቌ∑ ඨ୵ౠ

మ൬൫୷౟ౠ൯
మ

ିቀ୷ౠ
షቁ

మ
൰ౣ

ౠసభ ቍା஛౟
శቌ∑ ඨ୵ౠ

మ൬ቀ୷ౠ
శቁ

మ
ି൫୷౟ౠ൯

మ
൰ౣ

ౠసభ ቍ

     (5) 

 
λi

- = λi
+;  λi

-,  λi
+ ≥ 0,  j = 1, 2, …, n. 

wj ≥ 0,  j = 1, 2, …, m. 
 

This is among the most prevalent methods for solving 
decision problems related to issues involving multiple 
responses. Utilizing MATLAB and LINGO, the 
mathematical equations were computed. 

 
2.5 WASPAS 
    WASPAS is a novel combination of the weighted sum 
model (WSM) and weighted product model (WPM) (Ali et 
al., 2021), which are common in MCDM. The decision 
matrix is normalized using Equations (6) and (7). 
 

                  Beneficial criteria: 𝑥̅௜௝ =
௫೔ೕ

ெ௔௫೔௫೔ೕ
                     (6) 

              

                              Non-beneficial criteria:      𝑥̅௜௝ =
ெ௜௡೔௫೔ೕ

௫೔ೕ
                (7) 

 
    Step 1. WASPAS is a common MCDM method that 
considers mean weighted success and total relative 
importance to find the best solution. Like WSM, it assesses 
numerous alternatives using decision criteria. For the entire 
relative significance of the ith choice, apply in Equation (8): 
  

                               𝑄௜
(ଵ)

= ∑ 𝑥̅௜௝
௡
௝ୀଵ 𝑤௝                          (8) 

 
    wj is the relative significance of the jth criterion while the 
WPM method evaluates the total relative significance of the 
ith alternative is calculated in Equation (9): 

                     

                                     𝑄௜
(ଶ)

= ∏ (𝑥̅௜௝)௪ೕ௡
௝ୀଵ                       (9)                                    

  
    Step 2. The integrated utilization of both additive and 
multiplicative types of aggregation enhances the accuracy 
of ranking. The assessment of the ith alternative is carried 
out as follows:  

𝑄௜ = 𝜆௜𝑄௜
(ଵ)

+ (1 − 𝜆௜)𝑄௜
(ଶ)

= 𝜆௜ ∑ 𝑥̅௜௝𝑤௜௝
௡
௝ୀଵ + (1 −

                          𝜆௜) ∏ (𝑥̅௜௝)௪ೕ௡
௝ୀଵ  ,𝜆௜ = 0, 0.1, … , 1           (10) 

    λi is the combination parameter, WASPAS ranks 
candidate alternatives by Q value, with the best decision 
obtaining the highest Q value. Setting λ to 0 results in the 
WPM method, while increasing it to 1 transforms it into the 
WSM method. 

Step 3. Enhancing the accuracy of the WASPAS 
methodology was the subject of a proposal. If the errors in 
determining the starting criteria values are stochastic, the 
alternatives' fluctuations depend upon the variances of 

WSM and WPM. Determining the optimal value of λ in a 
decision-making context appears to be an exceedingly 
difficult task. To find the extreme function, we can set the 
derivative of Equation (10) concerning 𝜆 to 0. Therefore, it 
is possible to determine the most advantageous values of λ 
using the subsequent method: 

 

                                               𝜆 =
ఙమ(ொ೔

మ)

ఙమ(ொ
೔
(భ)

)ାఙమ(ொ
೔
(మ)

)
                             (11)                                       

 

    The variances, denoted as 2 (1)( )iQ  and 2 (2)( )iQ  can be 

computed using the equations shown below: 
 

                                                                   𝜎ଶ(𝑄௜
(ଵ)

) = ∑ 𝑤௝
ଶ௡

௝ୀଵ 𝜎ଶ(𝑥̅௜௝)                    (12) 
 

            𝜎ଶ(𝑄௜
(ଶ)

) = ∑ ቈ
∏ (௫̅೔ೕ)

ೢೕ௪೔ೕ
೙
ೕసభ

(௫̅೔ೕ)
ೢೕ(௫̅೔ೕ)

(భషೢೕ)቉

ଶ

𝜎ଶ(𝑥̅௜௝)௡
௝ୀଵ      (13) 

 
    The method used for determining the variances of the 
normalized establishing criteria values in a normal 
distribution with a confidence level of 0.05 is as follows: 

 
                                  𝜎ଶ൫𝑥̅௜௝൯ = (0.05𝑥̅௜௝)ଶ                (14) 

 
2.6 Production Energy Consumption 
   The following approaches were utilized to 
comprehensively analyze the operational data collected. An 
evaluation was carried out to study the energy utilization in 
unit operations with the purpose of examining the pattern of 
energy distribution and consumption. A study was done to 
determine the main unit of energy consumption by 
analyzing the percentage distribution of total energy 
consumption. Statistics capture was employed to generate 
energy consumption statistics for different units throughout 
the study period. 

 
2.6.1 A Generic Energy Consumption 
    The cotton production method entails the use of steam, 
chemical agents, and manual labor to facilitate the process. 
To streamline the data collection method, the production 
process was divided into 8 discrete unit processes. The 
essential attributes for evaluating energy in every individual 
step of cotton processing were acquired either via direct 
measurements or collected from the production facility. A 
comprehensive inventory was carried out to record the 
motors and their matching power ratings for the equipment 
(Odunfa et al., 2022). The factory's energy department 
provided most of the parameters. Data was gathered from 
the factory for a duration of 4 months. The measuring 
quantities employed during the data gathering procedure 
include; (1) a device used to measure the duration of time in 
separate segments; (2) a tachometer to gauge the velocity at 
which the cotton is being wound; (3) a weight balance to 
quantify the amount of cotton. The results underwent error 
analysis. The equation provided is as follows: 
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             𝑒𝑟𝑟𝑜𝑟 =
௠௘௔௦௨௥௘ௗ ௩௔௟௨௘ି௧௥௨௘ ௩௔௟௨௘

௧௥௨௘ ௩௔௟௨௘
× 100%        (15) 

2.6.2 Application of Energy Consumption  
    The energy components of a certain quantity of cotton 
were determined using the following methodology: 
Assessment of Electrical Energy: 
    The electrical energy consumption of the equipment was 
determined by multiplying the rated power of each motor by 
the total number of operational hours. The electrical inputs 
were calculated using an expected motor efficiency of 80%. 

 
                                   𝐸௣ = 𝜂𝑃𝑡                                   (16) 

 
where Ep is the electrical energy consumed (kWh), P the 
rated power of motor (kW), t the hours of operation (h) and 
𝜂 the power factor (assumed to be 0.8). 
Assessment of Manual energy 
    This estimate was calculated based on the values that 
were suggested. The maximum continuous energy 
consumption rate is 0.30 kW, with a conversion efficiency 
of 25%. The mean power output of an average human 
worker in tropical regions is approximately 0.075 kW.  

 
                                   Em= 0.075Nt                       (17) 
  

where Em is the manual energy consumed (kWh), 0.075 is 
the average power of a normal human labour (kW), N the 
number of persons involved in an operation and t the useful 
time spent to accomplish a given task (h). 
Assessment of Thermal Energy: 

The thermal energy derived from fossil fuels is used to 
power the internal combustion engine. The quantity of 
diesel used in the steam boiler was calculated by 
multiplying the fuel consumption by the calorific value of 
the fuel.  

 
                                    Et = CfWf                                    (18) 
 

where Et is the thermal energy consumed (J), Cf the calorific 
value of fuel used (J/kg) and Wf the quantity of fuel used 
(kg). 
Total Energy Input 
    The energy input for each unit operation is given as 
follows: 

                                 Eseo = Ep+Em+Et              (19) 
 
Where Eseo is the total energy input (kWh), Ep is electrical 
energy input (kWh), Em is manual energy input (kWh), Et is 
the thermal energy consumed (kWh). 
Energy consumption 
    The power plant's generators and boiler utilize this entire 
amount of energy. The computation is obtained using the 
following formula: 

Energy Consumption = Units Wattage x Number of 
Hours Used. 

 
                                       EC= Pt                                 (20) 

 
Where EC denotes the energy consumption (J), P denotes 
the power ratings for each unit (kW), t denotes the 
operational time (h). 
    The energy expended during inactive processes, such as 
the initiation of a facility. The shutdown and plant cleaning 
and sterilization processes have been included in the energy 
sequestered in each of the operations. 

 
2.6.3 Enthalpy and Change in Enthalpy 
    Thermal energy released by steam is quantified by a 
characteristic called enthalpy (H). The thermal effect for the 
reactions at constant pressure is derived from the enthalpy 
of vaporization. Enthalpy difference refers to the thermal 
energy differential between the vapor and liquid phases of 
steam. 

 
2.6.4 Model Equations for Exergy 
    The exergy Ex for a closed system can be specifically 
described mathematically as;    

            
       𝐸௫ = 𝑉(𝑝 − 𝑝௢) − 𝑆(𝑇 − 𝑇௢) − ∑ 𝑛௜௜ (𝜇௜ − 𝜇௜௢)     (21) 
 
The exergy of a fluid flowing across the internal limits of an 
open system may be expressed as; 

 
     𝐸௫ = (𝐻 − 𝐻௢) − 𝑇௢(𝑆 − 𝑆௢) − ∑ 𝜇௜௜ (𝑛௜ − 𝑛௜௢)    (22) 
 
where, 

                                             𝐻 = 𝑈 + 𝑝௢𝑉                          (23) 
 

The preceding equations include the extended quantity, U 
denotes the internal energy, S the entropy, H the enthalpy, 
V the volume and ni the number of moles of substance, i the 
intensive quantity, T the temperature, p the pressure and mi 
the chemical potential of the substance i. The subscript ‘‘o’’ 
denotes the conditions of the reference environment. 
Equations (21) and (22) include a third factor that considers 
the contribution resulting from the chemical change of the 
system. This concept is disregarded in this investigation as 
the procedures performed did not entail any chemical 
reaction. 
    The difference in exergy ∆𝐸௫ between the outgoing and 
incoming streams in a steady flow process is precisely 
specified as: 

 
                                      ∆𝐸௫ = 𝑊̇௨ − 𝑇௢𝑅̇௦                        (24) 
 

where 𝑊̇௨ is the useful work, Rs the production of entropy 
and To the ambient temperature e. The exergy difference 
∆𝐸௫ is defined in terms of each component exergy ex,q per 
unit mass and the mass flow rate wq: 

 
                     ∆𝐸௫ = ∑ 𝑤௤𝑒௫,௤௤೚ೠ೟

− ∑ 𝑤௤௤೔೙
𝑒௫,௤          (25) 
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The exergy of each component is defined as, 

 
                                     𝑒௫,௤ = ℎ௤ − 𝑇௢𝑠௤       (26) 

    It is evident from Equation (24) that the exergy change is 
a trade-off between the useable work and the entropy 
production term, which represents the work wasted due to 
irreversibility’s. Concerning a reversible procedure, 𝑅̇௦= 0 
and thus, A reversible process exergy change is equivalent 
to either the maximum useful work associated with a work-
producing process or the minimum useful work required by 
a work-consuming process. The above information clearly 
indicates that the variations in exergy and the generation of 
entropy serve as the energy limits for the process or a group 
of processes. 

 
2.6.5 Utility Exergy 
   The use of primary utilities, including fuel, cooling water, 
steam, hot air, and electricity, is the inevitable outcome of 
all energy demands. Electrical utilities are encompassed 
within the category of beneficial work, 𝑊̇௨, term. Process 
streams encompass raw materials, products, wastes, and 
intermediate materials that are generated during the 
subsequent transformation of the raw materials. To achieve 
an energy-efficient design, it is frequently preferable to 
segregate the heating and cooling utilities streams from the 
process streams outlined in Equation (24). It can be deduced 
that: 
  

 
                 ∆𝐸௫,௣௥௢௖ = 𝑊̇௨ + ∆𝐸௫,௨௧௜௟ − 𝑇௢𝑅̇௦             (27) 
 

    The variation in utility exergy ∆𝐸௫,௨௧௜௟ , specifically 
applicable to steam in this study, can be calculated using the 
following formula: 

 
   ∆𝐸௫,௨௧௜௟ = 𝐻௨௧௜௟,ଵ − 𝐻௨௧௜௟,ଶ − 𝑇௢൫𝑆௨௧௜௟,ଵ − 𝑆௨௧௜௟,ଶ൯     (28) 
 
The enthalpies and entropies of steam can be estimated 

using the conventional data table. The exergy change of the 
process stream can be calculated by using Equations (24) 
and (25), which can be assessed using the tabular data for 
enthalpies and entropies or by utilizing predictive equations 
derived from the specific heat capacity parameters. For the 
scenario of constant specific heat capacity and insignificant 
residual exergies over the temperature range under 
consideration, the most straightforward equation to 
determine the exergy changes (Waheed et al., 2008).  

 

          𝑒௫,ଶ − 𝑒௫,ଵ = 𝑐௣(𝑇ଶ − 𝑇ଵ) ቂ1 − ೚்

( మ்ି భ்)೘೗
ቃ    (29) 

 
where, 

                           (𝑇ଶ − 𝑇ଵ)௠௟ = మ்ି భ்

୪୬( మ் భ்⁄ )
                          (30) 

 
The specific heat constant of cotton may be calculated using 

the following mathematical relationship: 
 

                     𝑐௣ = 𝑐௠௟(0.3823 + 0.6183𝑥௠)             (31) 
 
where xm is the weight fraction of cotton. 

 
2.6.6 Inefficiency 

Exergy research enables a more thorough analysis of a 
system by identifying the specific locations within the 
system where exergy is lost due to internal irreversibility 
and its underlying causes. Inefficiency may be defined as 
the proportion of irreversibility in each individual segment 
to the total irreversibility across all sections. This is 
mathematically defined as   

 

                               𝐼௞ =
( ೚்ோ̇ೞ)ೖ

∑ ( ೚்ோ̇ೞ)ೖ
ೌ೗೗ ೞ೐೎೟೔೚೙ೞ
ೖ

     (32) 

 
2.7 Energy Production and Electricity Generation 

from Fossil Fuels 
    Shaft work is derived from the operation of electric and 
fossil-fuel furnaces (Dincera et al., 2004). The efficiency for 
generating shaft work from electricity is as follows: 

 
                                       𝜂௠,௘ = 𝑊 𝑊௘⁄       (33) 
 
                    𝜓௠,௘ = 𝐸ௐ/𝐸ௐ೐ = 𝑊 𝑊௘ = 𝜂௠,௘⁄   (34) 
 

Fuel efficiencies are as follow: 
 

                                         𝜂௠,௙ = 𝑊 𝑚௙𝐻௙⁄                       (35) 
 

                          𝜓௙ =
ாೈ

௠೑ఌ೑
= 𝑊 𝑚௙𝛾௙𝐻௙⁄ ≅ 𝜂௠,௙    (36) 

 
Efficient energy generation from fossil fuels is 
characterized by: 

 
                                      𝜂௘,௙ = 𝑊௘ 𝑚௙𝐻௙⁄              (37) 
 
                 𝜓௘,௙ = 𝐸ௐ೐/𝑚௙𝜀௙ = 𝑊௘ 𝑚௙𝛾௙𝐻௙ ≅ 𝜂௘,௙⁄     (38) 
 
Consequently, it can be deduced that the exergy 

efficiencies for the process of generating electricity can be 
considered equal to the corresponding energy efficiencies. 
    The efficiency of the mechanical energy generation 
systems powered by fossil fuels, which produce a change in 
kinetic energy ∆𝑘𝑒 in a stream of matter ms, they are as 
follows: 

 
                                 𝜂௞௘,௙ = 𝑚௦∆𝑘𝑒௦/𝑚௙𝐻௙             (39) 
 
                                 𝜓௞௘,௙ = 𝑚௦∆𝑘𝑒௦/𝑚௙𝜀௙             (40) 
                               

                               𝜓௞௘,௙ =
௠ೞ∆௞௘ೞ

௠೑ఊ೑ு೑ఌ೑
≅ 𝜂௞௘,௙             (41) 
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3. RESULTS AND DISCUSSION 
 

3.1 Experimental for Cotton Swab Manufacturing 
    The experimental data matrix was utilized in the BBD 
technique. This study examines the effects of multiple 
factors on manufacturing of cotton swabs. There are 17 
experiments show in Table 2. 
    The regression equation for the determination of 
predicted values of defect (R1) and downtime (R2) 

parameter, where A is speed rate (rpm), B is thickness 
(g/m), and C is slidver gap (cm), is given as follows 
(Uncoded): 
R1 = -449.925 + 0.56196A + 106.35B - 0.434125C - 

0.0285AB + 0.0004725AC - 0.11BC - 0.0001899A2 -    
27.125B2- 0.00104C2                                                      (42) 

 
R2 = 27371.325 - 44.919A + 3678.5B + 135.57C + 3.675AB 

- 0.13025AC + 30.25BC + 0.0154175A2 - 3382.5B2 + 
0.056750C2                                                                         (43)

Table 2. Experiment matrix with multi-response 

Exp.no 
Speed rate 

(rpm) 
Thickness 

(g/m) 
Slidver gap 

(cm) 
Defect 
(kg) 

Downtime 
(min) 

1 1400 1.5 20 4.30 280 
2 1500 1.3 30 5.53 354 
3 1300 1.4 20 3.42 481 
4 1300 1.3 30 4.10 521 
5 1400 1.4 30 5.97 312 
6 1500 1.5 30 2.59 482 
7 1400 1.4 30 5.88 341 
8 1300 1.5 30 2.30 502 
9 1400 1.4 30 5.92 315 

10 1400 1.3 40 6.77 292 
11 1500 1.4 20 3.45 630 
12 1500 1.4 40 5.12 267 
13 1400 1.3 20 6.83 291 
14 1400 1.4 30 5.59 374 
15 1400 1.4 30 5.64 380 
16 1400 1.5 40 3.80 402 
17 1300 1.4 40 3.20 639 

Table 3. ANOVA of cotton swab manufacturing 

     Source 
Defect Downtime 

   SS DF Mean Square F-value p-value    SS DF Mean Square F-value p-value 
Model 32.1300 9 3.5700 35.5400 < 0.0001 207705.00 9 23078.42 9.1313 0.0041 
A-Speed rate  1.6800 1 1.6800 16.7600    0.0046 21012.50 1 21012.5 8.3139 0.0235 
B-Thickness 13.1100 1  13.1100 130.4700 < 0.0001 5408.00 1 5408 2.1398 0.1869 
C-Slidver gap  0.0990 1 0.0990 0.9856  0.3539 840.50 1 840.5 0.3326 0.5822 
AB  0.3249 1 0.3249 3.2300  0.1152 5402.25 1 5402.25 2.1375 0.1871 
AC  0.8930 1 0.8930 8.8900  0.0205 67860.25 1 67860.25 26.8500 0.0013 
BC  0.0484 1 0.0484 0.4818  0.5100 3660.25 1 3660.25 1.4482 0.2679 
A² 15.1800 1 15.1800 151.1000 < 0.0001 100083.91 1 100083.92 39.5998 0.0004 
B²  0.3098 1 0.3098 3.0800  0.1225 4817.39 1 4817.392 1.9061 0.2099 
C²  0.0453 1 0.0453 0.4511  0.5233 135.60 1 135.60 0.0537 0.8234 
Residual  0.7032 7 0.1005 -  - 17691.70 7 2527.39    - - 
Lack of Fit  0.5838 3 0.1946 6.5200  0.0509 13622.50 3 4540.83 4.4636 0.0912 
Pure Error  0.1194 4 0.0298 - - 4069.20 4 1017.3 -         - 
Total 32.8300 16            - - - 225397.52 16      - - - 
 

    In Table 3, the R2 values of Equations (42) and (43) were 
0.9786 and 0.9215, respectively, demonstrating a high level 
of accuracy in predicting the experimental results (Chicco 
et al., 2021). The regression model is derived from the BBD 
and utilizes the parameter dataset obtained from cotton 
swabs. The equation representing the relationship between 
the defect and downtime followed a quadratic model (p < 

0.05). Furthermore, the p-values for lack of fit of the 
equation were not statistically significant (0.0509 and 
0.0912). Verify that the model and experimental data 
correspond.  The analysis of variance (ANOVA) results  
shows that the following defect model terms (linear, 
interaction, and quadratic coefficients) have significant 
effects (p < 0.05) on each response: A, B, AC, and A². In 
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addition, the significant effect parameters for the downtime are as follows: A, AC, and A². 

                                     
Fig. 5. The response surface plot between the speed rate and the slidver gap of 

(a) defect and (b) downtime 
 
    The defect and downtime regression model can be used 
to create a response surface plot (Majumder et al., 2014). In 
Fig. 5(a), the response surface plot illustrates the influence 
of speed rate (A) and slidver gap (C). The level of thickness 
(B) was set at zero. The defect increased significantly at 
level 0 with the interaction effect. The interaction effect was 
negatively correlated with the downtime. The influence of 
speed rate (A) and slidver gap (C) on downtime as shown in 
Fig. 5(b). 
    Finding the optimal parameters is complex. The two 
responses to the MRO problem have different points of 
view. Therefore, the hybrid MCDM approach solves this 
problem. 

 
3.2 TOPSIS with Linear Programming 

The procedure for normalizing the criterion is as follow: 
The R1 and R2 characteristics might be considered as cost 
criteria. The construction process can be transformed by 
Equation (4). The two responses can be converted into the 
CCi scores, as shown in Table 4. Weight is set at w1 = 0.5 
and w2 = 0.5.  
   For example, we used equation 5 to solve CC (no.9) using 
linear programming. As a result, the solution was 0.3209. 
This makes it possible to compute the remaining CC scores 
using the same methodology. The regression model for the 
CC is obtained with RSM as follows in terms of the uncoded 
equation (R2 = 0.7383, adj R2 = 0.4021): 

 
CC = - 2.59871834 + 0.017156A - 13.81246B + 0.01651C  

- 0.005281AB + 0.00005702AC - 0.06802BC - 

0.0000039A2 + 8.388965B2 - 0.00006957C2    (44) 
 

Table 4. The experimental results for the CCi response 

 
3.3 WASPAS Method 
    The WASPAS method-based analysis for multi-response 
optimization (Bagal et al., 2021) of the considered cotton 
swab manufacturing. The process of normalizing the 
criterion involves the following steps: Equation 7 indicates 
that defect and downtime responses are non-benefit criteria 

Exp. no. 
Response matrix 

CC 
R1 R2 

1 4.30 280 0.6008 
2 5.53 354 0.4879 
3 3.42 481 0.3128 
4 4.10 521 0.2787 
5 5.97 312 0.3211 
6 2.59 482 0.3338 
7 5.88 341 0.3155 
8 2.30 502 0.3358 
9 5.92 315 0.3209 

10 6.77 292 0.3194 
11 3.45 630 0.2106 
12 5.12 267 0.3377 
13 6.83 291 0.3192 
14 5.59 374 0.3101 
15 5.64 380 0.3079 
16 3.80 402 0.3288 
17 3.20 639 0.2117 
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Table 5. Normalized decision matrix of WASPAS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, and the decision maker sets the weight index at w1 = 0.5, 
w2 = 0.5 and λ = 0.5. 
    The comprehensive experimental plan, configuration of 
the process parameters. The normalized data can be 
transformed by equation (7). The total relative significance 
of Q1 and Q2 can be evaluated by Equations (8) and (9) 
respectively. The simultaneous optimization of all 
responses (Q) is demonstrating in Table 5. The regression 
model for the Q is obtained with RSM as follows in terms 
of the uncoded equation (R2 = 0.8444, adj R2 = 0.6439): 

 
Q = 11.00597-0.003736A - 10.85354B - 0.049516*C - 
0.001812AB + 0.000054381AC - 0.0246924BC + 
0.0000017A2 + 5.27987B2 + 0.000136C2                     (45) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Determining Optimal Parameters and Sensitivity 
Analysis 

    Desirability functions are highly effective tools for multi-
criteria optimization and decision-making (Rajesh, 2021). 
Table 6 presents a mathematical model that employs the 
data matrix to determine the CC and Q values. The research 
concentrated on multiple responses, with productivity 
determining the decision to reply. The maximum 
desirability is 0.9560 (R2 = 0.8849, adj R2 = 0.6439) and the 
initial output (Experiment no.1) has a speed rate of 1400 
rpm, a thickness of 1.5 g/m, and a slidver gap of 20 cm.

 
Table 6. Experiment matrix with multi-response 

Exp. no Defect Downtime Q1 Q2 Q 
1 0.5349 0.9536 0.7442 0.7142 0.7296 
2 0.4159 0.7542 0.5851 0.5601 0.5730 
3 0.6725 0.5551 0.6138 0.6110 0.6125 
4 0.5610 0.5125 0.5367 0.5362 0.5365 
5 0.3853 0.8558 0.6205 0.5742 0.5976 
6 0.8880 0.5539 0.7210 0.7014 0.7118 
7 0.3912 0.7830 0.5871 0.5534 0.5706 
8 1.0000 0.5319 0.7659 0.7293 0.7478 
9 0.3885 0.8476 0.6181 0.5739 0.5966 
10 0.3397 0.9144 0.6271 0.5574 0.5978 
11 0.6667 0.4238 0.5452 0.5315 0.5388 
12 0.4492 1.0000 0.7246 0.6702 0.7024 
13 0.3367 0.9175 0.6271 0.5559 0.5943 
14 0.4114 0.7139 0.5627 0.5420 0.5529 
15 0.4078 0.7026 0.5552 0.5353 0.5453 
16 0.6053 0.6642 0.6347 0.6340 0.6344 
17 0.7188 0.4178 0.5683 0.5480 0.5587 

Exp. no. Speed rate (rpm) Thickness (g/m) Slidver gap (cm) CC Q Desirability 

1 1400 1.5 20 0.6007 0.7296 0.9560 

2 1500 1.3 30 0.4879 0.5730 0.3504 

3 1300 1.4 20 0.3128 0.6125 0.3070 

4 1300 1.3 30 0.2787 0.5365 0.0000 

5 1400 1.4 30 0.3211 0.5976 0.2862 

6 1500 1.5 30 0.3338 0.7118 0.5119 

7 1400 1.4 30 0.3155 0.5706 0.2083 

8 1300 1.5 30 0.3358 0.7478 0.5665 

9 1400 1.4 30 0.3209 0.5966 0.2836 

10 1400 1.3 40 0.3194 0.5978 0.2845 

11 1500 1.4 20 0.2106 0.5388 0.0000 

12 1500 1.4 40 0.3377 0.7024 0.5058 

13 1400 1.3 20 0.3192 0.5943 0.2760 

14 1400 1.4 30 0.3101 0.5529 0.1407 

15 1400 1.4 30 0.3079 0.5453 0.1019 

16 1400 1.5 40 0.3288 0.6344 0.3747 

17 1300 1.4 40 0.2117 0.5587 0.0172 
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Sensitivity analysis is a research method that evaluates 
the impact of changes in the input data used in MCDM 
models. It is a widely used method to ensure the robustness 
and stability of solutions. The sensitivity analysis was 
utilized to ascertain variation of criteria weights. The weight 
adjustment method is applied across nine sets to examine 
the impact of different weight distributions on the criteria. 
The set of criteria weights are explained in Table 7. 

This paper presents a comprehensive two-phase 
sensitivity analysis process. In the first phase, a weight 
adjustment method is applied across the nine sets the impact 
of different weight distributions on the criteria. Using the 
same calculation methodologies as in Set 5, the desirability 
for all sets is displayed in Table 8, and the weights are 
ranked in Figure 6. 

Table 7. The distribution weights 

Set of criteria 
weights 

Response 
Defect  

   (% weights) 
 Downtime  
(% weights) 

1 10 90 
2 20 80 
3 30 70 
4 40 60 
5 50 50 
6 60 40 
7 70 30 
8 80 20 
9 90 10 

 

Table 8. The desirability for nine sets of criteria weights 

Exp.no 
Desirability 

Set 1     Set 2 Set 3 Set 4 Set 5   Set 6  Set 7 Set 8 Set 9 
1 0.9690 0.9819 1.0000 1.0000 0.9560 0.7863 0.6438 0.4098 0.3261 
2 0.6437 0.6345 0.6019 0.5260 0.3504 0.2178 0.1893 0.1108 0.1088 
3 0.2704 0.2808 0.2779 0.3050 0.3070 0.3208 0.4826 0.4946 0.4887 
4 0.1994 0.1861 0.1536 0.1211 0.0000 0.0889 0.3083 0.2842 0.3187 
5 0.5041 0.4919 0.4493 0.4120 0.2862 0.1336 0.1848 0.0592 0.0623 
6 0.2895 0.3261 0.3544 0.4352 0.5119 0.5926 0.8653 0.8345 0.8024 
7 0.4536 0.4384 0.3928 0.3469 0.2083 0.0827 0.0000 0.0510 0.0658 
8 0.2716 0.3185 0.3580 0.4587 0.5665 0.6900 1.0000 1.0000 1.0000 
9 0.4991 0.4871 0.4450 0.4082 0.2836 0.1339 0.1629 0.0632 0.0673 
10 0.5383 0.5233 0.6292 0.4295 0.2845 0.1041 0.0632 0.0038 0.0023 
11 0.0143 0.0000 0.0000 0.0000 0.0000 0.0000 0.4095 0.4371 0.4653 
12 0.6004 0.6039 0.5806 0.5818 0.5058 0.3359 0.3968 0.2125 0.1851 
13 0.5391 0.5228 0.4732 0.4250 0.2760 0.0954 0.0000 0.0000 0.0000 
14 0.4016 0.3850 0.3389 0.2886 0.1407 0.0512 0.0993 0.0688 0.0946 
15 0.3914 0.3730 0.3246 0.2687 0.1019 0.0000 0.0566 0.0579 0.0868 
16 0.3779 0.3864 0.3776 0.3962 0.3747 0.3357 0.4963 0.4125 0.4013 
17 0.0000 0.0000 0.1111 0.0000 0.0172 0.1153 0.4973 0.5243 0.5399 

 
Fig. 6. The sensitivity analysis of criteria weights 
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    Subsequently, the efficiency values of all scenarios are 
utilized to calculate the optimal parameters and predicted 
results for each case, using Design Expert V13. As a result, 

Table 9 presents the optimal parameters with the predicted 
responses of alternatives throughout nine sets. 

 
Table 9. A comprehensive comparison of the optimal parameters  

 
Set of criteria 

weights 

 
Initial output 

 
Optimal parameters 

Predict results 

         Defect (kg) 
 

Downtime (min) 
 

Set 1 A2B3C1 A1B3C1 2.54 360.67 
Set 2 A2B3C1 A1B3C1 2.54 360.67 
Set 3 A2B3C1 A1B3C1 2.54 360.67 
Set 4 A2B3C1 A1B3C1 2.54 360.67 
Set 5 A2B3C1 A1B3C1 2.54 360.67 
Set 6 A2B3C1 A1B3C1 2.54 360.67 
Set 7 A1B3C2 A1B3C1 2.54 360.67 
Set 8 A1B3C2 A1B3C1 2.54 360.67 
Set 9 A1B3C2 A1B3C1 2.54 360.67 

 
    Table 9 presents that despite the weights fluctuating, the 
optimal parameters are similar (A1B3C1), while an 
optimization strategy focuses on the minimum defect and 
downtime to achieve. The predicted defects weighed 2.54 
kg, and the downtime was 360.67 mins. The optimal 
parameters identified are a speed rate of 1300 rpm, a 
thickness of 1.5 g/m, and a slidver gap of 20 cm. These 
adjusted settings can increase productivity enhancement 
efficiency. 
    In addition, we compared the suggested strategy to other 
established techniques such as ARAS, COPRAS, and 
MOORA, which are displayed in Table 10. The data 
analysis was conducted using the hybrid MCDM approach 
with weights set to wdefect = 0.50 and wdowntime = 0.50 with a 
simpler calculating technique, it produces similar findings 
to well-known methods. This means it may be applied to a 
wider range of MRO (Saeed et al., 2024), particularly those 
involving large amounts of data, demonstrating the 
suggested solution's effectiveness and robustness. 

 
Table 10. Comparison of the hybrid MCDM method 

and the other methods 
Method Optimal parameters 

1. ARAS A1B3C1 
2. COPRAS A1B3C1 
3. MOORA A1B3C1 
4. Proposed A1B3C1 

 
The analysis in Table 10 demonstrates that the best values 

found are similar across most MCDM approaches (A1B3C1). 
The consistent results shown here confirm the robustness 
and stability of these approaches in optimizing the cotton 
swab procedure's parameters. The consistent outcomes 
obtained from various MCDM methods indicate that these 
parameters are appropriate for attaining the intended 
performance metrics. 

3.5 Energy Analysis 
   Analyzing the data on the plant's total energy consumption 
provides significant information about the energy sources 
that are accessible in Table 11 and 12, which have statistics 
on the energy intake for each of the unit operations (Waheed 
et al., 2008). The sensitivities of the equipment used in the 
experiment were calculated based on the data supplied in 
Table 13. 
    Table 14 presents the total energy demands for the eight 
specified unit processes, measured by time and energy 
consumption. In this case study, the energy consumption of 
cotton was determined to be 6,208.08 MJ. Electric, thermal, 
and manual energy categories account for 43.12%, 55.73%, 
and 1.15% of the total energy consumption, respectively. 
The table unambiguously demonstrates that the drying 
process was the most energy-intensive, accounting for 
roughly 69.93% of the total energy input. The packaging  
 

Table 11. Specifications pertaining to the operation of 
generators, boilers, and cotton 

Generators operating conditions  Value 
Power factor (PF) 0.8 
KVA 437.5 
KW 350 
Load during production 95% 
Diesel usage (l/h) 60 
Boiler operating conditions Value 
Thermal capacity (kW) 
Heat Input (kW) 

3200 
3406 

Diesel usage (l/h) 35 
Operating temperature (oC) 107 
Operating pressure (bar) 8 
Cotton operating conditions Value 
Mass flow rate of cotton (kg/h) 1200 
Heat capacity of cotton (kJ/kg.K.) 4.06 
Heat capacity of water (kJ/kg.K.) 4.15 
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Table 12. Factors for evaluating energy consumption in cotton manufacturing 

Unit Operation Required parameters Value 
Chemical process Number of persons involved in chemical process 4 
 Time taken for chemical process (h)  5 
Fiber carding Electrical power (kW)  4.28 
 Number of persons involved in fiber carding 12 
 Time taken for fiber carding (h) 5 

Slidver 
Electrical power (kW)  
Number of persons involved in slidver 

4.63 
4 

 Time taken for slidver (h)  6 

Plastic injection 
Electrical power (kW)  
Number of persons involved in plastic injection  

15.12 
5 

 Time taken for plastic injection (h)  6 

Plastic rods 
Electrical power (kW)  
Number of persons involved in plastic rods 

16.64 
4 

 Time taken for plastic rods (h)  5 

Swab machine 
Electrical power (kW) 
Number of persons involved in swab machine 

18.37 
4 

 Time taken for swab machine (h) 6 

Drying 
Electrical power (kW) 
Number of persons involved in drying 

50.46 
6 

 

Time taken for drying (h)  
Steam mass requirement (kg/h)   
Weight fraction of water in cotton  
Steam inlet temperature (K)   
Temperature of surrounding (K)   
Cotton inlet temperature (K)    
Cotton outlet temperature (K)    
Thickness of cotton (g/m)   

6 
3200 
0.96 
360 
300 
325 
353 
1.01 

Packaging Electrical power (kW)  58.68 
 Time taken for packaging (h)  5 
 Number of persons involved in packaging  10 

 
Table 13. Equipment utilized in the inquiry and sensitivities 

Equipment 
Precision maintenance 

(%) 
Accuracy maintenance  

(%) 
Error maintenance  

(%) 
Tachometer 0.01 0.02 0.02-0.04 
Stopwatch 0.02 0.03 0.03-0.07 
Weighting balance 0.03 0.05 0.05-0.10 
Thermocouples 0.05 0.01 0.01-0.10 

 
unit followed, accounting for 13.83% of the total energy.  

Together, both units contribute 83.76% of the total 
energy. The chemical process unit used the least amount of 
energy, accounting for approximately 0.09% of the total 
energy input. The type of operation dictates the fluctuation 
in energy consumption for each unit activity, together with 
other operational factors such as equipment age and the 
extent of plant capacity utilization.  

Exergy analysis has been used to assess the unit processes 
integrated in cotton production, thereby analyzing the entire 
production. Table 15 displays the exergy change in cotton, 
the useful work, the utility exergy change, the generation of 
entropy, and the inefficiency linked to each individual unit 
activity. The variation in the cotton exergy is only linked to 

processes in which there is a modification in the 
temperatures via which the product enters and exits. Hence, 
there is a generation of exergy during the drying and 
packaging processes. Chemical process, fiber carding, 
slidver, plastic injection, and swab machine activities do not 
exhibit any exergy change due to the absence of significant 
temperature variation between the entrance and output of 
these processes. The negative exergy change observed 
during packaging can be attributed to the decrease in 
temperature of the product during the procedure. The exergy 
of the coolant used to cool the processed material after 
drying was disregarded due to its negligible impact. 

Useful work input includes both electrical and physical 
energy. The reason for including electrical energy in the 
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Table 14. The production of cotton requires the allocation of time and energy 

  
Table 15. Exergy balance in cotton processing 

No Unit 
Exergy change of 
the cotton (MJ) 

Useful work 
(MJ) 

Utilities exergy 
change (MJ) 

Production of 
entropy (MJ) 

Inefficiency (%) 

1 Chemical process - 5.40 - 5.40 0.02 
2 Fiber carding - 77.83 - 77.83 0.34  
3 Slidver - 86.49 - 86.49 0.38  
4 Plastic injection - 269.37 - 269.37 1.18  
5 Plastic rods - 245.02 - 245.02 1.07  
6 Swab machine - 323.91 - 323.91 1.42  
7 Drying 779.80 871.95 20,759.40 20,851.55 91.24  
8 Packaging -148.30 844.99 - 993.29 4.35  
 Total 631.50 2,719.56 20,759.40 22,852.86 100.00 

assessment of beneficial work is due to its composition of 
pure exergy, which cannot be fully accounted for by the 
entropy produced by a human laborer. The entropy reached 
its maximum value in the drying unit, followed by the 
packaging unit, with values of 20, 851.55 and 993.29 MJ, 
respectively. In the drying and packaging unit, the 
respective inefficiencies are 91.24% and 4.35%, whereas 
the combined inefficiencies in the other five units amount 
to a mere 4.41%. The observed high entropy during the 
drying process can be attributed to the irreversibility 
resulting from the significant temperature differential 
between the inlet and outflow streams of the product. These 
data demonstrate that the heating process is extremely 
inefficient. Exergy calculations consistently illustrate this 
phenomenon, as the exergy value of heat is frequently far 
lower than its energy value, especially at temperatures near 
the reference temperature (Arshad et al., 2019). An elevated 
level of exergy destruction indicates that the energy has 
diminished in its capacity to generate work, leading to a 
decline in its quality.   
    The exergy degradation during drying can be mitigated 
by increasing the capacity of the holding tank, therefore 
reducing the strain on the boiler (Zhang et al., 2018). This 
will facilitate an extended duration of production, hence 
minimizing unnecessary energy consumption and the 
concurrent exergy degradation resulting from plant 

initiation, shutdown, and cleaning. Implementing this 
proposal could potentially enable the refinery to decrease its 
substantial energy costs, therefore enhancing profitability. 
 
3.6 Validation and Confirmation 
    This confirms that the practical findings are equally as 
good as the results achieved through experiments. During 
the trial, the researcher applied the factors discussed in the 
previous article. 

In Table 16, shows that the trial yielded a total of 10 
practical responses. The researcher utilized statistical 
analysis by one sample t-test (Yu et al., 2022) with defect 
and downtime. Meanwhile, the responses from the actual 
application agree with those obtained from the predicted (p 
> 0.05), as shown in Fig. 7.  
    The optimal conditions of the proposed method were 
compared to the initial output of condition A (set 1-5; 
Exp.no 1) and condition B (set 6-8; Exp.no 8) for 
confirmation. Fig. 8 illustrates that only specific approaches 
provided the most appropriate outcomes when considering 
both the suggested approach and the current parameters for 
each response. In Table 17, the cost analysis should solve 
multiple responses and eliminate the differences between 
each perspective (Shabbir et al., 2020). That can be 
calculated with each response as follows: 

No Unit 
Operation 

time (h) 

Electrical 
energy 

Ep,i (MJ) 

Thermal 
energy 
Et,i (MJ) 

Manual 
energy 

Em,i (MJ) 

Total energy 
Eseo,i (MJ) 

(Eseo,i/Ett) 
x100(%) 

1 Chemical process 5.00 - - 5.40 5.40 0.09 
2 Fiber carding 5.00 61.63 - 16.20 77.83 1.25 
3 Slidver 6.00 80.01 - 6.48 86.49 1.39 
4 Plastic injection 6.00 261.27 - 8.10 269.37 4.34 
5 Plastic rods 5.00 239.62 - 5.40 245.02 3.95 
6 Swab machine 6.00 317.43 - 6.48 323.91 5.22 
7 Drying 6.00 871.95 3,459.90 9.72 4,341.57 69.93 
8 Packaging 5.00 844.99 - 13.50 858.49 13.83 

 Total  Ep,tt 

2,676.90 
Et,tt      

3,459.90 
Em,tt 

71.28 
Ett  

6,208.08 
100.00 

 Percent (%)  43.12 55.73 1.15 100.00  
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(1) The cost of defects includes labour, raw materials, 
packaging, and management. As a result, the cost per 
kilogram is $30.49 overall. 

(2) The downtime costs include labor costs, breakdown 
costs, and management costs, resulting in a total cost of 
$0.06 per min. 
 

Table 16. The result of actual practical 

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

          
  Fig. 7. Confirmation with the T-test of (a) the defect, and (b) the downtime 

 

                                                                  
Fig. 8.  The alternative of comparison 

Run 
Speed rate 

(rpm) 
Thickness 

(g/m) 
Slidver gap 

(cm) 
Defect Downtime 

1 

1300 1.5 20 

2.46 355 
2 2.06 342 
3 2.33 349 
4 2.74 365 
5 2.55 362 
6 2.39 365 
7 2.12 370 
8 2.61 358 
9 2.43 367 
10 2.51 358 
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Table 17. The losses costs matrix for each response 
Cost Defect costs (kg) Downtime costs (min) 

1. Labor cost (dollars/month) 500 500 
2. Electricity cost (dollars/month) 55.56 - 
3. Depreciation cost of machinery 

(dollars/month) A = P (A/P, i%, N) 
98.86 

    (8.333, n=10, i=5%) 
- 

4. Breakdown cost (spare part and avg. 
downtime is 400 min/month) 

- 26.25 
 

5. Raw material and packaging cost 
(dollars/month) 

2,500 
 

- 

6. Management cost (dollars/month) 200 50 
7. Total cost (dollars/month) 3,354.42 576.25 
8. Cost per unit (dollars) 30.49 0.06 

According to the data presented in Table 18, a hybrid 
MCDM approach demonstrates a reduction in cost from a 
condition A and condition B of 33.86% and 2.45%, 
respectively. Therefore, operators responsible for cotton 

swab manufacture should select a speed rate of 1300 rpm, a 
1.5 g/m thickness, and a sliding gap of 20 cm. This option 
is the most appropriate for present operations. 

 
Table 18. Comparison of proposed and present methods for cotton juice process parameter optimization 

 

 
 
 
 
 
3.7 Discussion of Findings 
    This research shows that the hybrid MCDM approach is 
highly efficient in dealing with complicated decision-
making situations such as robot selection (Goswami et al., 
2021), university selection (Miç and Antmen, 2021), Fish 
Scale Scraping Machine (Sriburum et al., 2023), and the 
lightweight concrete block process (To-On et al., 2023). 
This indicates that the combination of these methods can 
lead to better decision-making outcomes compared to 
traditional signal criteria approaches. The proposed 
method’s R2 and adj R2 were higher than those of TOPSIS  
and WASPAS indicating a higher prediction accuracy. 
    The findings emphasize the importance of sensitivity 
analysis in the decision-making process. By evaluating how 
changes in criteria weights or input data affect outcomes, 
despite the weights fluctuating, the optimal parameters are 
similar. It shows that the model is insensitive to weights and  
maintains stability. Meanwhile, this comparison with other 
existing optimization methods includes ARAS, COPRAS, 
and MOORA. The optimal parameter was found to be 
A1B3C1, indicating the robustness and reliability of these 
methods in optimizing the cotton swab process. 
Consequently, the hybrid methods allow for a more 
comprehensive evaluation of multiple conflicting criteria, 
leading to better-informed decisions. This is particularly 
useful in complex manufacturing environments where 
trade-offs between cost, quality, and efficiency must be 
carefully managed. 
 
 

 
 
 
 
 
 

 
4. CONCLUSION 
 

    The hybrid MCDM approach is utilized to optimize 
parameters in cotton swab manufacturing. The paper 
discusses the use of response surface plots to analyse the 
relevant factors for defects and downtime. Furthermore, the 
study utilizes TOPSIS with linear programming and 
WASPAS to normalize criteria and determine ideal points 
for decision-making. The optimal conditions were a speed 
rate of 1300 rpm, a thickness of 1.5 g/m, and a slidver gap 
of 20 cm. The predicted defects and downtimes were 2.54 
kg and 360.67 mins, respectively. Validation and 
confirmation of the proposed method are critical, as 
demonstrated by one sample t-test. The actual practical and 
predicted values were not significantly different (p > 0.05). 
The energy consumption of cotton was determined to be 
9,681.33 MJ. Electric energy, thermal energy, and manual 
energy account for 18.36%, 81.29%, and 0.35% of the total 
energy consumption, respectively. The drying process was 
the most energy-intensive component, accounting for 
approximately 69.93% of the total energy consumption. The 
chemical process unit used a small amount of energy, 
accounting for approximately 0.09% of overall energy 
consumption. The entropy reached its maximum value in 
the drying unit and packaging unit, with values of 20,851.55 
and 993.29 MJ, respectively. The drying and packaging 
units have inefficiencies of 91.24% and 4.35%, 
respectively, while the combined inefficiencies in the other 
five units are only 4.41%. 
    The hybrid method provides a comprehensive evaluation 
of alternatives, identifies optimal solutions, which is 

Method Optimal 
parameters 

(1) Defect 
costs 

(2) Downtime 
costs 

Total cost  
(1) + (2) 

Improvement 
(%) 

1. Condition A (exp.no.1) A2B3C1 131.11 16.80 146.91 33.86 
2. Condition B (exp.no.8) A1B3C2 70.13 30.12 100.25      2.45 
3. Hybrid method A1B3C1 76.23 21.60 97.83         - 
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particularly useful in production contexts with conflicting 
objectives. That can be applied and practical in numerous 
sectors, including manufacturing, healthcare, agriculture, 
and supply chain management, to improve processes and 
decision-making strategies. Meanwhile, MCDM methods' 
limitations focus on quantitative criteria; they may overlook 
qualitative factors that are difficult to measure but still 
important in decision-making. This can lead to an 
incomplete assessment of alternatives and potentially 
suboptimal decisions and integration of multiple 
methodologies can increase implementation complexity. 
Practitioners may require advanced knowledge and skills to 
effectively apply the hybrid approach, which could be a 
barrier for smaller organizations or those with limited 
expertise.  
    Furthermore, given the valuable insights and discoveries, 
there are numerous potential avenues for further 
investigation and advancement. 
1. Exploring advanced mathematical models, machine 

learning techniques, and artificial intelligence 
technologies may increase decision-making efficiency. 
Meanwhile, investigating multi-objective optimization 
techniques to simultaneously optimize multiple 
conflicting objectives, such as cost, quality, and 
sustainability, could be an exciting direction for future 
work. This could involve developing decision-making 
frameworks that consider trade-offs between different 
performance metrics. 

2. We can extend the hybrid MCDM approach to optimize 
the entire supply chain of manufacturing or another field. 
This could include factoring in supplier selection, 
inventory management, and distribution logistics in the 
decision-making process. 

3. An assessment of the plant's total energy usage yields 
crucial data regarding the quantity of energy that is 
available. The aggregate energy consumption 
encompasses electrical, thermal, and manual energy. 
Conduct an analysis of energy usage in unit operations to 
study the pattern of energy distribution and consumption. 
For the sake of sustainability, the research has prioritized 
improving efficiency, minimizing manufacturing costs, 
and tackling environmental issues associated with energy 
use in production. 
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