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ABSTRACT 
 
    This study investigates the significance of pedestrian flow detection technologies in 
highly populated areas such as museums, exhibition centers, and amusement parks, 
particularly in the fields of enterprise management, smart healthcare, and public safety. 
Traditional detection methods, such as cameras and infrared sensors, are often 
constrained by privacy concerns and environmental factors. In contrast, Channel State 
Information (CSI) technology utilizes variations in wireless communication signals, 
offering a privacy-preserving and cost-effective solution. To validate this approach, the 
study employs lightweight WiFi transceivers to capture signal perturbations caused by 
human activities, with a custom labeling and balancing method applied to the collected 
data. Short-Time Fourier Transform (STFT) is then used to convert the data into time-
frequency domain representations for feature extraction. The processed dataset is 
subsequently fed into machine learning models for training and prediction. Four machine 
learning algorithms—Random Forest Classifier (RandomForestClassifier), Support 
Vector Classifier (SVC), XGBoost Classifier (XGBClassifier), and Gradient Boosting 
Classifier (GradientBoostingClassifier)—were evaluated, all demonstrating excellent 
performance. Among these, the Random Forest Classifier achieved 99% accuracy in 
scenarios detecting 0–2 people passing through the monitored area. The results indicate 
that integrating WiFi-based CSI technology with machine learning models can enable 
precise and efficient real-time pedestrian flow monitoring, showcasing promising 
applications in museum and healthcare environments. 
 
Keywords: Artificial intelligence of things (AIoT), Channel state information (CSI), 
Human flow detection, Machine learning, Short-time fourier transform (STFT). 
 

 

1. INTRODUCTION 
 
    In the context of advancing digital transformation and the growing demand for 
intelligent solutions, pedestrian flow detection technology plays a crucial role in 
enterprise operations management, smart healthcare, and public safety (Espinosa et al., 
2021). From office buildings to hospitals, accurately tracking the dynamic distribution 
of people helps prevent overcrowding (Azizi et al., 2020) and improves energy efficiency 
(Shah et al., 2019). In public spaces such as hospitals, art galleries, exhibition halls, and 
amusement parks, understanding pedestrian flow patterns allows managers to identify 
hotspots and sparsely populated areas, optimizing flow planning and ensuring efficient 
crowd evacuation during emergencies. However, traditional pedestrian flow detection 
systems face numerous challenges in practical applications. 
    Currently, common pedestrian flow detection technologies include the cameras, 
infrared sensors, and radio-frequency identification (RFID) tags (Fitwi et al., 2021; 
Rangdale et al., 2023), which have been widely adopted in the commercial areas, public 
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facilities, and increasingly apparent. Image-based detection 
systems typically require high-resolution cameras and good 
lighting conditions to accurately capture pedestrian flow 
changes (Winkler et al., 2014; Kwon et al., 2024; Wang et 
al., 2024). This not only raises hardware costs but also 
makes the systems vulnerable to environmental factors such 
as poor lighting. Moreover, the use of cameras poses 
significant privacy concerns, particularly in public spaces, 
potentially eliciting public resistance and skepticism toward 
surveillance systems. In enterprise environments, 
compliance with privacy protection laws further 
complicates the adoption of such technologies. 
    In contrast, while infrared sensors (Narayana et al., 2015) 
mitigate the direct privacy issues associated with image-
based systems, their detection range is limited, and they are 
susceptible to external environmental interference, which 
can lead to sensor inaccuracies. More importantly, infrared 
sensors struggle to accurately distinguish individuals in 
crowded or rapidly changing environments, making it 
difficult to meet the growing demand for diverse and precise 
pedestrian flow detection solutions. 
    RFID, as a detection method based on electronic tags and 
reading devices, avoids some limitations of cameras and 
infrared sensors (Want, 2006). For example, RFID systems 
are independent of lighting conditions and less sensitive to 
environmental interference, improving detection stability 
and accuracy. However, the application of RFID technology 
also has challenges (Jia et al., 2012). First, each detected 
individual requires an RFID tag, which can increase costs 
and complexity for large crowds. Additionally, deploying 
RFID reading devices requires professional setup, and their 
range and accuracy may be limited by device specifications, 
potentially creating blind spots in large or complex 
scenarios. The effectiveness of RFID tags may also decline 
in cases of rapid movement or tag obstruction, further 
limiting its flexibility in various applications. 
    To address the challenges of traditional crowd detection 
methods, the application of Channel State Information (CSI) 
technology has emerged as a novel solution. By analyzing 
variations in wireless communication signals, CSI 
technology can accurately capture changes in the spatial 
environment. Unlike conventional detection systems, CSI 
technology does not rely on video surveillance or additional 
tagging devices but instead utilizes existing WiFi signals for 
real-time monitoring, thereby reducing deployment costs 
and effectively protecting user privacy (Moshiri et al., 2021; 
Ge et al., 2023). These characteristics make CSI technology 
particularly suitable for privacy-sensitive environments 
such as corporate office buildings, exhibition halls, and 
healthcare facilities. Numerous CSI-based crowd detection 
methods have been developed, typically using Access Point 
(AP) devices as data sources combined with machine 
learning (Xiao et al., 2019) or deep learning techniques (Liu 
et al., 2017) to develop recognition models. These methods 
leverage AP devices to obtain stable and high-dimensional 
CSI data, achieving high accuracy. However, systems 
relying on such equipment face high costs, increasing the 

difficulty of deployment. Moreover, many scenarios, such 
as corridors and stairwells, do not require such powerful 
equipment. This study aims to design and validate a 
lightweight CSI-based crowd detection technology, offering 
an efficient and cost-effective solution while exploring its 
feasibility in real-world scenarios. 
Expected contributions are, 
 Creation of a low-cost, non-contact crowd detection 

system: Propose an innovative solution based on MCU-
enabled CSI technology, utilizing WiFi signal variations 
for crowd monitoring to achieve a low-cost, privacy-
preserving deployment model. 

 Integration of lightweight hardware architecture: 
Implement a compact design using the ESP32 module as 
the core device, enabling collaborative operation of AP 
and STA (Station Mode). The ESP32 STA transmits 
signals, and the AP receives and analyzes CSI data, 
providing an efficient and flexible hardware design. 

 Introduction of advanced feature extraction techniques: 
Employ short-time fourier transform (STFT) to extract 
time-frequency features from raw CSI data, improving 
classification accuracy and reducing noise interference. 

 Comprehensive model evaluation and comparison: 
Validate the effectiveness of CSI data processing by 
comparing the performance of Random Forest Classifier 
(RandomForestClassifier), Support Vector Classifier 
(SVC), XGBoost Classifier (XGBClassifier) and Gradient 
Boosting Classifier (GradientBoostingClassifier). 
 

2. MATERIALS AND METHODS 
 

2.1 Literature Review 
    In recent years, research has increasingly focused on 
utilizing modern communication technologies for detecting 
and tracking individuals in the various environments (Qian 
et al., 2017; Shi et al., 2022; Wu et al., 2023). Among these 
technologies, CSI refers to detailed information about a 
wireless communication channel obtained at the receiver, 
including features such as signal strength, phase, and 
frequency variations. These data provide insights into the 
state of the communication channel, enabling analysis of the 
spatial variations of wireless signals over time. The unique 
characteristics of CSI make it particularly effective in 
sensing minute environmental changes within a wireless 
network, such as detecting the presence and movement of 
obstacles, or even human postures and actions (Ma et al., 
2021; Wang et al., 2021; Zhang et al., 2022; Zhou et al., 
2023). 
    The application of CSI technology relies on Multiple-
Input Multiple-Output (MIMO) systems. By transmitting 
and receiving signals through multiple antennas, MIMO 
systems allow the receiver to gather detailed information 
about the channel. This not only enhances the capacity of 
wireless communication but also improves the ability to 
monitor spatial changes with precision. As a result, CSI 
technology has demonstrated significant potential in non-
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visual surveillance, privacy protection, and intelligent 
environmental sensing (Lin et al., 2015; Chen et al., 2019). 
One of the earliest and most extensively studied 
applications of CSI technology is activity recognition. 
Researchers have analyzed variations in WiFi signals 
caused by human movements to identify specific actions. 
For instance, Zeng et al. proposed a CSI-based activity 
recognition system (Zeng et al., 2016; Ding et al., 2019), 
which differentiates various body movements by analyzing 
changes in WiFi signals. This approach eliminates the need 
for wearable devices while ensuring privacy, as it relies on 
wireless signal data sequences rather than image data. The 
system effectively identifies basic actions such as walking, 
sitting, and standing, achieving an accuracy rate of over 
80%. 
    With recent technological advancements, cutting-edge 
artificial intelligence and imaging technologies have been 
widely applied in the medical field, driving innovations in 
medical diagnostics and healthcare. For instance, Laghari et 
al. (2023) proposed a model based on the Deep Residual-
Dense Network (DRDN) and Bidirectional Recurrent 
Neural Network (BiRNN), successfully applied to the 
detection of atrial fibrillation (AF). Leveraging deep 
learning techniques, this model significantly improved the 
early identification rate of arrhythmias. Additionally, Saeed 
et al. (2023) developed a convolutional neural network 
(CNN) model named DeepLeukNet for classifying 
microscopic images, aiding in the detection of acute 
lymphoblastic leukemia (ALL) and demonstrating the 
potential of AI in cancer diagnosis. 
    In the domain of medical imaging, Laghari et al. (2022) 
explored how to collect and interpret medical images 
ranging from the nanoscale to hyperspectral imaging in 
highly challenging environments. These technologies 
enable detailed analysis of internal human structures, 
thereby enhancing diagnostic accuracy. Another review by 
Laghari et al. (2024) focused on the applications of virtual 
and augmented reality in healthcare, particularly in the 
quality assessment of user experiences in serious games. 
These technologies have been employed in patient 
rehabilitation training and psychotherapy. Furthermore, Das 
et al. (2023) proposed a remote healthcare system 
combining electroencephalogram (EEG) and kinect sensors. 
This system not only provides convenient health monitoring 
for the elderly and disabled but also facilitates remote 
diagnostics. The value of such technologies became 
increasingly apparent during the pandemic, highlighting 
their importance for modern healthcare. 
    The application of CSI technology in the field of 
healthcare is growing, achieving notable advancements in 
health monitoring and intelligent medical research. CSI can 
accurately capture environmental information around the 
human body by detecting subtle changes in wireless signals, 
eliminating the need for wearable devices, and making it 
ideal for contactless monitoring. This feature is particularly 

useful for detecting physiological indicators such as falls, 
respiratory rates and heart rates (Wang et al., 2020). For 
instance, traditional fall detection methods rely on cameras 
or wearable devices, often facing privacy issues or usage 
inconvenience. In contrast, CSI-based technologies have 
been applied to monitor vital signs such as breathing and 
heart rate (Liu et al., 2023; Lei et al., 2024; Sun et al., 2024). 
By analyzing minor changes in wireless signals, CSI can 
identify slight chest movements, thereby inferring 
respiratory and heart rates. This technology is not only 
suitable for daily health monitoring but also advantageous 
for remote monitoring scenarios. 
    In the realm of CSI applications for human flow, various 
studies have focused on developing technologies for spatial 
crowd counting. For example, Xiao et al. (2019) proposed 
an AI-based mobile sensing technology that uses wireless 
signals for crowd detection. This method employs machine 
learning models to analyze signal features, achieving 
efficient flow monitoring in dynamic environments. 
However, it relies on high-performance hardware and 
complex data processing architectures, leading to high 
system deployment costs and limited adaptability. Similarly, 
Liu et al. (2017) introduced a deep learning model, WiCount, 
which utilizes WiFi signals for crowd counting by analyzing 
high-dimensional data. While this approach demonstrates 
good accuracy, it demands significant device resources and 
faces challenges related to noise during the feature 
extraction process. 
    In comparison, the method proposed in this study 
leverages lightweight CSI devices combined with STFT for 
feature extraction. This approach effectively reduces noise 
interference in the data while enhancing the accuracy of 
classification models. Moreover, the system has relatively 
low hardware requirements, enabling efficient and cost-
effective deployment, particularly suitable for crowd 
counting in narrow spaces such as corridors or staircases. 
Compared to the aforementioned studies, this method 
emphasizes practicality and feasibility, achieving a balance 
between performance and cost, thereby providing an 
innovative solution for crowd detection.  
 
2.2 Research Methodology 
    With advancements in wireless communication 
technology, environmental monitoring through CSI signals 
has emerged as a novel and practical approach. In existing 
studies, human flow detection often relies on image 
recognition methods, which are typically complex and 
costly to deploy in real-world scenarios. This study aims to 
develop a low-cost, simplified CSI-based system to replace 
image-based human flow detection. Therefore, we set up a 
simulated environment to capture human flow data and used 
this data to build an efficient, cost-effective, and adaptable 
human flow detection system. The overall flowchart is 
illustrated in Fig. 1. 
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                  Fig. 1. Overall flowchart 

 
2.2.1 Environment Setup 
    The experimental environment was set up in an open 
corridor where we placed our equipment. The setup consists 
of four single-chip microcontrollers, a camera, and a 
computer. Each single-chip unit includes two signal 
receivers and transmitters made from single-chip 
technology, capturing signal variations as solid objects pass 
through the space between them. A camera was also 
included in the setup to record video, facilitating later data 
annotation. A schematic of the complete environment setup 
is shown in Fig. 2, while the experimental setup in the actual 
environment is depicted in Fig. 3. 

             
Fig. 2. Environment setup diagram 

                    
Fig. 3. Experimental setup in the actual environment 

 
    As seen in Fig. 2 and Fig. 3, to ensure the captured data 
has sufficient signal strength and distinguishable features, 
we opted for two sets of transmitter/receiver pairs 
positioned at an angled transmission layout, with signals 
crossing each other. The distance between each unit is two 
meters, which extends the signal coverage area and ensures 
a more noticeable signal variation when people pass through. 
During the experiment, data collection was conducted 
across different numbers of people passing through the 
corridor, covering scenarios from zero to two individuals. as 
shown in Fig. 4 (a, b). This setup allows the system to 
operate effectively under varying crowd sizes. For data 
accuracy, each experiment was performed under consistent 
environmental conditions. 

          
Fig. 4. Data collection environment diagram 

 
2.2.2 Data Processing 
    CSI data provides high-resolution insights into the 
propagation characteristics of signals within a wireless 
channel. This data typically encompasses frequency domain 
features such as amplitude and phase. Because wireless 
signals experience multipath effects like reflection, 
refraction, and diffraction as they propagate through space, 
CSI is adept at capturing dynamic environmental changes 
and subtle channel perturbations caused by human activities 
(Cominelli et al., 2023). Consequently, CSI data can deliver 
detailed temporal and frequency characteristics useful for 
recognizing human activity patterns. However, due to its 
high-frequency variability and nonstationary nature, 
analyzing CSI data directly in the time or frequency domain 
can be challenging and may not fully reveal its underlying 
behavioral patterns. Therefore, in this study, we utilize time 
segments labeled with human activity characteristics and 
employ STFT techniques to transform the data. This 
approach allows us to extract effective time-frequency 
features, thereby supporting subsequent classification tasks. 
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2.2.2.1 Feature Labeling 
    Once the raw data has been collected, the first step is to 
label the data by marking the characteristics of crowd size, 
such as no people, one person, or two people, at the time 
points they appear. These labels are then categorized into 
arrays corresponding to the different crowd sizes for storage. 
Subsequently, based on the labeled time intervals, the 
corresponding CSI data is extracted and stored. To prevent 
imbalances in feature occurrence frequency that could affect 
predictive outcomes, we impose a data quantity limit on 
each feature to ensure a consistent sample size. This is 
essential for subsequent data processing and analysis. 

 
2.2.2.2 Data Transformation 

       To address the non-stationary characteristics of CSI data 
and extract its time-frequency features, this study employs 
the STFT as the primary data preprocessing method (Baba, 
2012). By applying a sliding window in the time domain, 
STFT segments the signal into localized intervals and 
performs the fourier transform on each. This results in a 
joint distribution of time and frequency, effectively 
revealing the frequency components that vary over time. 
This capability provides significant advantages in handling 
non-stationary signals and is particularly suitable for 
extracting the time-frequency features of human flow 
activities. The short-time Fourier transform is defined as: 

 

                  




  detwxf,tX fj 2          (1) 

 
The formula referenced in (Allen et al., 1997). In this 

equation: 
𝑥(𝜏): the time-domain signal.  
𝓌(𝜏 - 𝑡): the window function used to localize the signal  in   

time. 
 fje 2 : the kernel function of the Fourier transform. 

    The resulting 𝑋(𝑡, 𝑓) represents the energy distribution of 
the signal at time 𝑡 and frequency 𝑓. This formula illustrates 
that the STFT decomposes a time-domain signal into its 
time-frequency domain representation. By adjusting the 
window function's length and type, a balance between time 
resolution and frequency resolution can be achieved. 

 
2.2.3 Model Selection 

       This section introduces the models used in this research. 
Observing the characteristics of CSI data reveals that signal 
transmission is affected by factors such as multipath effects, 
reflection, attenuation, interference, and noise, resulting in 
high-dimensional and nonlinear properties. Thus, four 
machine learning classifiers were chosen for comparison: 
RandomForestClassifier, SVC, XGBClassifier and 
GradientBoostingClassifier. Each classifier possesses 
unique operating features, making them well-suited for 
addressing different types of issues in CSI signals. This 
study trains and compares models using each of these 
classifiers. 

       The first classifier, RandomForestClassifier, comprises 
multiple decision trees, each learning from a randomly 
selected subset of CSI features and then using a voting 
system among the trees to make the final decision. 
RandomForestClassifier achieves model diversity by 
resampling data multiple times during training, effectively 
identifying the CSI features most influential in classification. 
    SVC, known for its strong performance in high-
dimensional data, classifies data by finding a decision 
boundary that maximizes the margin between classes. The 
model maps input data to a high-dimensional space and 
identifies an optimal plane that distinguishes different 
classes. Focusing on support vectors—data points near the 
decision boundary with the most significant impact on 
classification. SVC avoids overfitting, making it ideal for 
small-scale, high-dimensional CSI data classification.  
    Finally, XGBClassifier and GradientBoostingClassifier 
are both gradient-boosting-based classifiers, iteratively 
generating decision trees to improve classification accuracy. 
Despite sharing a common principle, they differ in 
implementation. XGBClassifier includes optimization 
features like automated missing-value handling, L1/L2 
regularization, parallel computation, and GPU acceleration, 
making it suitable for large datasets and reducing overfitting 
risk. In contrast, GradientBoostingClassifier relies on 
manual hyperparameter tuning and manual missing value 
imputation, offering greater flexibility. Both models are 
well-suited for CSI data processing.  

 
3. RESULTS AND DISCUSSION 
 
    This study conducted experiments on CSI human flow 
data using four different machine learning classifiers and 
compared their performance. The purpose of the 
experiments was to evaluate each classifier's accuracy and 
stability when handling CSI signals with high 
dimensionality, multipath effects, and nonlinearity. 
Classification was performed for scenarios with zero to two 
individuals passing through the corridor, and the predictive 
abilities of the models were quantified through confusion 
matrices and accuracy rates.  
 
3.1 Results of STFT Feature Analysis 
    After pre-processing and transforming the raw data, we 
extracted three segments corresponding to different 
numbers of people passing through the observation area. 
These segments were analysed using time-frequency 
spectrograms. Fig. 5 presents the data from left to right, 
showing scenarios of zero, one, and two individuals passing, 
respectively. As observed in the figure, when no people are 
within the detection range, the signal exhibits minimal 
fluctuations and remains stable. In contrast, when one 
person is present, the signal shows more variations in both 
high and low frequencies compared to when no one is 
present. With two people when passing through the signals,
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Fig. 5. Comparison of STFT spectrograms  

becomes even more dynamic, with noticeably brighter 
colours in the high and low-frequency regions. These results 
indicate that the CSI data processed through STFT contain 
sufficient features for the model to learn effectively.  

 
3.2 Accuracy Analysis 
    In this section, accuracy was used as the primary 
evaluation metric to compare the performance of four 
models RandomForestClassifier, SVC, XGBClassifier, and 
GradientBoostingClassifier under varying numbers of 
individuals and different data processing methods. The 
overall accuracy of each classifier summarized in Table 1. 
 

Table 1. Transfer the sensor log data into training data 

Model / Data 
Raw data 
accuracy 

(%) 

After STFT 
accuracy 

(%) 
RandomForestClassifier 50 99 

SVC 44 98 

XGBClassifier 73 98 

GradientBoostingClassifier 69 98 

 
    From the table, it can be observed that there is a notable 
difference in accuracy among the models when applied to 
raw CSI data. XGBClassifier achieved the highest 
performance with an accuracy of 73%, while SVC had the 
lowest at 44%. This suggests that with unprocessed CSI data, 
XGBoost’s inherent capabilities to handle high-dimensional 
data and noise, as well as its automatic handling of missing 
values, allow it to perform relatively well. On the other hand, 
although SVC generally performs well with high-
dimensional data, the noise and nonlinearity of CSI data 

may make it challenging for SVC to identify an appropriate 
boundary. 

       In order to further compare the performance of the 
proposed method in this study with existing technologies, 
we selected data processing and prediction methods from 
two related studies and applied them to the dataset used in 
this research. The first study is the machine learning-based 
approach proposed by Xiao et al. (2019), while the second 
is the deep learning-based approach introduced by Liu et al.  
(2017). 
    The method proposed by Xiao et al. (2019) uses a sliding 
window for noise reduction and extracts statistical features 
(skewness and kurtosis) as the basis for classification, 
employing a SVM for crowd detection. However, when 
applied to the dataset in this study, the accuracy achieved 
was only 29%, indicating limitations in handling the 
specific environment and data characteristics of this 
research. 
    On the other hand, Liu et al. (2017) method employs 
Butterworth filtering and phase correction for noise 
elimination, extracting phase and amplitude from CSI data 
as feature inputs, and utilizes a fully connected 
Backpropagation Neural Network (BP Neural Network) for 
crowd detection. When tested on this study's dataset, this 
method also demonstrated limited applicability, achieving 
an accuracy of just 30%, highlighting its inadequacies in 
addressing the unique environment and data characteristics 
of this research. 
 
3.3 Confusion Matrix Analysis 
    In this section, confusion matrices are used to illustrate 
each model's performance in predicting different numbers 
of individuals. Confusion matrices of each model trained 
and tested on raw data are shown in Fig. 6. 
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Fig. 6. Confusion matrix of raw data 

 
    As seen in Fig. 6, although each model achieves a certain 
level of accuracy, they demonstrate varying performance 
levels due to differing adaptability to CSI data. While some 
models perform better than others, there is significant room 
for improvement overall. Therefore, we applied STFT to 
preprocess the data and then trained the models, resulting in 
the confusion matrices shown in Fig. 7. 
    From Fig. 7, it is clear that after training on STFT-

processed data, the accuracy of all four models improved 
significantly. This is because the STFT processing 
effectively filtered out noise and interference from the raw 
data, making the essential and distinguishing features in the 
data more prominent and easier for the models to recognize. 
    Next, we will present the results of applying the methods 
proposed by Xiao et al. (2019) and Liu et al. (2017) through 
confusion matrices, as shown in Fig. 8.

   
Fig. 7. Confusion matrix after STFT 



International Journal of Applied Science and Engineering 
 

 
Lin et al., International Journal of Applied Science and Engineering, 22(1), 2024427 

 

 
https://doi.org/10.6703/IJASE.202503_22(1).001                                                                                                                                          8 
                                                                                                                        

                                     
Fig. 8. Confusion matrix after STFT 

 
    From Fig. 8, it can be observed that the recognition 
performance of these two methods is significantly poor 
when applied to the data collected under the equipment and 
environmental settings of this study. The confusion matrix 
reveals evident classification errors, particularly with higher 
error rates in cases with fewer individuals or boundary 
categories, resulting in low overall accuracy. This may be 
attributed to the noisy characteristics of the dataset and 
environmental variations, indicating that these two methods 
are unsuitable for the experimental environment and 
equipment used in this study. 
    Finally, we used three common quantitative metrics—
Precision, Recall, and F1-Score, to summarize the results of 
all methods into a table. The table presents the Macro 
average values of these three metrics for comparison. The 
summarized results are shown in Table 2. 
    From Table 2, it can be observed that the machine 
learning method proposed by Xiao et al. (2019) achieved a 
Precision of only 25%, indicating a high proportion of 
misclassifications when identifying individuals, resulting in 
low accuracy. The Recall was only 29%, demonstrating that 
this method had low sensitivity for this classification task 
and failed to effectively detect most targets. The combined 
average F1-Score for Precision and Recall was also low at 
just 24%, suggesting that this method is unable to meet the 
requirements of this equipment and experimental 
environment. 

    Similarly, the deep learning method proposed by Liu et al. 
(2017) performed poorly in the application scenario of this 
study. It achieved a Precision of 31%, Recall of 30%, and 
an F1-Score of only 30%. Despite employing advanced 
deep learning techniques, this method failed to adapt to the 
lightweight equipment and data characteristics used in this 
study, leading to suboptimal performance and accuracy. 
    In contrast, in this study's experimental results, the 
RandomForestClassifier combined with STFT feature 
extraction on lightweight hardware achieved the best 
performance, with Precision, Recall, and F1-Score all 
reaching 99%. Other machine learning classifiers (SVC, 
XGBClassifier, GradientBoostingClassifier) also 
performed well, maintaining results at a high level of 98%, 
demonstrating the feasibility of using STFT combined with 
machine learning to detect CSI data in this environment. 
    These experimental results highlight that the application 
of the STFT technique in this study effectively filtered out 
environmental noise from the CSI data collected by 
lightweight devices and extracted distinguishable time-
frequency features. This approach significantly improved 
the detection accuracy and stability of the models, 
showcasing the potential of combining lightweight 
hardware with optimized data processing techniques for CSI 
data applications. 
 

Table 2. Quantitative metrics for each method 

 
 

 
 

 
 

 
 
 

 

Ｍethod / Metrics Precision (%) Recall (%) F1- Score (%) 

STFT + RandomForestClassifier 99 99 99 
STFT + SVC 98 98 98 
STFT + XGBClassifier 98 98 98 
STFT + GradientBoostingClassifier 98 98 98 
Xiao method 25 29 24 
Liu method 31 30 30 
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4. CONCLUSION 
 

    This study successfully designed and validated an 
efficient, lightweight, and cost-effective WiFi CSI-based 
human flow detection system centered on the ESP32 
module. Compared to devices used in other studies, the 
adoption of ESP32 significantly reduced the system's 
hardware cost and size. By integrating STFT analysis with 
machine learning techniques, the system effectively filtered 
environmental noise and extracted key features for accurate 
human flow detection. Experimental results demonstrated 
that the system is particularly suitable for simple scenarios 
such as corridors and staircases, highlighting its advantages 
in privacy protection, low cost, and non-contact sensing. 
This work lays a solid foundation for the development of 
privacy-friendly human flow detection systems. 
    Future research can further enhance this lightweight 
device by integrating deep learning techniques, such as 
autoencoders or time-frequency domain fusion analysis, to 
improve its data representation capabilities and detection 
performance in more complex scenarios. Additionally, 
optimizations can be made for multi-target detection and 
dynamic environments, especially to address challenges 
posed by multipath effects and environmental variations. 
Overall, this study achieved an efficient application of WiFi 
CSI technology in human flow detection using low-cost, 
lightweight hardware and provides a reference for future 
advancements and extensions of CSI-based technologies. 
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