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ABSTRACT 
 
Conventional methods provide reliable values of soil properties critical for 

geotechnical design purposes, but they struggle to handle the complexities of 
geotechnical data effectively. The growing intricacy of soil properties necessitates a more 
precise and effective data-driven methodology in geotechnical engineering. Applying 
advanced methodologies, including machine learning and integrated data, is essential to 
address these constraints and enhance the accuracy and efficiency of analytical 
techniques. The study investigates the efficacy of machine learning in enhancing soil 
classification performance and evaluates the impact of integrating resistivity and CPT 
data. A detailed dataset incorporating electrical resistivity and key CPT parameters—
cone resistance, sleeve friction, friction ratio, and total friction was compiled for model 
training and testing. Techniques for soil type classification employing machine learning 
algorithms, such as K-Nearest Neighbours, Random Forest, and Extreme Gradient 
Boosting. The assessment of the performance of each algorithm was based on some 
metrics, including accuracy, precision, recall, and F1-score. The study found that the 
machine learning algorithm effectively identified soil types such as poorly graded sand 
and silty sand. The integration of resistivity and CPT data led to a marked improvement 
in classification performance. Random Forest and XGBoost outperform KNN in soil type 
classification, with Random Forest achieving the best accuracy, precision, recall, and F1 
score results. This work highlights the benefits of combining resistivity and CPT data in 
soil classification and demonstrates Random Forest and XGBoost’s superiority in 
handling intricate, multi-dimensional datasets. These findings suggest that this integrated 
approach can enhance the accuracy and efficiency of analytical techniques of 
geotechnical investigations. 
 
Keywords: Cone penetration testing, Data integration, Geotechnical engineering, 
Machine learning, Soil resistivity, Soil type classification. 
 

 
1. INTRODUCTION 

 
    Soil classification is a fundamental component of geotechnics, construction, and risk 
mitigation that underpins engineering projects' safety, efficiency, and sustainability. Two 
primary methods are electrical resistivity measurements and Cone penetration testing 
(CPT). Electrical resistivity is a non-invasive geophysical method that measures the 
resistance of soil to electrical current flow, providing continuous profiles of materials 
and understanding soil properties (Baker et al., 2015), and suitable for preliminary site 
investigations (Oyeyemi et al., 2020; Egwuonwu et al., 2022; Irawan et al., 2022; Ibitoye, 
2023). CPT, conversely, is a prevalent in situ testing methodology that entails the 
insertion of a cone penetrometer into the soil to measure resistance, pore pressure, and 
other geotechnical parameters, analyzing soil behavior and allowing for detailed 
profiling of the soil layers (Mayne, 2007; Robertson, 2009; Fortier and Wu, 2012; 
Robertson, 2016). Both techniques provide valuable insight into soil properties, enabling



International Journal of Applied Science and Engineering 
 

 
Nurhasanah et al., International Journal of Applied Science and Engineering, 22(1), 2024428 

 

 
https://doi.org/10.6703/IJASE.202503_22(1).006                                                                                                                    2 
                                                                                                                        

effective decision-making in engineering and land 
management (Jung et al., 2008; Tumay et al., 2008; Ural, 
2018; Daniyal et al., 2023) 
    Traditional methods in geotechnical data analysis fail to 
effectively handle the complexities of geotechnical data, 
such as sparsity, non-linearity, and uncertainty. These 
methods struggle with complex problems, inefficiency, and 
human error due to reliance on historical data, inefficient 
analytical techniques, and insufficient visualization and 
digitization processes (Meng et al., 2012; Zhang et al., 2016; 
Ji et al., 2022; Dungca and Galupino, 2023). The increasing 
complexity of soil characteristics calls for a more accurate 
and efficient data-driven approach to geotechnical 
engineering. Advanced methodologies, such as machine 
learning and integrated modeling, can assist in overcoming 
the aforementioned limitations, thereby enhancing the 
accuracy and efficiency of geotechnical investigations 
(Song et al., 2013; Xu et al., 2022; Liu et al., 2023). By 
employing sophisticated analytical methodologies and 
integrating a multitude of datasets, engineers can achieve a 
more profound comprehension of soil characteristics, 
leading to improved risk management and more effective 
engineering solutions (Robertson, 2010; Fitzgerald and 
Ritchie, 2019; Nikooee et al., 2020; Nurhasanah et al., 
2024).  
    Applying machine learning to resistivity and CPT data 
offers significant advantages, including analyzing large 
datasets, uncovering complex relationships, and enhancing 
predictive accuracy. This approach can revolutionize 
traditional soil analysis methods, enabling more informed 
decision-making in geotechnical engineering and 
environmental management (Hengl et al., 2015; 
Angelopoulou et al., 2020; Rauter and Tschuchnigg, 2021; 
Fletcher, 2023; Radočaj et al., 2023). The integration of 
classical methods like CPT with new technologies such as 
machine learning and big data provides exciting insights for 
the future of geotechnical research and practice 
(Oberhollenzer, 2021; Chala and Ray, 2023).  Algorithms 
including K-Nearest Neighbours (KNN), Random Forest 
(RF), and Extreme Gradient Boosting (XGBoost) have 
shown promising results in improving soil classification 
accuracy, effectively capturing complex soil data patterns, 
and enhancing model performance (Zafar and Haq, 2020; 
Zhang et al., 2020; Taher et al., 2021; Huang et al., 2022; 
Aydın et al., 2023; Chala and Ray, 2023; Kamarudin et al., 
2023; Gao, 2024; Weng and Jia, 2024; Yang et al., 2024). 
Moreover, integrating data has been shown to significantly 
enhance model performance, providing a more 
comprehensive understanding of soil behavior and enabling 
better-informed engineering decisions (Fortier and Wu, 
2012; Wang et al., 2013; Reale et al., 2018; Zhu et al., 2024). 
    Despite growing interest in machine learning applications 
in geotechnics, few studies have focused on integrating 
resistivity and CPT data using machine learning algorithms. 
This research seeks to fill this gap by offering a novel, data-
driven approach to compare and optimize these methods for 
soil classification. Specifically, the research explores how 

machine learning algorithms can improve soil classification 
accuracy, assess the impact of integrating resistivity and 
CPT data, and evaluate the performance of KNN, RF, and 
XGBoost in soil classification tasks. The results will 
contribute to advancing data-driven geotechnical models 
that integrate resistivity and CPT data for more accurate and 
efficient soil classifications, with practical implications for 
construction safety, risk mitigation, and sustainable 
engineering practices. 

 
2. MATERIALS AND METHODS 

 

2.1 Data Collection and Data Features 
    The data was collected from the investigated regions, 
comprehensively depicting the subsurface conditions. 
Geoelectric resistivity, CPT, and borehole measurements 
were performed at the identical site, ensuring the data were 
gathered under consistent conditions. The data were directly 
collected from the field and laboratory analysis of the 
sample. 
    The team collected data for this study at the Bontoramba 
Sub-district, District of Somba Opu, Gowa Regency, South 
Sulawesi, covering an area from the northeast to the 
southwest (Fig. 1). This site was selected based on its 
geological characteristics, as mapped in the Ujung Pandang 
sheet (Sukamto and Supriatna, 1982), which indicates 
diverse soil conditions ideal for this study. 
    The resistivity method involves passing an electric 
current (I) through two electrodes in the ground, creating an 
electric field that moves through soil layers. The voltage 
difference (V) is measured by two potential electrodes and 
resistance below the surface can be calculated using Ohm's 
law (Eq.1) (Reynold, 2011). Apparent resistivity (ρa) in the 
Eq. 2 represents the resistivity value of subsurface material 
at a specific depth with K as a geometric factor that depends 
on the electrode configuration (e.g., Wenner or 
Schlumberger). By changing electrode distance, resistivity 
data can be obtained from different depths, creating a model 
of soil resistivity distribution. 

 

                                       𝑅 =  
௏

ூ
                               (1) 

 

                     𝜌௔  =  𝐾 
௏

ூ
                             (2) 

 

    The Cone Penetration Test (CPT) is a method used to 
measure soil resistance and sleeve friction. It involves 
pushing a cone into the soil at a constant speed of 2 cm/s, 
determining cone resistance (qc) and sleeve friction (fs) 
(Robertson and Cabal, 2014). Denser soils have higher qc 
values, while softer soils have lower values. The CPT also 
measures sleeve friction, distinguishing coarse-grained 
from fine-grained soils. Additional parameters like friction 
ratio and total friction are considered to provide a more 
detailed description of soil characteristics. The friction ratio 
(Rf) is obtained from the comparison between the fs and qc 
values and is calculated using Eq. 3. The total friction (Tf) 
is obtained by summing the fs values multiplied by reading
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Fig. 1. Research site 

 
interval and is calculated using Eq. 4 (SNI 2827, 2008). 
 

                                     𝑅௙ =
௙ೞ

௤೎
× 100%                          (3) 

 

                           𝑇௙ =  𝑓௦ × (reading interval)               (4) 
 

    The USCS classifies soils based on their physical 
properties, primarily grain size and plasticity. Soil samples 
from borehole measurement are analyzed in a laboratory to 
determine grain size distribution, with coarse-grained soils 
having over 50% larger particles than 0.075 mm. If refined 
grains are present, plasticity is tested by determining the 
liquid limits (LL) and plastic limits (PL) and calculating the 
plasticity index (PI). The results classify the soil based on 
the USCS diagram, with a two-letter code representing the 
soil type. 
    The features consist of parameters: resistivity value (ρ), 
cone resistance (qc), sleeve friction (fs), friction ratio (Rf), 
total friction (Tf), and soil type, recorded at every 20 cm of 
depth. The highest pressure achieved in the CPT 
measurement was 155 kg/cm2 consequently, recorded 
depths at each point varied between 10.6 m and 12 m. The 
soil types obtained in this study consisted of Sandy Silt 
(ML), Poorly Graded Sand (SP), Sandy Lean Clay (CL), 
and Silty Sand (SM). The dataset collected for each feature 
consists of 272 data points. The dataset was randomly 
partitioned into two subsets, the first comprising 80% of the 
data for training purposes and the second comprising 20% 
for testing. This random division was carefully managed to 
maintain a balanced distribution between the two sets. This 
class imbalance poses challenges to the learning process and 
evaluation metrics. 
    Soil-type classification leverages both individual and 
integrated data features. In the case of individual data 
features, resistivity data is used as the input, with the 
corresponding soil type as the output. For the classification  
 

 

using CPT data, the input features include qc, fs, Rf, and Tf,  
with the soil type as the output. The integration of resistivity 
and CPT data combines the features ρ, qc, fs, Rf, and Tf as 
inputs, with soil type data as the output, thereby utilizing 
integrated data features for enhanced classification.  

 

2.2 Machine Learning Models  
    The machine learning algorithms employed for soil type 
classification are KNN, RF, and XGBoost. These algorithms 
are applied to individual and integrated data features to 
evaluate and compare their efficiency and accuracy in 
classifying soil types.  
    The KNN algorithm classifies a given sample according 
to the majority class of its nearest neighbors, identified 
using a distance metric (Euclidean distance). KNN model 
was employed with three neighbors (k) using the Euclidean 
distance metric and uniform weighting. RF represents an 
ensemble learning technique combining multiple decision 
trees, each trained on a randomly selected subset of the data 
and features. It uses majority voting for classification tasks. 
The RF algorithm was applied with 100 trees and excluded 
the splitting of subsets smaller than 5. XGBoost applies 
boosting techniques to improve weak learners sequentially. 
It minimizes a loss function using gradient descent and 
regularization to prevent overfitting. The RF algorithm was 
employed with 100 boosting stages.  
    Hyperparameters are important to improve model 
performance in classification tasks. GridSearchCV from 
scikit-learn is used for hyperparameter optimization. 
GridSearchCV tries all possible combinations to find the 
best combination based on accuracy. 

 

2.3 Model Performance Evaluation 
    The classification model evaluation involves several 
steps and metrics to measure model performance, ensure 
accuracy, and detect potential overfitting or underfitting. 
The evaluation methods employed to measure classification
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Table 1. Confusion matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 
Actual Negative False Positive (FP) True Negative (TN) 

 
 
model’s performance is confusion matrix, accuracy, 
precision, recall, and F1-score. This function helps 
understand how well the model predicts each class, 
especially when working with imbalanced datasets. 
    A confusion matrix is a tool employed for the evaluation 
of the classification model’s performance, mainly to  
understand how well the model makes predictions for each 
class. It provides a visual representation of the true positives, 
true negatives, false positives, and false negatives, thus 
facilitating a more profound evaluation of the model's 
performance. The confusion matrix has four main 
components, as shown in Table 1. 
    The accuracy of a model is the percentage of correctly 
predicted outcomes out of the total number of predictions 
made. On the other hand, precision gauges the capacity of 
the model to predict the positive class accurately. 
Conversely, the recall metric is employed to evaluate the 
model's capacity to identify all positive instances from the 
total number of positive instances. The F1-score, which is 
the harmonic mean of precision and recall, gives a 
comprehensive evaluation by considering the balance 
between precision and recall. The aforementioned metrics 
can be calculated using Eqs. 5, 6, 7, and 8, with True 
Positives (TP), True Negatives (TN), False Positives (FP), 
and False Negatives (FN). 
 

                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                     (5) 

 

                                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
                               (6) 

 
 

                          𝐹ଵ = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟
                          (7)  

 
3. RESULTS AND DISCUSSION 
 

3.1 Geological Conditions and Interpretation 
    The research location is in the Sombaopu Sub-district, as 
the Ujung Pandang geological map sheet indicates the area 
encompasses two primary geological formations: the Tpbv 
formation (Baturappe – Cindakko Volcanic Rock) and the 
Qac formation (Coastal Quarter Alluvium). The Qac 
formation comprises gravel, sand, clay, silt, and coral 
limestone, typically formed in river, beach, and deltaic 
environments. Alluvial deposits primarily stem from rock 
pieces sourced from the Lompobattang volcano. Conversely, 
the Tpbv formation is distinguished by lava, breccia, tuff, 
and conglomerate. The geological map sheet for Ujung 
Pandang is illustrated in Fig. 2 (Sukamto and Supriatna, 
1982). 
 
 
 

 

     
                            Fig. 2. Ujung Pandang geological map 
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Fig. 3. The integration of resistivity, CPT, and soil type dataset at point 4 

 
    The integration of geoelectrical and geotechnical 
approaches enhances the understanding of subsurface 
conditions. A comparison of the resistivity value, cone 
resistance data, sleeve friction, and soil type in Fig. 3 
indicates the emergence of data consistency at that depth. 
The resistivity and cone resistance values increase at 8–12 
m depth. The USCS system categorizes various soil types 
displayed at different depths. These include Sandy Silt (ML) 
at 0–2 m, Poorly Graded Sand (SP) at 2–6 m and 9–10 m, 

Sandy Lean Clay (CL) at 7–8 m, and Silty Sand (SM) at 11–
12 m. 
     A statistical summary of the dataset is presented in Table 
2, organized into 272 rows and five columns. As 
demonstrated in Fig. 4., the frequency of soil type 
distribution in the dataset is illustrated. The distribution 
analysis showed that SP had the highest frequency and 
represented more than 50% of the dataset. The lowest 
frequency is the ML type, indicating an unbalanced dataset. 

 
Table 2. Statistical summary of the datasets 

Parameter Mean Median Min Max Range 
ρ (Ω.m) 2.0 x 102 8.6 x 101 6.0 1.3 x 103 1.3 x 103 
qc (Pa) 4.9 x 106 3.5 x 106 7.9 x 105 1.5 x 107 1.5 x 107 
fs (Pa) 4.6 x 104 3.3 x 104 6.6 x 103 5.3 x 105 5.3 x 105 
Rf (%) 1.2 8.0 x 101 0.149 1.2 x 101 1.2 x 101 
Tf (N/m) 2.6 x 105 2.4 x 105 8.0 x 103 7.7 x 105 7.6 x 105 

 

                                                                                           
Fig. 4. Distribution of soil types considered for machine learning models 



International Journal of Applied Science and Engineering 
 

 
Nurhasanah et al., International Journal of Applied Science and Engineering, 22(1), 2024428 

 

 
https://doi.org/10.6703/IJASE.202503_22(1).006                                                                                                                    6 
                                                                                                                        

3.2 Performance on Individual Data Features 
3.2.1 Resistivity Data 
    The performance of the XGBoost, RF, and KNN 
algorithms in soil type classification was evaluated using 
resistivity data. The findings of the machine learning 
models are exhibited and examined through a confusion 
matrix and an assortment of performance metrics, including 
accuracy, precision, recall, and the F1-score. The 
aforementioned metrics can be observed in Fig. 5 and Table 
3. As demonstrated by the confusion matrix in Fig. 5, the 
KNN algorithm exhibits a higher misclassification rate than 
both Random Forest and XGBoost, suggesting that its 
performance may be less robust for the given dataset. In 
contrast, the Random Forest model demonstrates relatively  
 

 
 
strong classification accuracy with moderate 
misclassification rates, outperforming KNN. XGBoost, 
however, achieves the fewest misclassifications, exhibiting 
superior classification performance and accuracy. 
    The accuracy values for all three algorithms are relatively 
low, suggesting limited performance on the resistivity 
dataset (Table 3). KNN achieved the highest accuracy at 
0.62, outperforming both XGBoost and RF. All models 
exhibit low precision, recall, and F1 scores, indicating they 
struggle with several classes. The weighted average, which 
accounts for class support, scores higher than the macro 
averages, suggesting that the models perform better on 
larger classes but encounter difficulties with smaller ones. 

 

  
Fig. 5. Confusion matrix of machine learning model based on resistivity data: (a) KNN; (b) RF; (c) XGBoost 

 
Table 3. The classification report of the KNN, RF, and XGBoost algorithms was assessed using resistivity data 

Classification report of KNN, RF, and XGBoost Algorithm 
Model  Precision Recall F1-score Support 

KNN 

SP 0.61 0.82 0.70 28 
SM 0.40 0.40 0.40 5 
ML 1.00 0.30 0.46 10 
CL 0.67 0.50 0.57 12 

Accuracy -   - 0.62 55 
Macro avg 0.67 0.51 0.53 55 

  Weighted avg 0.67 0.62 0.60 55 

RF 

SP 0.65 0.79 0.71 28 
SM 0.38 0.60 0.46 5 
ML 0.67 0.40 0.50 10 
CL 0.57 0.33 0.42 12 

 Accuracy -   - 0.60 55 
Macro avg 0.57 0.53 0.52 55 

  Weighted avg 0.61 0.60 0.59 55 

XGBoost 

ML 0.60 0.30 0.40 10 
SP 0.69 0.86 0.76 28 
CL 0.58 0.58 0.58 12 
SM 0.67 0.40 0.50 5 

 Accuracy -   - 0.60 55 
Macro avg 0.63 0.54 0.56 55 

  Weighted avg 0.65 0.65 0.63 55 
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3.2.2 Cone Penetration Test Data 
    The performance of the XGBoost, RF, and KNN 
algorithms in soil type classification was evaluated by 
analyzing CPT data. The predictive capabilities of the 
models are generally satisfactory, with Class SP and Class 
SM demonstrating consistent accuracy across all three 
models (Fig. 6). The KNN algorithm has the highest error 
rate among the models, struggling particularly with 
distinguishing between the SP and SM classes. Random 
Forest outperforms KNN, with fewer misclassifications and 
strong performance overall, although it faces some 
difficulty between the SM and ML classes. XGBoost leads 
with the fewest errors and the most reliable classification 
results across all classes, providing the most robust 
performance for this dataset. 

    As illustrated in Table 4, all algorithms enhanced 
performance when evaluated on CPT data, with RF 
attaining the highest level of accuracy. XGBoost exhibited 
superior performance in more extensive classes, while KNN 
exhibited the lowest accuracy. The minimal discrepancy 
between macro and weighted averages suggests that 
Random Forest effectively addresses class imbalances 
across smaller and larger classes. XGBoost exhibited 
superior performance in classes with more support, while 
KNN continued to demonstrate low precision and recall, as 
evidenced by its suboptimal macro averages. The weighted 
averages for KNN are higher, indicating better performance 
on larger classes

 

 

Fig. 6. Confusion matrix of machine learning model based on CPT data: (a) KNN; (b) RF; (c) XGBoost 
 

Table 4. The classification report of the KNN, RF, and XGBoost algorithms was assessed using CPT data 
Classification report of KNN, RF, and XGBoost Algorithm 

Model    Precision Recall F1-score Support 

KNN 

SP 0.70 0.90 0.79 29 
SM 1.00 0.69 0.82 13 
ML 0.50 0.40 0.44 5 
CL 0.80 0.50 0.62 8 

    Accuracy           -         - 0.75 55 
   Macro avg 0.75 0.62 0.67 55 

   Weighted avg 0.77 0.75 0.74 55 

RF 

SP 0.87 0.90 0.88 29 
SM 1.00 0.92 0.96 13 
ML 0.67 0.80 0.73 5 
CL 0.86 0.75 0.80 8 

   Accuracy   -   - 0.87 55 
  Macro avg 0.85 0.84 0.84 55 
Weighted avg 0.88 0.87 0.87 55 

XGBoost 

ML 0.62 1.00 0.77 5 
SP 0.92 0.83 0.87 29 
CL 0.70 0.88 0.78 8 
SM 1.00 0.85 0.92 13 

     Accuracy    -    - 0.85 55 
  Macro avg 0.81 0.89 0.83 55 

  Weighted avg 0.88 0.85 0.86 55 
 



International Journal of Applied Science and Engineering 
 

 
Nurhasanah et al., International Journal of Applied Science and Engineering, 22(1), 2024428 

 

 
https://doi.org/10.6703/IJASE.202503_22(1).006                                                                                                                    8 
                                                                                                                        

3.3 Performance of Integrated Data 
    The present study utilized the integration of resistivity 
and CPT data to assess how combining these datasets 
enhances the algorithms' predictive performance, as 
demonstrated in Fig. 7. KNN has the highest 
misclassification rate, requiring further optimization, 
especially for distinguishing similar classes. Random Forest 
performs well with high accuracy and few 
misclassifications, outperforming other models. XGBoost, 
similar to Random Forest in accuracy, excels in 
differentiating classes, yielding minimal errors and robust 
performance. The results are summarised in Table 5. The 
random forest model outperforms the other algorithms in 
predicting soil types based on resistivity and CPT data, 
achieving an accuracy of 93%. In comparison, the XGBoost 
model achieves an accuracy of 91%, while the KNN model 

reaches 75% and exhibits many misclassifications. RF also 
leads in both macro averages and weighted averages, 
demonstrating robust accuracy and consistent performance 
across all classes. This makes it particularly effective for 
datasets with imbalanced class distributions. 
 

3.4 A Comparison of Machine Learning Models’ 
Performance 

    The comparative analysis of algorithms across all 
datasets reveals clear distinctions in their performance for 
soil type classification. The comparison highlights the 
performance differences among the three algorithms 
(XGBoost, Random Forest, and KNN) and the impact of 
utilizing different data types. Fig. 8 illustrates each 
algorithm's accuracy, and Figs. 9, 10, and 11 present their 
precision, recall, and F1 score, respectively. 

 

                   
Fig. 7. Confusion matrix of machine learning model based on resistivity and CPT data: (a) KNN; (b) RF; (c) XGBoost 

 
Table 5.  Classification report of the KNN, RF, and XGBoost algorithms was assessed using resistivity data and CPT data 

Classification report of KNN, RF, and XGBoost Algorithm 
Model  Precision Recall F1-score Support 

KNN 

SP 0.70 0.90 0.79 29 
SM 1.00 0.69 0.82 13 
ML 0.50 0.40 0.44 5 
CL 0.80 0.50 0.62 8 

Accuracy - - 0.75 55 
Macro avg 0.75 0.62 0.67 55 

Weighted avg 0.77 0.75 0.74 55 

RF 

SP 0.90 0.97 0.93 29 
SM 1.00 1.00 1.00 13 
ML 1.00 0.80 0.89 5 
CL 0.86 0.75 0.80 8 

Accuracy - - 0.93 55 
Macro avg 0.94 0.88 0.91 55 

Weighted avg 0.93 0.93 0.93 55 

XGBoost 

ML 0.71 1.00 0.83 5 
SP 0.93 0.90 0.91 29 
CL 0.88 0.88 0.88 8 
SM 1.00 0.92 0.96 13 

Accuracy - - 0.91 55 
Macro avg 0.88 0.92 0.90 55 

Weighted avg  0.92 0.91 0.91 55 
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Fig. 8. The graph of accuracy machine learning model based on resistivity and CPT data 

 
    As shown in Fig. 8, RF model consistently outperformed 
the other algorithms across all three datasets, achieving the 
highest accuracy in both Set 2 (CPT data) and Set 3 
(combined resistivity and CPT data). The XGBoost model 
followed closely, demonstrating slightly varying accuracy 
values (green). In contrast, the KNN model achieved the 
highest accuracy with the resistivity dataset but performed 
poorly with both the CPT and combined datasets (blue). 
    The analysis revealed that all three algorithms exhibited 

relatively low accuracy when applied to the resistivity 
dataset alone, indicating limited predictive capability. 
However, performance improved when using the CPT 
dataset, and the integration of both resistivity and CPT data 
further enhanced the performance of the random forest and 
XGBoost models. In contrast, KNN showed no substantial 
improvement with the combined dataset, suggesting that 
including resistivity data did not notably benefit its 
predictive performance. 

 

                               
Fig. 9. The graph of precision machine learning model based on resistivity and CPT data 
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Fig. 10. The graph of recall machine learning model based on resistivity and CPT data 

 

                               
Fig. 11. The graph of F1-score machine learning model based on resistivity and CPT data 

 
    As illustrated in Fig. 9, the RF algorithm exhibits superior 
precision stability across most classes. The XGBoost 
algorithm shows a slight precision discrepancy, while the 
KNN algorithm demonstrates the lowest precision. These 
findings suggest that both RF and XGBoost are proficient 

in predicting positive classes and reducing false positives. 
    Fig. 10 highlights that XGBoost achieves high recall 
across most classes, while RF demonstrates superior recall 
for more prominent classes (SP) across various datasets. In 
contrast, KNN shows the lowest recall in nearly all classes. 
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This suggests that XGBoost excels in class recognition, RF 
is particularly effective at identifying larger classes, and 
KNN encounters difficulties in class recognition. 
    As shown in Fig. 11, Random Forest achieves the highest 
F1-score for most of its primary classes in both the CPT and 
combined datasets, with XGBoost following closely, albeit 
with a slight difference. In contrast, KNN exhibits the 
weakest performance. These results indicate that RF and 
XGBoost maintain a more balanced performance, striking a 
favorable equilibrium between prediction accuracy and 
class detection. Conversely, KNN demonstrates limited 
proficiency in class prediction and detection, reflecting 
challenges in capturing the complexity inherent in the CPT 
and combined datasets. 
    This analysis shows that using various data types, the RF 
and XGBoost algorithms outperform KNN in soil type 
classification. Random Forest consistently delivers the best 
results in accuracy, precision, recall, and F1-score, followed 
by XGBoost, which provides highly competitive results. 
While KNN performs reasonably well with the resistivity 
dataset, it performs poorly than other datasets and struggles 
with handling more complex data. Therefore, for datasets 
involving combined resistivity and CPT data, Random 
Forest and XGBoost are recommended as the preferred 
algorithms for soil type classification. 
    The analysis based on the impact of utilizing different 
data types revealed that all three algorithms had relatively 
low accuracy, precision, recall, and F1-scores when applied 
to the resistivity dataset alone, indicating limited predictive 
capability. However, performance improved with the CPT 
dataset, and integrating resistivity and CPT data further 
enhanced the performance of XGBoost and Random Forest. 
KNN showed no significant improvement with integrated 
data. The combination of resistivity and CPT datasets, 
which provide complementary information from both 
datasets, such as mechanical soil properties and resistivity 
measurements, markedly improved predictive performance 
and classification precision, demonstrating the advantages 
of leveraging multiple data sources. The integration of CPT 
with resistivity data allows for a more nuanced 
understanding of sediment types, as shown by Goebel and 
Knight, who utilized co-located CPT and electrical 
resistivity measurements to classify sediment types into 
coarse and fine-grain-dominated the materials (Goebel and 
Knight, 2021). This resistivity-to-sediment-type 
transformation captures the inherent uncertainties 
associated with variable water salinity and content, thereby 
enhancing the reliability of subsurface assessments. This 
approach aligns with the emphasized need for a 
comprehensive understanding of soil liquefaction potential 
by integrating both geotechnical and geophysical data, 
which allows for a more accurate evaluation of spatial 
distributions and induced surface settlements (Yang et al., 
2023). Moreover, Duffy et al. utilized CPT parameters in 
conjunction with gradient boosting methods to refine the 
assessment of soil compressibility, underscoring the 
importance of integrating diverse datasets for improved 

predictive modeling (Duffy et al., 2020).   
    Although the integration of resistivity and CPT data 
substantially improved classification accuracy across all 
algorithms, class imbalance and the limited size of the 
dataset may have impacted the predictions and limited 
generalizability. Larger datasets encompassing a broader 
range of soil conditions would allow for a more robust 
evaluation. The poor performance of KNN suggests it is 
susceptible to high dimensionality and noise within the 
integrated dataset, posing a potential challenge for practical 
applications. 
 
4. CONCLUSION 

 
    This research highlights that RF and XGBoost 
outperform KNN in soil type classification, with RF 
achieving the best accuracy, precision, recall, and F1-score 
results. While KNN performs well with the resistivity 
dataset, it struggles with other and more complex data. 
Integrating resistivity and CPT data enhances the 
performance of RF and XGBoost, while KNN shows no 
significant improvement. These findings emphasize 
enhancing analytical techniques' predictive accuracy and 
efficiency by utilizing the RF and XGBoost algorithms and 
integrating diverse data types, such as resistivity and CPT. 
This has practical implications for geotechnical applications, 
such as construction planning, foundation design, and 
environmental risk mitigation. 
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