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ABSTRACT 
 

    Streamflow prediction is crucial for effective water resource management and flood 
prediction. Therefore, this study aims to predict streamflow within the Klang river 
catchment. Two machine learning approaches, namely artificial neural network (ANN) 
and support vector machine (SVM), were employed to forecast streamflow within the 
Klang river catchment. The performance of each model was evaluated using mean 
absolute error (MAE), root mean square error (RMSE), and percentage error. SVM 
outperformed ANN in streamflow prediction, achieving the lowest values of MAE, 
RMSE and percentage error, recorded as 7.23, 9.03 and 19.24, respectively. The model 
was then used to run the future scenarios, under two shared socioeconomic pathways 
(SSPs), which are SSP2-4.5 and SSP5-8.5, from coupled model intercomparison project 
phase 6 (CMIP6). SSP5-8.5 displays greater fluctuations than SSP2-4.5. This heightened 
variability evident in SSP5-8.5 can be attributed to its premise of rapid population 
expansion, significant technological advancements, and inadequate measures to address 
environmental issues. Consequently, these factors contribute to more frequent 
occurrences of extreme climate events. 
 
Keywords: Artificial neural network, Climate model, CMIP6, Socioeconomic pathway, 
Streamflow prediction. 
 

 
1. INTRODUCTION 
 

1.1 Background of the Study  
    Flooding is the most common, geographically widespread, and devastating natural 
disaster worldwide. In the twenty-first century, flooding is the most pressing issue due 
to climate change and growing urbanization. The urbanization process dramatically 
expands the impermeable paving area, thus increasing total runoff and flood risk 
(Danumah et al., 2016; Dang and Kumar, 2017). Besides, climate change will intensify 
the frequency and magnitude of rainfall increasing ocean temperatures can lead to 
increased water evaporation into the atmosphere, resulting in more moisture saturated air 
flowing over land and converging into storm systems. Consequently, heavy rainfall is the 
main factor in causing floods. Climate change, especially temperature and rainfall 
change, has a significant effect on flood and streamflow. Therefore, climate change 
projections are essential to assess the future variation in the hydrologic cycle 
(Teutschbein and Seibert, 2012; Chai et al., 2024). The climate model can be used to get 
the projection of future data like precipitation, humidity, temperature, wind speed, 
atmospheric pressure and others to predict the impact on streamflow patterns. Coupled 
model intercomparison project phase 6 (CMIP6) is one of the most common sources (Jha 
and Gassman, 2014; Mesgari et al., 2022). 
    On the other hand, using AI models has substantially improved accuracy and cost 
effectiveness in simulating streamflow and flooding (Ghose et al., 2022). AI models, 
such as artificial neural networks (ANN), support vector machines (SVM) and adaptive 
neuro-fuzzy inference systems (ANFIS), have demonstrated favorable outcomes in the
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streamflow prediction (Chin et al., 2019; Saraiva et al., 
2021). These AI models require historical data to 
comprehend the interconnections between input factors like 
temperature, humidity, precipitation, wind speed and land 
use with streamflow. It should be trained with several 
percentages of data before it can reliably predict future 
streamflow. Hence, these AI models can manage nonlinear 
interaction with high accuracy. The occurrence and severity 
of flood events are significantly influenced by climatic 
changes, which are strongly related to the specific climate 
scenario (Arnell and Gosling, 2016; Deng et al., 2019).  

 

1.2 Problem Statement  
    Despite the growing application of hydrological models 
and climate projections, predicting future streamflow under 
changing climate conditions remains a challenge. 
Conventional models rely on simplified assumptions and 
may fail to capture the non-linear relationships among 
meteorological parameters, land use changes, and 
hydrological responses (Soo et al., 2022; Chai et al., 2025). 
Additionally, climate change introduces uncertainties that 
complicate long term flood risk assessment (Deng et al., 
2021; Liu et al., 2024) while, climate models like CMIP6 
provide future climate projections, their direct application 
to streamflow prediction requires robust modelling 
techniques. Machine learning approaches, such as ANN and 
SVM, have demonstrated promising results in handling 
complex, nonlinear data relationships (Loh et al., 2021; Yao 
et al., 2021; Chin et al., 2023). However, a comprehensive 
assessment of their performance in streamflow prediction, 
especially under different climate change scenarios, is still 
lacking.  

 

1.3 Research Motivation  
    Flooding is one of the most devastating natural disasters 
worldwide, with increasing frequency and intensity due to 
climate change and urbanization. The expansion of 
impervious surfaces in urban areas exacerbates flood risks 
by increasing surface runoff. Additionally, rising global 
temperatures intensify precipitation patterns, further 
impacting streamflow and flood occurrences. Traditional 
hydrological models often struggle to accurately capture the 
complex interactions between climate variables and 
streamflow patterns. However, the integration of advanced 
machine learning (ML) techniques with climate projections 
can enhance predictive accuracy (Soo et al., 2024). This 
study is motivated by the need to develop a reliable 
streamflow prediction model that can provide accurate 
forecasts under different climate change scenarios, thereby 
improving flood risk management and water resource 
planning. 

 

1.4 Research Objective  
    This research addresses the research gap by integrating 
CMIP6 climate projections with machine learning models 
to improve streamflow prediction accuracy in the Klang 
river catchment. The research output is expected to provide 

essential data for understanding climate change, the 
likelihood of extreme weather events, and the adverse 
effects. By integrating machine learning techniques with 
future climate models, the study likely enhances the 
accuracy of streamflow predictions. The findings will aid in 
better flood risk mitigation strategies and sustainable water 
resource management. 

 

1.5 Significance of Study 
    This study integrates CMIP6 climate projections with 
machine learning techniques to enhance the accuracy of 
streamflow predictions under different climate change 
scenarios. It evaluates the performance of various machine 
learning models, such as ANN and SVM, in capturing the 
nonlinear relationships between climate variables and 
streamflow. Additionally, the research investigates the 
impact of climate change, induced uncertainties on 
streamflow prediction, providing insights into model 
robustness and reliability. A case study is conducted on the 
Klang river catchment to demonstrate the practical 
application of the proposed methodology in flood risk 
assessment. By developing a data driven framework, this 
study supports policymakers and water resource managers 
in formulating effective flood mitigation and water resource 
planning strategies. Furthermore, the findings contribute to 
advancing climate resilient hydrological modelling, 
offering a novel approach that accounts for future climate 
variability and enhances urban resilience. 

 
2. LITERATURE REVIEW 
 
    In recent decades, researchers have used various types of 
climate models to simulate both historical and future 
climate conditions. A climate model refers to a 
computational representation of the Earth's climate system, 
encompassing many components such as the atmosphere, 
ocean, land, and ice. Climate models are of the highest 
priority in comprehending the substantial effects of climate 
change on diverse social service aspects. They are utilized 
to simulate the historical and future changes in climate, 
encompassing both recent and distant periods, as well as 
aim to forecast the potential evolution of climate under 
several conceivable future human development scenarios 
and greenhouse gas emissions (Schoeman et al., 2023). The 
outputs generated by the regional climate models are used 
as direct inputs for hydrological models, enabling the 
simulation of the effect of climate on the water cycle at the 
catchment scale (Tootoonchi et al., 2023). Therefore, it has 
been widely used to extract meteorological data to simulate 
and predict streamflow. Climate models are broken into 
three categories, including global climate models (GCMs), 
regional climate models (RCMs) and earth system models 
(ESMs). GCMs are mathematical models that can 
accurately describe the physical processes occurring in the 
atmosphere and ocean. These models are utilized to 
simulate and predict the reaction of the global climate to the 
ongoing increase in greenhouse gas emissions (Saha and 
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Agrawal, 2020). RCM is a technique that combines regional 
characteristics into GCMs with lower resolution to predict 
large-scale variability (Saha and Agrawal, 2020). ESM has 
a broader range of components than GCM, as it includes 
physical, chemical and biological processes (Flato, 2011).  
    The coupled model intercomparison project (CMIP) is a 
global initiative coordinated by the working group on 
coupled modelling (WGCM) under the world climate 
research programme (WCRP). It is designed to enhance the 
understanding of past, present, and future climate variability 
and change by comparing multiple climate models from 
research institutions worldwide. The primary goal of CMIP 
is to assess the performance of global climate models by 
conducting standardized experiments that integrate 
atmospheric, oceanic, land surface, and sea ice components. 
This enables researchers to evaluate uncertainties in climate 
projections, improve model accuracy, and support climate 
impact studies across different regions and timescales 
(Ghose et al., 2022). 
    The latest phase of this initiative, CMIP6, represents a 
significant advancement over its predecessor, CMIP5, by 
incorporating new experimental designs, higher spatial 
resolution, and improved representation of dynamic climate 
processes. Unlike previous phases, CMIP6 adopts the 
shared socioeconomic pathway (SSP) framework rather 
than the representative concentration pathway (RCP) based 
emission scenarios. The SSP framework allows for a more 
comprehensive assessment of future climate change by 
integrating socioeconomic factors such as population 
growth, economic development, and technological 
advancements alongside greenhouse gas emissions. This 
approach facilitates a better understanding of how human 
activities influence climate change and provides more 
robust projections for policymakers and researchers (Chen 
et al., 2020). 
    Moreover, studies such as the Xin et al. (2020) and Ayugi 
et al. (2021) have demonstrated that CMIP6 outperforms 
CMIP5 in terms of model skill and predictive accuracy. The 
improved spatial resolution in CMIP6 models allows for 
more detailed simulations of regional climate patterns, 
extreme weather events, and ocean-atmosphere interactions. 
Additionally, the inclusion of enhanced physical processes, 
such as cloud dynamics, land-atmosphere feedback, and 
ocean circulation, contributes to more reliable climate 
projections. These advancements make CMIP6 a crucial 
tool for climate impact assessments, hydrological modeling, 
and the development of mitigation and adaptation strategies 
in response to global climate change. 
    In addition, machine learning techniques have become 
prevalent across various fields (Karim et al., 2017; Karim et 
al., 2019; Wang et al., 2022), with particular emphasis on 
the hydrological domain (Liu et al., 2023; Loh et al., 2024). 
Akbarian et al. (2023) applied multiple linear regression 
(MLR), eXtreme gradient boosting, (XGBoost), ANN, 
support vector regression (SVR) and random forest (RF) to 
forecast the streamflow using precipitation, runoff and 
temperature in Iran. Meanwhile, Achite et al. (2023) used 

the rainfall and runoff as the input while developing the 
ANFIS model for drought prediction in the Wadi Mina 
Basin. On the other hand, SVM is also one of the common 
models in soil moisture estimation. Ahmad et al. (2010), 
through integrating precipitation and normalized difference 
vegetation index, developed a SVM model to predict the 
soil moisture in the Colorado River Basin. 

 
3. METHODOLOGY 

 

3.1 Study Area  
    The focus of this study is centered on the Klang river 
catchment. The geographical location of the Klang river 
catchment includes Selangor and Kuala Lumpur. It has a 
length of 120 km and drains a basin of about 1288 km2 
(Kandari et al., 2018). Klang river catchment has 11 major 
tributaries, including Batu river, Gombak river, Kerayong 
river, Keruh river, Damansara river, Penchala river, Kuyoh 
river, and Ampang river. Eventually, it flows into the Straits 
of Malacca. Moreover, Klang Gates Dam and Batu Dam are 
two prominent dams located upstream of Klang river 
catchment, which supply water to the residents of Klang 
valley and serve as a means of flood control. The average 
amount of rain that falls in the area each year is between 
1900 and 2600 mm. 
 

 
Fig. 1. Location of Klang river catchment in Selangor 

  
    Fig. 1 shows the location of the Klang river catchment at 
Selangor. Urbanization is taking place because of the rapid 
increase in population in Klang valley, and this is done to 
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avert a lack of dwellings. Because of this, the riverbed of 
the Klang river is becoming shallower as a result of the fact 
that it already contains more than 50% urbanization (Hong 
and Hong, 2016). Hence, a flood occurs frequently 
downstream of the Klang river catchment, which is the city 
of Klang. Consequently, accurate streamflow predictions at 
the Klang river catchment are paramount in mitigating flood 
risks and effectively managing water distribution. 
 

3.2 Data Acquisition   
    Historical rainfall data and streamflow data from 2011 to 
2020 were acquired from the department of irrigation and 
drainage (DID), Malaysia based on the rainfall and 
streamflow stations, as shown in Fig. 2.  
    Weather parameters included in this study were air 
temperature, wind speed and humidity. Historical data such 
as air temperature, wind speed, and humidity were retrieved 
from the NASA Giovanni portal. The NASA Giovanni 
portal is a web-based platform that offers users access to an 
extensive array of Earth science data. It provides tools for 
visualizing, analyzing, and exploring diverse environmental 
parameters and phenomena. Users can access satellite, 
model, and observational data from NASA and other Earth-
observing satellites and instruments through a user-friendly 
interface provided by the portal. 
 

 
Fig. 2. Location of rainfall and streamflow stations 

     

    Apart from that, future data were extracted from the 
CMIP6 climate projections model at the copernicus climate 
change service portal. Additionally, CMIP6 is considering 
different scenarios of greenhouse gas emissions to forecast 

potential alterations in the Earth's climate in the coming 
years. Future weather parameters data were obtained under 
two scenarios, which are SSP2-4.5 and SSP5-8.5. SSP2-4.5 
demonstrates the intermediate segment within the range of 
potential future forcing pathways. It has a moderate degree 
of global development and economic progress, 
characterized by certain advancements in living conditions 
and the elimination of poverty. Besides, the radiative 
forcing value of 4.5 W/m2 signifies the radiative imbalance 
resulting from human activities, mainly the emission of 
greenhouse gases into the Earth's atmosphere. This 
particular level indicates a situation wherein the 
concentrations of greenhouse gases result in a rise in the 
average world temperatures by around 2.6 to 3.2 degrees. 
SSP5-8.5 assumes a hypothetical global setting whereby 
economic and population expansion persistently depend on 
fossil fuels, leading to a substantial increase in energy 
requirements and the consequent release of greenhouse gas 
emissions. Therefore, it results in significantly increased 
concentrations of greenhouse gases with the radiative 
forcing level of 8.5 W/m2. This level refers to a potential 
situation where greenhouse gas emissions persistently 
escalate without substantial attempts to mitigate them, 
resulting in a considerable rise in world average 
temperatures of more than 4°C. 

 

3.3 Data Pre-processing    
    Effective data pre-processing is essential to ensure 
accurate and meaningful results from machine learning 
models. Climate data from meteorological stations may 
contain missing values due to instrument malfunctions, 
power outages, or human errors during data collection. To 
maintain data quality, it is crucial to verify the completeness 
of the dataset before analysis. Therefore, rain gauge and 
streamflow data from DID were carefully screened. Rain 
gauge stations with more than 10% missing data during the 
study period were excluded from the analysis. However, if 
the missing data was less than 10% of the total dataset, the 
arithmetic mean method Equation (1) was used for 
imputation (Chai et al., 2024). This method is suitable when 
the rain gauges are evenly distributed, and individual 
measurements show minimal deviation from the average. 
Given the random nature of the missing data and its weak 
correlation with other variables, the arithmetic mean 
approach was deemed appropriate. In this process, missing 
values were replaced with the mean precipitation 
measurements from surrounding stations. The workflow for 
data screening and imputation is illustrated in Fig. 3. 

 

                                 𝑃௧ =
∑ ௥೔

೙
೔సభ

௡
                         (1) 

 
    where Pt is the estimated value of the missing rainfall at 
the target station, n is the number of stations, i is the index 
of data and ri is the observed rainfall neighboring station. 
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Fig. 3. Data screening and filling procedure

 
3.4 Model Development   
    The streamflow prediction model was developed using 
rainfall, air temperature, wind speed and humidity as input, 
while the streamflow acts as the output. The collected data 
was then divided into different training-to-testing ratio of 
80:20, 70:30 and 60:40 for machine learning based model 
development. Two machine learning approaches were 
applied in this study, which are ANN and SVM. 
    ANN models are biologically inspired, and the creation 
of these models began with an interest in comprehending 
how the brain completes tasks. It consists of three different 
layers namely, input layer, hidden layer and output layer 
which are built with nodes. Feed forward neural network 
(FFNN) model is the most popular ANN (Adnan et al., 
2017). The signal is transmitted sequentially via each layer, 
and if the output layer does not achieve the desired value, 
the error is propagated in the opposite direction. Based on 
the error, the model modifies the weights and thresholds in 
order to decrease the discrepancy between the predicted and 
observed values (Li et al., 2019). The fundamental aspect of 
training a neural network involves using backpropagation, a 
technique that adjusts the weights of the neural network 
based on the error rate observed in the previous iteration. 
The loss function is minimized based on the gradient 
descent method. 
    SVM is a feedforward networking method, much like 
ANN. Instead of creating a weight vector like the ANN, 
statistical learning with an SVM aims to measure the 
difference between a given target function f(x) and the 
output produced by the machine. SVM is frequently used 
for problems involving classification and regression. In this 
study, SVM for regression which is known as support vector 
regression (SVR) was used. SVR employs a kernel function 
to transform the input data into a higher-dimensional space, 
facilitating linear regression analysis. The choice of the 
kernel function is an important hyperparameter in SVR 
models that must be determined prior to their execution. The 
available kernel functions include the radial basis function 

 
 
(RBF), linear, polynomial, and sigmoid. In our study, RBF 
was chosen because it has high optimization efficiency and 
adaptability. The RBF kernel helps in capturing non-linear 
relationships between input features and target values. This 
kernel enables SVR to effectively model intricate patterns 
in the data that may not be linearly separable. 
 

3.5 Performance Evaluation    
    Machine learning models were evaluated and compared 
using MAE, RMSE and percentage error, to identify the 
best-performing model. MAE quantifies the average 
absolute difference between predicted and actual values in 
a dataset. It treats all errors equally, regardless of magnitude. 
A lower MAE value signifies greater model accuracy.  
 

                                   MAE =
∑|௬೔ି௫೔|

௡
                            (2) 

     
    Meanwhile, RMSE evaluates the discrepancy between 
predicted and actual values, giving greater emphasis to 
larger errors by squaring the differences before averaging. 
A lower RMSE value indicates higher accuracy, as it brings 
the predicted values closer to the actual ones. 
  

                               RMSE = ට
ଵ

௡
∑(𝑦௜ − 𝑥௜)²                   (3) 

 

    Besides, percentage error quantifies the accuracy of a 
measurement, estimation, or prediction relative to the actual 
or expected value. An optimal percentage error of zero 
signifies perfect accuracy, while lower values indicate 
greater precision in predictions or estimations. 
 

   Percentage error =
|்௥௨௘ ௩௔௟௨௘ି௉௥௘ௗ௜௖  ௩௔௟௨௘|

்௥௨௘ ௩௔௟௨௘
× 100%    (4) 

 

    where n is the number of data pairs, x is the observed 
variable and y is the predicted variable. 
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4. RESULTS AND DISCUSSION 
 

    The evaluation of training-to-testing data combinations 
was conducted and showcased through metrics such as 
RMSE, MAE, and percentage error. Lower error values 
indicate higher accuracy of the model. Table 1 shows the 
model comparison results of ANN and SVM with different 
combinations of training-to-testing ratios, which are 60:04, 
70:30, and 80:20. It was found that Model IV yielded the 
most favorable results with the lowest MAE, RMSE, and 
percentage error, which are 7.23%, 9.03%, and 19.24% 
respectively. Based on the study by Nguyen et al. (2021), a 
training and testing dataset ratio of 70:30 was considered 
the most optimal for training and validating the models. 
Therefore, this finding aligns with the research of other 
scholars. The superiority of SVM over ANN in this case is 
consistent with studies such as Otchere et al. (2018), which 
showed that SVM often outperforms ANN in hydrological 
prediction tasks due to its capacity to handle non-linear 
relationships with fewer computational requirements. 
    The best-performing model (Model IV) was then used to 
forecast the streamflow under SSP2-4.5 and SSP5-8.5 
scenarios. Future annual streamflow for SSP2-4.5 and 
SSP5-8.5 are displayed in Fig. 4.  
    Upon analyzing the overall trend, it is evident that SSP5-
8.5 exhibits higher fluctuations compared to SSP2-4.5 over 
ten years. This trend aligns with global projections from the 
IPCC (2023), which predict increased climate extremes 
under SSP5-8.5 due to rapid economic growth, high fossil 
fuel dependency, and limited climate policies. The rapid 
expansion of the population could accelerate deforestation 
or urbanization rates, driven by the demand for increased 
housing construction. These factors lead to high greenhouse 
gas emissions and more severe climate change impacts. As 
a consequence of the extreme impacts of climate change, 
such as increased frequency and intensity of heat waves, 
more severe storms, and increased sea level rise, streamflow 
fluctuates dramatically. On the other hand, SSP2-4.5 
exhibits a more consistent streamflow than SSP5-8.5 
because it assumes a more sustainable and environmentally 
responsible path.   
    Moreover, the inconsistency of streamflow overtime may 
be due to the occurrence of extreme climate events, for 
example, El Niño, La Niña, and Indian Ocean Dipole (IOD), 
which can alter the global precipitation intensity and 
frequency, air temperature, and atmospheric circulation 
patterns. According to Generoso et al. (2020), both El Niño 

and La Niña cause global changes in temperature and 
rainfall approximately every two to seven years.  Variations 
in temperature and rainfall patterns can impact streamflow, 
causing fluctuations and inconsistency over time. 
    In the case of SSP5-8.5, the peak streamflow occurred in 
2023 at 537.35 m3/s, while the lowest streamflow was 
recorded in 2021 at 517.64 m3/s. The streamflow exhibits a 
vast increase from 2021 to 2023, followed by a steady 
decline leading up to 2026. Subsequently, there is a gradual 
rise until a second peak is observed in 2028, reaching a 
reading of 536.75 m3/s, after which it declines once more. 
    In contrast with SSP5-8.5, SSP2-4.5 has the highest 
streamflow in the year 2021, with a value of 533.41 m3/s. 
However, in the year 2027, the streamflow hit a low point 
measured at 525.60 m3/s. The streamflow values are 
expected to decrease from the peak in 2021 to 2023, 
followed by a steady increase until 2025, before exhibiting 
a decreasing trend in 2027. Despite that, the streamflow 
from 2028 to 2030 shows relatively stable values. This 
pathway is associated with sustainable development and 
controlled emissions, echoing the findings of Khadka et al. 
(2023), who observed that less aggressive scenarios tend to 
produce less volatile hydrological behavior. 
    Upon analyzing the overall trend, it is evident that SSP5-
8.5 exhibits higher fluctuations compared to SSP2-4.5 over 
ten years. The increased variability observed in SSP5-8.5 
can be ascribed to its assumption of rapid population growth, 
substantial technological progress and limited efforts to 
mitigate environmental concerns. The rapid expansion of 
the population could accelerate deforestation or 
urbanization rates, driven by the demand for increased 
housing construction. These factors lead to high greenhouse 
gas emissions and more severe climate change impacts. As 
a consequence of the extreme impacts of climate change, 
such as increased frequency and intensity of heat waves, 
more severe storms, and increased sea level rise, streamflow 
fluctuates dramatically. On the other hand, SSP2-4.5 
exhibits a more consistent streamflow than SSP5-8.5 
because it assumes a more sustainable and environmentally 
responsible path. 
    Fig. 5 illustrates the monthly streamflow trends under the 
SSP2-4.5 scenario. The graph reveals a gradual increase in 
streamflow from January to May, followed by a steady 
decline until August, before experiencing a sharp rise 
towards the end of the year. The peak streamflow occurs in 
December, while the lowest point is observed in January. 

 
Table 1. Transfer the sensor log data into training data 

Model Type Training to testing ratio MAE RMSE Percentage error (%) 
I ANN 60:40 15.18 18.39 39.25 
II SVM 60:40 8.40 10.41 19.55 
III ANN 70:30 18.00 20.98 48.59 
IV SVM 70:30 7.23 9.03 19.24 
V ANN 80:20 8.94 11.07 24.63 
VI SVM 80:20 8.51 10.17 23.44 
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Fig. 4. Future annual streamflow under scenarios of SSP2-4.5 and SS5-8.5

     
This pattern aligns with Peninsular Malaysia’s seasonal 
climate variations. From January to May, the Northeast 
Monsoon brings heavy rainfall, particularly to the eastern 
regions, including Selangor, leading to increased runoff 
within the Klang river catchment. However, as the monsoon 
subsides, precipitation levels decrease, temperatures rise, 
and evapotranspiration intensifies, resulting in a decline in 
streamflow between May and August. Towards the year’s 
end, streamflow surges again with the onset of the rainy 
season. Under the SSP2-4.5 scenario, the highest predicted 
streamflow within the Klang River catchment is 55.04 m³/s 
in December 2024, while the lowest is 37.04 m³/s in January 
2024. Additionally, a notable dip occurred in August 2029, 
with streamflow recorded at 40.83 m³/s. This decline could 
be attributed to extreme weather events, such as prolonged 
dry spells leading to reduced rainfall within the study area. 
    On the other hand, Fig. 6 presents the monthly 
streamflow trends under the SSP5-8.5 scenario, which 
follows a comparable pattern to SSP2-4.5. Streamflow rises 
from January to May, declines until August, and then 

increases again. However, fluctuations under SSP5-8.5 are 
more pronounced, with the highest predicted streamflow 
reaching 57.04 m³/s in December 2027 and the lowest 
recorded at 35.63 m³/s in January 2027. The heightened 
variability in SSP5-8.5 can be attributed to the scenario’s 
assumption of more extreme climate change impacts, 
including intensified droughts, floods, and other 
hydrological extremes. Additionally, SSP5-8.5 accounts for 
increased deforestation and urbanization due to rapid 
population growth, further altering the hydrological cycle 
and contributing to greater fluctuations in streamflow.  
    The findings are in agreement with Tan et al. (2021), who 
demonstrated that high-emission scenarios lead to both 
higher peaks and lower troughs in streamflow due to 
intensified hydrological extremes. Moreover, the seasonal 
streamflow trends observed are also reflected in the work of 
Tiwari and Adamowski (2013), who emphasized the 
influence of local monsoon systems on streamflow behavior 
in Southeast Asia. 
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Fig. 5. Future monthly streamflow under scenarios of SSP2-4.5  
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Fig. 6. Future monthly streamflow under scenarios of SS5-8.5 

 
5. CONCLUSION 
 

This study aims to develop a streamflow prediction 
model using various machine learning techniques, including 
SVM and ANN, with different training-to-testing ratios 
such as 60:40, 70:30, and 80:20. The model incorporates 
weather parameters such as air temperature, relative 
humidity, wind speed, and rainfall. Subsequently, 
performance evaluation of the models was conducted 
through statistical analyses involving MAE, RMSE, and 
percentage error. Among six models, SVM with a training-
to-testing ratio of 70:30 yielded the best performance with 
the lowest value of MAE, RMSE, and percentage error 
recorded as 7.23%, 9.03%, and 19.23%, respectively. In the 
climate scenario assumption of SSP5-8.5, streamflow 
fluctuations are higher compared to SSP2-4.5. The 
maximum streamflow in SSP5-85 reaches 537.35 m3/s in 
2023, whereas in SSP2-4.5, it peaks at 533.41 m3/s in 2021. 
Conversely, the lowest streamflow in SSP5-8.5 is observed 
in 2021, with a value of 517.64 m3/s, while in SSP2-4.5, it 
occurs in 2027 at 525.60 m3/s. Future studies should focus 
on enhancing machine learning models for streamflow 
prediction in the Klang river catchment by incorporating 
several improvements. Extending training datasets with 
long-term climate trends can improve model accuracy. 
Developing hybrid models that integrate machine learning 
with hydrological models, such as SWAT, can further refine 
predictions. Including additional weather parameters like 
atmospheric pressure and solar radiation may enhance 
model performance. Advanced techniques, such as deep 
learning models like convolutional neural networks (CNNs), 
should be explored to capture complex hydrological 
patterns. Expanding the range of CMIP6 climate scenarios, 
including SSP1, SSP3, and SSP4, will provide a more 
comprehensive assessment of climate impacts. Lastly, 
evaluating spatial and temporal variations in streamflow at  
 
 

 
 
different scales and time intervals will improve the 
reliability of predictions for effective water resource 
management. 
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