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ABSTRACT 
 

    Real-time human activity recognition (HAR) is garnering attention across various 
fields, such as healthcare, fitness and sports, security and surveillance, occupational 
safety, smart environments, and more. This is largely attributed to the rapid development 
of mobile devices, which enable users to record human activity signals using 
accelerometers. In this study, we found that the recognition rates were poor when tri-
axial activity signals collected from accelerometers were directly fed into classifiers, 
including decision trees (DT), discriminant analysis (DA), logistic regression (LR), 
Naïve Bayes classifiers, support vector machines (SVM), ensemble learning (EL), and 
neural networks (NN). The recognition rates improved from 75% to 94% when the three-
axis signals were transformed into statistical signal features (SSF). Despite the 
improvement in accuracy, the increase in the number of input variables from 3 to 66 has 
burdened the computation time. Furthermore, a higher recognition rate is needed to have 
an effective decision making. Therefore, this study develops a novel feature engineering 
method by using genetic algorithm (GA) and exponentially weighted moving average 
(EWMA). The EWMA is not only used to capture the characteristics of time sequences 
derived from the activity signals but also to eliminate redundant SSFs. GA is employed 
to optimize EWMA weights for each SSF. The results demonstrate that the Ensemble 
Bagged Trees classifier, using the proposed GA-optimized EWMA features, achieves a 
testing recognition rate of 95.2% with a prediction time of less than 0.01 s, making it 
suitable for the field of real-time HAR. 
 
Keywords: Human activity recognition, Feature engineering, Statistical signal features, 
Exponentially weighted moving average, Genetic algorithm. 
 

 
1. INTRODUCTION 
 

With the development of technology, more and more people are using smartphones 
and wearable devices for personal exercise and health management. When applied in the 
medical field, human activity recognition (HAR) is a key area of artificial intelligence 
and machine learning. Machine learning methods such as deep learning and integrated 
models are further used to identify and classify activities through data collected by 
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various devices. Human activities can be accurately 
identified and classified. Machine learning techniques have 
significantly advanced HAR in recent years, especially in 
fields such as healthcare and human-computer interaction 
(Gumaei et al., 2019; Irfan et al., 2021; Khan et al., 2022). 
These methods enable the extraction of high-level 
knowledge from raw sensor inputs, allowing for precise 
identification of different activities. The fusion of machine 
learning methods, wearable technology and deep learning 
models provides more effective development for accurate 
HAR, and the use of sensor-equipped wearable devices and 
smartphones facilitates real-time monitoring of human 
activities (Devarakonda and Božić, 2022), contributing to 
the development of personalized healthcare systems and 
health monitoring. The integration of deep learning models 
has changed the way of analyzing large medical data sets 
and also provided new developments for health promotion 
(Purushotham et al., 2018). Therefore, a more effective 
prediction model of the deep learning model is proposed, 
which can further develop complex health promotion 
models suitable for individual users, and also help enhance 
public health and social well-being. 
    Due to the advancement of technology, wearable devices 
are equipped with sensors that can be used to collect, 
monitor and analyze users' physiological data, movement 
activities and location information. In the realm of HAR, 
sensors can be mainly divided into three categories: 
movement, environment and location. The movement 
sensors, including accelerometers, gyroscopes and gravity 
sensors can be utilized to track titling, shaking, rotating or 
swinging. The environment, such as barometer and 
thermometer can be used to monitor humidity, pressure and 
temperature. The location sensors like magnetometers can 
provide a device's location relative to a global reference 
point. 
    In this research, the accelerometer will be employed, as 
it detects the acceleration forces exerted on the device along 
the three physical axes (X, Y, and Z), capturing both 
movement and gravitational forces. If we can further 
analyze these large amounts of signals to find out the hidden 
correlations and patterns in users' daily activities, and then 
plan and provide relevant derivative health promotion 
service activities, only then can real value be generated for 
wearable devices. As the use cases of wearable devices 
increase, the value of the data generated becomes more and 
more valuable. Through big data analysis of users' general 
daily physical activity information, it can be used to 
improve the accuracy and reminder efficiency of physical 
activity and health promotion analysis. It is expected that in 
the future, people will use wearable devices to find out 
about health promotion, physical enhancement and medical 
care, and will bring greater contributions to the fields of 
public health and health promotion. 

Recent studies have focused on smartphone-based HAR 
using accelerometer data (Kwapisz et al., 2011; Zhang and 
Sawchuk, 2012; Bayat et al., 2014; Ortiz and Luis, 2015). 
In these studies, the authors employed various classification 

methods to analyze accelerometer data effectively. The 
primary classifiers used in their study include decision trees 
(DT), support vector machines (SVM), and k-nearest 
neighbors (KNN). For example, Zhang and Sawchuk (2012) 
employs DT, SVM, and KNN classifiers to effectively 
recognize human activities using data from wearable 
accelerometers in walk forward, walk left, walk right, go 
upstairs, go downstairs, jump up, run, stand, sit activities. 
Ortiz and Luis (2015), Bayat et al. (2014), and Kwapisz et 
al. (2011) also utilized DT, SVM, and KNN as classifiers, 
with a strong emphasis on feature extraction to enhance the 
performance of HAR using smartphone accelerometer data. 
Feature extraction from accelerometer signals is a crucial 
step in HAR. Miluzzo et al. (2008), Dengel et al. (2016), 
Figo et al. (2010), Kose et al. (2012),Siirtola and Röning 
(2012), Shoaib et al. (2013) Dengel et al. (2016),Yin (2016) 
and Hsu et al. (2015) employed Decision Trees and SVMs 
as classifiers, highlighting the importance of feature 
extraction in enhancing HAR performance using 
accelerometer data from smartphones and smartwatches. 
The findings of Dengel et al. (2016), Yin (2016), Hsu et al. 
(2015), and Shoaib et al. (2013) suggest that SVM generally 
achieved higher accuracy than DT, aligning with other 
studies that have demonstrated the superior effectiveness of 
SVM in activity recognition tasks. 
    In healthcare, high-accuracy HAR systems can 
significantly enhance decision-making by healthcare 
professionals. For example, accurately recognizing 
activities such as walking, sitting, or lying down can help 
assess a patient's mobility and recovery progress, leading to 
more informed treatment plans. In this study, eight 
classifiers—DT, discriminant analysis (DA), logistic 
regression (LR), Naïve Bayes classifier, SVM, ensemble 
learning (EL), and Neural Network (NN)—will be 
employed to recognize six activities: walking, going 
upstairs, going downstairs, standing, sitting, and lying down, 
based on accelerometer data. To build upon previous 
research, this study specifically integrates eight classifiers 
and improves the feature extraction method to enhance 
efficiency. Feature selection is pivotal in this process 
because it directly influences the effectiveness of the 
recognition system. By identifying the most pertinent 
features, it not only decreases computational load but also 
improves the accuracy of activity classification by removing 
redundant and irrelevant information. 
    The following features will be used as inputs for these 
classifiers and a thorough comparison will be provided in 
this study, including: 
(1) Original X, Y, Z three-axis data. 
(2) Statistical signal features (SSF), including mean, root 

mean square error (RMSE), autocorrelation, peak 
analysis, and time-frequency analysis. 

(3) GA-optimized EWMA features 
    The GA-optimized EWMA features are the proposed 
feature engineering method that takes the time sequence of 
the acquired data into consideration. In the past research, the 
characteristic of time sequence is ignored for analysis, 
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potentially leading to the low recognition accuracy. The 
EWMA assigns exponentially decreasing weights to past 
observations as it moves through time. This means that the 
most recent observations have the most influence on the 
average, while older observations have less impact. Thus, 
this study will apply the EWMA to the SSF to memorize the 
past observations. 
    The following issue needed to be addressed is the 
determination of EWMA weights for each SSF, as each SSF 
has different dynamics. Since GA can explore the entire 
search space by using a population of potential solutions, 
which reduces the risk of getting trapped in local optima, 
this study will use GA to search for the optimal EWMA 
weights for each SSF, aiming to maximize the true positive 
rate for each activity. 

This study is organized as follows: Section 2 introduces 
eight classifiers: DT, DA, LR, Naïve Bayes classifiers, 
SVM, EL, and NN. Section 3 presents the proposed GA-
optimized EWMA implementation and provides a 
comparison, and Section 5 offers the conclusion. 

 
2. LITERATURE REVIEW 

 

2.1 Decision Trees 
DT  is a widely used machine learning algorithm that 

utilizes a hierarchical, tree-like model for decision-making 
in classification and regression tasks (Quinlan, 1986). The 
algorithm recursively partitions data into subsets based on 
feature values, allowing for intuitive interpretation and 
visualization (Breiman et al., 1984). This tree-like structure 
allows for easy visualization and understanding of the 
decision-making process, making DT particularly valuable 
in various applications including HAR (Xiao et al., 2013). 
In the context of health promotion, decision trees can 
significantly enhance HAR by enabling the automatic 
identification and classification of physical activities 
performed by individuals. This capability is crucial for 
developing interventions aimed at promoting physical 
activity and improving overall health outcomes. For 
instance, decision trees can analyze data collected from 
wearable sensors to classify activities such as walking, 
running, or sitting, thereby providing insights into an 
individual's activity levels and patterns (Xiao et al., 2013). 
By accurately recognizing these activities, public health 
practitioners can tailor health promotion strategies to 
encourage more active lifestyles among specific 
populations (Sánchez and Skeie, 2018). Moreover, decision 
trees can be integrated into smart home environments to 
monitor the physical activities of older adults or individuals 
with disabilities. This application not only enhances safety 
by detecting falls or unusual inactivity but also supports the 
development of personalized health interventions that 
promote physical activity and independence (Sánchez and 
Skeie, 2018). The ability of decision trees to handle various 
types of data, including time-series data from sensors, 
makes them particularly suitable for HAR tasks, where the 

temporal aspect of activities is essential for accurate 
classification (Hendriks et al., 2019). Additionally, decision 
trees can be combined with other machine learning 
techniques, such as support vector machines or genetic 
algorithms, to improve classification performance and 
robustness in HAR applications (Chen et al., 2011; Li and 
Fan, 2014). This hybrid approach can lead to more accurate 
predictions and a better understanding of the factors 
influencing physical activity, ultimately informing public 
health initiatives aimed at enhancing community health and 
well-being. In summary, decision trees are a powerful tool 
for HAR offering a structured and interpretable method for 
analyzing physical activities. Their application in health 
promotion can lead to more effective interventions that 
encourage active lifestyles and improve health outcomes, 
particularly in vulnerable populations. 

 

2.2 Discriminant Analysis 
    DA is a statistical classification method that constructs 
linear or quadratic functions to differentiate between 
predefined groups by maximizing the separation among 
them (Fisher, 1936). It allows the researcher to assess 
whether significant differences exist between the groups 
based on the predictor variables. Additionally, it evaluates 
the accuracy of the classification. The discriminant analysis 
is widely used in the field of healthcare. (Tintorer et al., 
2015) employed the discriminant analysis to explore the 
factors affecting the adoption of clinical communities of 
practice among healthcare professionals. Kabir (2021) 
evaluated factors that influence maternal healthcare service 
utilization. Ciucă et al. (2020) distinguished between 
individuals who undergo screening and those who do not for 
colorectal cancer. Rivenbark and Ichou (2020) found that 
exploring discrimination in healthcare as a barrier to access 
for socially disadvantaged populations. In healthcare, 
discriminant analysis has been utilized to evaluate the 
discriminatory properties of enabling factors on healthcare 
service utilization (Rivenbark and Ichou, 2020), determine 
the ability of variables to discriminate between different 
groups such as screeners and non-screeners for colorectal 
cancer (Ciucă et al., 2020), and understand how 
discrimination acts as a barrier to care for vulnerable 
populations (Chen et al., 2011). By utilizing this statistical 
technique, researchers can gain valuable insights into the 
complex interplay of factors influencing healthcare 
utilization, trust, and disparities among diverse populations. 
 
2.3 Logistic Regression 
   LR is a fundamental statistical technique for modeling 
binary outcomes by estimating the probability of an event 
occurring based on predictor variables (Cox, 1958). The 
logistic function enables the transformation of linear 
combinations of independent variables into probabilities, 
making it particularly useful in disease prediction and 
healthcare studies (Hosmer et al., 2013). For example, in a 
study comparing screeners and non-screeners for colorectal 
cancer, logistic regression could be utilized to identify the 



International Journal of Applied Science and Engineering 
 

Wu et al., International Journal of Applied Science and Engineering, 22(2), 2024366 
 

 
https://doi.org/10.6703/IJASE.202506_22(2).004                                                                                                                                  4 

 

factors significantly influencing the likelihood of being a 
screener (Sherchan et al., 2022). In healthcare research, 
logistic regression has been employed to explore various 
aspects of healthcare delivery and patient outcomes 
(Hosmer et al., 2013; Sherchan et al., 2022). 
 
2.4 Naïve Bayes Classifiers 
    Naïve Bayes classifiers are probabilistic models that 
apply Bayes’ theorem under the assumption of 
independence between predictor variables (Duda and Hart, 
1973). Sherchan et al. (2022) optimized the Naïve Bayes 
classifier method to improve accuracy in diagnosing the 
disease. Affandi (2023) applied the Naïve Bayes classifier 
in sentiment analysis of student experiences during online 
learning, demonstrating high accuracy in classifying 
sentiments related to online lectures during the COVID-19 
pandemic. In conclusion, Naïve Bayes classifiers play a 
significant role in healthcare research by enabling accurate 
predictions, sentiment analysis, and classification tasks. 
Their simplicity, efficiency, and ability to handle 
categorical data make them valuable tools for various 
healthcare applications, ranging from disease diagnosis to 
sentiment analysis and community question classification. 
 
2.5 Support Vector Machines 
    SVMs are supervised learning models that identify the 
optimal hyperplane to separate data into distinct classes 
(Cortes and Vapnik, 1995). SVMs have been utilized in the 
development of an intelligent health monitoring system 
using IoT and advanced machine learning techniques to 
provide accurate predictions and assist healthcare workers 
in giving appropriate interventions (Chandra et al., 2023). 
SVMs have been employed in the efficient diagnosis of liver 
disease, where the algorithm was optimized with a row 
Search Algorithm to enhance diagnostic accuracy 
(Devikanniga et al., 2018). SVMs have been used in 
knowledge discovery for hospital-acquired catheter-
associated urinary tract infections, demonstrating their 
utility in analyzing and predicting healthcare-associated 
infections (Park et al., 2019). Moreover, SVMs have been 
applied in the field of voice pathology assessment, where 
they were used as a classifier in a healthcare big data 
framework to assess voice disorders efficiently (Hossain 
and Muhammad, 2016). Additionally, SVMs have been 
employed in the context of COVID-19 outbreak prevention, 
where sentiment analysis was conducted to predict 
individuals’ awareness of precautionary procedures using 
machine learning models, including SVM (Aljameel et al., 
2020). In conclusion, SVMs play a crucial role in healthcare 
applications by enabling accurate predictions, disease 
diagnosis, infection forecasting, and sentiment analysis. 
Their ability to handle complex data and classify 
information efficiently makes them valuable tools for 
improving healthcare outcomes and decision-making 
processes. Based on these previous related researches on 
HAR (Shoaib et al., 2013; Hsu et al., 2015; Dengel et al., 

2016; Yin, 2016), the findings indicated that SVMs 
generally provided higher accuracy compared to decision 
trees, which is consistent with findings from other studies 
that have demonstrated the effectiveness of SVMs in 
activity recognition tasks. 
    SVMs has a great impact on transforming the input data 
into a higher-dimensional space, making it easier for the 
SVMs to find a hyperplane that separates the classes 
effectively. Common SVMs kernel functions are: 
Common SVMs kernel functions are:  
(1) Linear kernel:𝐾൫𝑥௜ , 𝑥௝൯ = 𝑥௜𝑥௝, which is called “linear 

SVM” in this study.  

(2) Polynomial kernel: 𝐾൫𝑥௜ ,x௝൯ = ൫𝑥௜ ⋅ 𝑥௝ + 𝑐൯
ௗ

, where c 
is a constant to control the influence of higher-order 
terms and d denotes the degree of the polynomial, with 
d=2 is called “Quadratic SVM” and d=3 is called “cubic 
SVM” in this study. 

(3) Gaussian kernel: 𝐾൫𝑥௜ ,x௝൯ = 𝑒𝑥𝑝 ቀ−𝛾ฮ𝑥௜ − 𝑥௝ฮ
ଶ

ቁ
ௗ

, 

where 𝛾 controls the width of the Gaussian function. A 
larger 𝛾 focus on local points, while a smaller 𝛾 captures 
global patterns. With 𝛾 = 0.5, 𝛾 = 1 and 𝛾 = 2 would 
be called “fine Gaussian SVM”, “medium Gaussian 
SVM,” and “coarse Gaussian SVM” in this study. 

 
2.6 Nearest Neighbor 
    KNN algorithm is a non-parametric classification 
technique that assigns a data point to the class most common 
among its nearest neighbors (Cover and Hart, 1967). The 
Nearest Neighbor (NN) method, particularly in its KNN 
form, is a widely utilized algorithm in machine learning and 
data mining, characterized by its simplicity and 
effectiveness in classification and regression tasks. In the 
context of public health, KNN has been applied to various 
domains, including disease prediction, patient 
classification, and health outcome analysis. One notable 
application of KNN in public health is in the detection and 
classification of diseases. For instance, utilized the K-
Nearest Neighbor method to develop an expert system for 
detecting immunodeficiency, demonstrating its 
effectiveness in predicting health conditions based on 
patient data (Ramadhan et al., 2019). Additionally, research 
on large-margin nearest neighbor classifiers provides 
insights into enhancing classification performance, which is 
crucial for accurate health assessments (Domeniconi et al., 
2005). In summary, the Nearest Neighbor method, 
especially through its KNN variant, has significant 
applications in public health, ranging from disease detection 
to environmental health assessments. Its ability to handle 
complex datasets and provide accurate classifications 
makes it a vital tool in the ongoing efforts to improve health 
outcomes and inform public health policies. Despite its 
simplicity and efficiency, KNN’s accuracy is sensitive to 
the choice of distance metric and the number of neighbors 
used, which necessitates careful parameter tuning. 
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2.7 Ensemble Learning 
    EL is a machine learning paradigm that combines 
multiple classifiers to improve prediction accuracy and 
reduce overfitting (Dietterich, 2000). EL involves 
combining multiple individual machine learning models to 
create a more robust and accurate predictive model by 
leveraging the diversity of different models to improve 
overall prediction performance. In healthcare, ensemble 
learning has been increasingly utilized to enhance disease 
diagnosis, risk prediction, treatment response modelling, 
and various other healthcare applications. For example, in a 
study focusing on cardiovascular disease risk prediction, 
ensemble meta-learning using SVM was employed to 
improve the accuracy of risk prediction models (Punn, 
2024). EL has been applied to Alzheimer’s disease 
classification by integrating deep ensemble learning 
techniques with deep learning systems to enhance 
prediction accuracy (An et al., 2020). It has also been 
utilized for diagnosing chronic obstructive pulmonary 
disease (COPD), where bagging ensemble learning and 
artificial neural network classifiers improved detection 
accuracy (Siddiqui, 2024). In the area of healthcare claim 
fraud detection, ensemble-based algorithms have been used 
to predict social behavior with high accuracy in imbalanced 
data environments (Kaddi, 2023). Another application is the 
prediction of health trends on social media platforms, where 
ensemble techniques have demonstrated effectiveness in 
analyzing health-related data from social networks 
(Agarwal et al., 2019). Additionally, ensemble learning has 
been employed for high-dimensional imbalanced credit 
scoring datasets, with multiple optimized ensemble 
approaches proposed to develop reliable and accurate credit 
scoring models (Lenka et al., 2023). In conclusion, 
ensemble learning plays a crucial role in healthcare research 
by combining the strengths of multiple machine learning 
models to improve predictive accuracy, enhance disease 
diagnosis, and optimize treatment strategies. By leveraging 
the diversity of different models, ensemble learning 
techniques have shown promise in addressing complex 
healthcare challenges and improving decision-making 
processes. 
    Specifically, the ensemble methods combine multiple 
wear learners to form a strong, more accurate models. Each 
ensemble method utilizes a different strategy to aggregate  
weak learner for improved performance. In this study, 
several ensemble methods would be applied, such as 
Ensemble Boosted Trees, Ensemble Bagged Trees, 
Ensemble Subspace Discriminant, Ensemble Subspace 
KNN and Ensemble RUSBoosted Trees, detailed as 
follows: 
(1) Ensemble boosted trees: Boosting combines weak 

learners iteratively, focusing on the errors of the 
previous iteration. Each subsequent tree is trained to 
correct the errors made by the preceding ones. Common 
boosting algorithms: AdaBoost, LogitBoost, 
GentleBoost.  

(2) Ensemble bagged trees: Bagging (Bootstrap 
Aggregating) trains multiple trees on different 
bootstrapped samples of the training data, with 
predictions are being aggregated (majority voting for 
classification). 

(3) Ensemble subspace discriminant: Trains multiple 
discriminant classifiers (e.g., linear discriminant 
analysis) on random subspaces of the feature space. 

(4) Ensemble subspace KNN: Combines KNN classifiers 
trained on random subspaces of the feature space. Each 
subspace is a random subset of features.  

(5) Ensemble RUSBoosted Trees: RUSBoost (Random 
Under-Sampling Boost) combines boosting with 
random under-sampling of the majority class in 
imbalanced datasets. Each iteration under-samples the 
majority class and trains a tree on the under-sampled 
data. 

 
2.8 Neural Networks 
    NNs are computational models inspired by the human 
brain, consisting of interconnected artificial neurons 
arranged in layers that process input data and generate 
predictions (McCulloch and Pitts, 1943). Neural Networks 
are a class of machine learning algorithms inspired by the 
structure and function of the human brain. They consist of 
interconnected nodes, or neurons, organized in layers that 
process input data and generate output predictions. Tiwari, 
(2023) utilized the neural networks to enhance medical 
decision-making processes and improve patient outcomes. 
Sav et al. (2022) applied the neural networks to detect 
healthcare claim fraud, where they were used to predict 
social behavior accurately in an imbalanced data 
environment. 
    Furthermore, NNs have been employed in the 
development of an intelligent health monitoring system 
using IoT and advanced machine learning techniques to 
assist healthcare workers in providing appropriate 
interventions (Chandra et al., 2023). Moreover, Sav et al. 
(2022) adopted the NNs to predict the health trends on 
social media platforms, demonstrating their effectiveness in 
analysing health-related data from social networks and 
aiding in medical diagnosis and treatment. Haq et al. (2022) 
applied the NNs to classify brain tumors in IoT-enabled 
healthcare systems, showcasing their utility in medical 
image analysis and disease classification. Almutairi et al. 
(2022) utilized the neural networks to detect elderly 
behaviors, highlighting their role in monitoring and 
improving the well-being of elderly individuals. As 
mentioned above, the neural networks are capable of 
learning complex patterns from data and make informed 
decisions has made them valuable tools in advancing 
healthcare research and practice. 
  A comparison of the strengths and weaknesses of the 
reviewed classifiers is presented in Table 1. In this study, 
the three-axis signal, SSF, and the proposed GA-optimized 
EWMA features are respectively fed into these classifiers 
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Table 1. A comparison of several classifiers

classifier model type strengths weaknesses 
1. DT non-linear, tree-based * Easy to interpret and 

visualize 
* Easy to interpret and 

visualize 

* Easy to overfitting 
* May create biased trees if 
   some classes dominate 

2. DA linear or quadratic Works well with normally 
distributed classes 

Assumes normality and 
equal covariance 

3. LR linear * Simple and interpretable 
* Works well with linearly 

separable data 

* Limited to linear decision 
   boundaries 
* May underperform with 
   complex patterns 

4. Naïve Bayes Classifiers probabilistic, linear * Performs well with high 
dimensional data 

* Handles irrelevant 
   features effectively 

Can perform poorly if 
feature independence is 
violated 

5. SVMs linear or non-linear kernels * Effective in high 
   dimensional spaces 
* Versatile through kernel 
   trick 
* Robust against overfitting 

* Can be computationally 
intensive 

* Less interpretable 
* Careful parameter tuning 

6. KNN instance-based, non-
parametric 

* No training phases 
* Adaptable to multi-class 
   problems 

Sensitive to irrelevant 
features and feature scaling 

7. EL combines multiple models 
(e.g., bagging, boosting) 

* Improved accuracy 
* Reduces overfitting 
* Versatile and can handle 
   various data types 

* Can be complex to 
implement 

* Less interpretable 
* Higher computational 

cost 
8. NNs non-linear * Flexible and powerful 

* Can model complex 
patterns 

* Requires large amounts 
of data 

* Computationally 
intensive 

* Less interpretable 
(black box) 

, and a thorough comparison is provided to demonstrate the 
efficiency of the proposed methodology. 
 
3. MATERIALS AND METHODS 
    In this section, a GA-optimized EWMA feature 
engineering method will be presented in order to enhance 
the accuracy of HAR. Fig. 1 shows the flow chart of the 
proposed HAR method, with details provided as follows: 
Step 1. Acquire data 
    The three-axial sensor data collected from 30 
experimental subjects were recorded using a Galaxy S II cell 
phone’s accelerometer. The acceleration will sample at 50 
samples per second. Six human activities, including walking, 
walking upstirs, walking downstairs, witting, standing and 
lying down were used as classification labels. The recorded 
data is accessible from https://www.mathworks.com/ 
matlabcentral/fileexchange/53001-code-for-webinar-
signal-processing-and-machine-learning-techniques-for-
sensor-data-analytics 

Step 2. Statistical signal features 
    The three-axis sensor data was transformed into 66 
statistical signal features, including the mean, RMSE, 
autocorrelation, peak analysis, and time-frequency analysis. 
Step 3. EWMA-based statistical signal features 
    Given a set of EWMA weights  for each statistical signal 
feature (denoted as S), where , then EWMA values at time t 
for each variable can be obtained by: 
 

𝐸WMA௧ = 𝜆௜𝑆௧ + (1 − 𝜆௜)𝐸WMA௧ିଵ = ቀ
ఒ೔

ଵି(ଵିఒ೔)஻
ቁ 𝑆௧   (1) 

     
    where B is the backward operator (i.e. 𝐵𝑆௧ = 𝑆௧ିଵ). By 
applying EWMA to input features, we can smooth out short-
term fluctuations and highlight long-term trends. This can 
improve the stability and robustness of the model, 
particularly in noisy datasets. Specifically, applying 
EWMA weights in a classification problem can make the 
model more responsive to recent changes in data, which is 



International Journal of Applied Science and Engineering 
 

Wu et al., International Journal of Applied Science and Engineering, 22(2), 2024366 
 

 
https://doi.org/10.6703/IJASE.202506_22(2).004                                                                                                                                  7 

 

  
 

 
Fig. 1. The flow chart of proposed human activity recognition 

 
beneficial in dynamic environments. However, it also 
requires careful tuning to avoid overfitting or loss of 
important historical information. In the next step, we will 
introduce how to determine the optimal EWMA weights for 
each statistical signal features. Another advantage of the use 
of EWMA-based statistical signal features is that it can 
conduct variable reduction once the   is set to be 0. 
Step 4. Optimizing EWMA weights by using GA 
    GA is a powerful tool for solving complex optimization 
problems due to their global search capability, flexibility, 
robustness, and scalability. They are particularly 
advantageous in situations where the search space is large, 
the objective function is non-linear or noisy, and traditional 
optimization methods struggle to find optimal solutions. 
Therefore, the GA will be used to find the optimal EWMA 
weights. Fig. 2 shows the flowchart of GA implementation 

for searching the optimal EWMA weights 
    Detailed steps for GA implementation are:  
(1) Initializing the search agents 
    By giving a population size d, we can generate a 𝑑 × 66  
search agent matrix, with0 ≤ 𝜆௜ ≤ 1, which can be denoted 
as: 

             𝜆 =

⎣
⎢
⎢
⎡
𝜆ଵ,ଵ 𝜆ଵ,ଶ ⋯ 𝜆ଵ,65 𝜆ଵ,66

𝜆ଶ,ଵ 𝜆ଶ,ଶ ⋯ 𝜆ଶ,65 𝜆ଶ,66

⋮ ⋮ ⋮ ⋮ ⋮
𝜆ௗ,ଵ 𝜆ௗ,ଶ ⋯ 𝜆ௗ,65 𝜆ௗ,66⎦

⎥
⎥
⎤
                     (2) 

 
(2) Evaluate the fitness function 
    The optimal EWMA weights for each statistical signal 
feature can be determined by maximizing the accuracy for 
each class, which can be expressed as: 
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Table 2 The transformed 66 statistical signal features. 
statistics feature name 

mean TotalAccXMean, TotalAccYMean, TotalAccZMean 
RMSE BodyAccXRMS, BodyAccYRMS, BodyAccZRMS 

autocorrelation BodyAccXCovZeroValue, BodyAccXCovFirstPos, BodyAccXCovFirstValue, 

BodyAccYCovZeroValue, BodyAccYCovFirstPos, BodyAccYCovFirstValue, 

BodyAccZCovZeroValue, BodyAccZCovFirstPos, BodyAccZCovFirstValue 
peak analysis BodyAccXSpectPos1, BodyAccXSpectPos2, BodyAccXSpectPos3, BodyAccXSpectPos4, 

BodyAccXSpectPos5, BodyAccXSpectPos6, BodyAccYSpectPos1, BodyAccYSpectPos2, 

BodyAccYSpectPos3, BodyAccYSpectPos4, BodyAccYSpectPos5, BodyAccYSpectPos6,  
BodyAccZSpectPos1, BodyAccZSpectPos2, BodyAccZSpectPos3, BodyAccZSpectPos4, 

BodyAccZSpectPos5, BodyAccZSpectPos6, BodyAccXSpectVal1, BodyAccXSpectVal2, 

BodyAccXSpectVal3, BodyAccXSpectVal4, BodyAccXSpectVal5, BodyAccXSpectVal6, 

BodyAccYSpectVal1, BodyAccYSpectVal2, BodyAccYSpectVal3, BodyAccYSpectVal4, 

BodyAccYSpectVal5, BodyAccYSpectVal6, BodyAccZSpectVal1, BodyAccZSpectVal2, 

BodyAccZSpectVal3, BodyAccZSpectVal4 , BodyAccZSpectVal5, BodyAccZSpectVal6 
time-frequency 

analysis 
BodyAccXPowerBand1, BodyAccXPowerBand2, BodyAccXPowerBand3, BodyAccXPowerBand4, 

BodyAccXPowerBand5, BodyAccYPowerBand1, BodyAccYPowerBand2, BodyAccYPowerBand3, 

BodyAccYPowerBand4, BodyAccYPowerBand5, BodyAccZPowerBand1, BodyAccZPowerBand2, 

BodyAccZPowerBand3, BodyAccZPowerBand4, BodyAccZPowerBand5 

 Fig. 2. GA implementation for searching EWMA weights 
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max
ఒ೔

    Accuracy(Class 1) + Accuracy(Class 2) + ⋯

+ Accuracy(Class j) 
s.t.       0 ≤ 𝜆௜ ≤ 1 
            𝑖 = 1,2, ⋯ ,66                                                    (3) 

Where 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐶𝑙𝑎𝑠𝑠 𝑗) =
்௉ೕାௌ௨௠ ௢௙ TNೞ ௙௢௥ ௢௧ℎ௘௥ ௖௟௔௦௦௘௦ 

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௜௡௦ ௧௔௡ ௖௘௦
 ,  

TP is the number of instances where the model correctly 
predicted the positive class and TN is the number of 
instances where the model correctly predicted the negative 
class.  
(3) Generate the elite matrix 

A matrix that stores the best-performing individuals (elite 
individuals) from the current population. The goal of elitism 
is to preserve the best solutions found so far, ensuring that 
the Genetic Algorithm does not lose high-quality solutions 
during the evolution process. Without elitism, there's a risk 
that the crossover and mutation operations could degrade or 
lose the best solutions, especially if the population size is 
small or if the algorithm hasn't fully converged. The elite 
matrix can be expressed as 

             𝜆′ =

⎣
⎢
⎢
⎢
⎡
𝜆ଵ,ଵ

′ 𝜆ଵ,ଶ
′ ⋯ 𝜆ଵ,65

′ 𝜆ଵ,66
′

𝜆ଶ,ଵ
′ 𝜆ଶ,ଶ

′ ⋯ 𝜆ଶ,65
′ 𝜆ଶ,66

′

⋮ ⋮ ⋮ ⋮ ⋮
𝜆ௗ,ଵ

′ 𝜆ௗ,ଶ
′ ⋯ 𝜆ௗ,65

′ 𝜆ௗ,66
′

⎦
⎥
⎥
⎥
⎤

              (4) 

 
(4) Terminal criterion  
In this study, the terminal criterion of a maximum number 
of generations is adopted, meaning the GA stops after 
reaching a predefined number of generations (iterations). 
The optimal EWMA weights for each feature are 
determined when the maximum number of generations is 
reached and are denoted as 𝜆∗ = (𝜆ଵ

∗ , 𝜆ଶ
∗ , ⋯ , 𝜆଺଺

∗ ). 
Step 5. Classifier comparison 

The proposed GA- EWMA features will be used in 
various classifiers, including DT, DA, LR, Naïve Bayes 
classifiers, SVM, EL, and NNs. Table 3 lists the classifier 
types and their model methods. Therefore, there are total 30 
classifiers will be implemented for a comparison. 

 
4. RESULTS AND DISCUSSION 

    This section will first introduce the data characteristics. 
In Case 1, the original three-axis data X, Y, and Z are used 
as inputs to the classifiers. Case 2 illustrates the use of SSF 
as inputs, while Case 3 demonstrates the use of proposed 
GA-optimized EWMA features.  
 
4.1 Data resources 
  This study uses the experimental data of Davide Anguita 
et al. (2013) to collect information about human daily 
behavior by installing a Samsung Galaxy II smartphone on 
the waist of the human body to sense human body activities. 
30 volunteers aged 19 to 48 years old were used to perform 
such a task, and were divided into six activity categories:  

Table 3. Classifier types and their model methods 
classifier model method 

1. DT fine tree 
medium tree 
coarse tree 

2. DA linear discriminant 
quadratic discriminant 

3. LR logistic regression 
4. Naïve Bayes 

classifiers 
Gaussian Naïve Bayes 
kernel Naïve Bayes 

5. SVM linear SVM 
quadratic SVM 
cubic SVM 
fine Gaussian SVM 
medium Gaussian SVM 
coarse Gaussian SVM 

6. KNN fine KNN 
medium KNN 
coarse KNN 
cosine KNN 
cubic KNN 
weighted KNN 

7. EL boosted trees 
bagged trees 
subspace discriminant 
subspace KNN 
Rusboosted trees 

8. NNs narrow NN 
medium NN 
wide NN 
bilayered NN 
trilayered NN 

 
standing, sitting, lying, walking, going downstairs and 
going upstairs. Each action was attempted at least twice and 
based on Table 4 shows the experimental activity procedure 
and duration. The sampling frequency is 50 HZ, 
corresponding to the activity category, and the three- axis 
data of X, Y, and Z in the accelerometer are recorded. The 
experimental design is divided into static and dynamic 
activities, totaling 192 s. Among them, the experimental  
procedure of static activity (A) is standing position (1), 
which refers to the first standing position 15 s, and so on, 
the static activity totals 90 s. 
      In the dynamic activity (B) experimental program, 
walking (1) refers to the first 15 s of walking, and so on, the 
total number of dynamic activities is 102 s. Table 5. defines 
the representative activities of each activity class in the 
following analysis. There are a total of 10,299 observations, 
with 70% of the observations used as the training dataset, 
while 30% used as the testing dataset. The execution 
environment is under Intel(R) Core (TM) i5-8400H CPU@ 
2.81 Hz, NVIDGeForce GTX 1060 3GB and Sav et al. 
(2022) MATLAB 2021a is used for implementing the 
program.  
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Table 4. Experimental activity program 
static activity (A) time (s) dynamic activity (B) time (s) 

start 0 walking (1) 15 
standing position (1) 15 walking (2) 15 
sitting position (1) 15 going downstairs (1) 12 
standing position (2) 15 going upstairs (1) 12 
lying position (1) 15 going downstairs (2) 12 
sitting position (1) 15 going upstairs (2) 12 
sying position (2) 15 going downstairs (3) 12 
  going upstairs (3) 12 
  stop 0 
subtotal 90 subtotal 102 

total 192 s 
 

Table 5. Representative activities of the confusion matrix diagram 
dynamic activity (B) static activity (A) 

activities Class activities Class 
walking 1 standing 4 
going downstairs 2 sitting 5 
going upstairs 3 lying 6 

 
4.2 Case 1: Original data X, Y, Z as input variables 

Table 6 shows the classification results when X, Y, and Z  
are used as input features. The results indicate that the 
lowest testing accuracy, 42.7%, is achieved with the cubic 
SVM classifier, while the coarse KNN approach yields the 
highest testing accuracy at 76.1%. In terms of computation 
time, the cubic SVM classifier spent 389,928 s (i.e., about 
4.51 days) to train the model, while the quadratic 
discriminant classifier took only 3.52 s. Generally speaking, 
the coarse KNN classifier seems to be the better classifier 
when using original data as the input. From the confusion 
matrix diagram of coarse KNN in Fig. 3, it can be found that 
the average accuracy of the three static activities (i.e. Class 
4–6) is 96.1%, which is compared to the average of 51.5% 
of the three dynamic activities (Class 1–3). 
 
4.3 Case 2: 66 SSFs 

In Case 2 of this study, the original data is transformed 
into 66 SSFs, with the classification results presented in 
Table 7. The results show a significant increase in accuracy 
compared to using the original variables as inputs. Table 7 
indicates that bagged trees and medium Gaussian SVM are 
the top-performing classifiers when SSFs are used as input 
features. The training and testing accuracies for the bagged 
trees classifier are 94.5% and 87.4%, respectively, while for 
the medium Gaussian SVM classifier, they are 93.8% and 
88.5%, respectively. Fig. 4 displays the confusion matrix for 
the bagged trees classifier. It shows that the average 
accuracy rate for dynamic activities has increased to 95.7% 
(compared to 51.5% in Case 1). This indicates that the use 
of SSFs has significantly improved the recognition accuracy 
of dynamic activities. Additionally, the computation time 
has also been significantly reduced compared to Case 1. 
4.4 Case 3: GA-optimized EWMA features 

In this Case, we use bagged trees as the classifier in order 
to determine the EWMA weights. The population size of 50, 
crossover rate 0.3, mutation rate 0.2 and maximum iteration 
100 are used in the GA implementation. Fig. 5 shows the 
GA convergence plot for searching the EWMA weights. 
Table 8 shows the acquired GA-optimized EWMA weights 
for 66 SSFs. It shows that the number of SSFs has been 
reduced from 66 to 35. From Table 9, it shows that bagged 
trees has a training accuracy of 99.6% and testing accuracy 
of 95.2%. The training time in Case 1 is 1254.2 s, 105.01 s 
in Case 2, and only 77.56 s when using the GA-optimized 
EWMA features. Furthermore, the GA-optimized EWMA 
features were also applied to other classifiers, as shown in 
Table 9, where the cubic SVM demonstrated the best 
training time. Table 9 shows that using the GA-optimized 
EWMA features is capable of enhancing the recognition 
accuracy. 
 
4.5 Discussion and Comparison 
    Fig. 6 displays the comparison results of training time 
between the three-axis method, SSF, and the proposed 
method when ensemble bagged trees is used as the classifier. 
The results indicate that the three-axis method requires the 
longest training time, while both SSF and the proposed 
method significantly reduce training time. Fig. 7 
demonstrates the comparison results of recognition 
accuracy of the training and testing. Results shows that the 
test accuracy rate boosts to 87.4% from 74.6% when the 
statistical features are used. However, the SSF approach 
increases the number of inputs from 3 to 66. In contract, the 
proposed method not only enhance the accuracy both in 
training and testing, but also reduce the number of inputs to 
35, leading to the training time takes only 19.3 s. 
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Table 6. Original data X, Y, Z accuracy rate of each classifier 

classifier model method 
training 

accuracy (%) 
testing 

accuracy (%) 
training 

time (s) 
DT fine tree 71.4% 71.3% 44.25 

medium tree 67.7% 67.9% 40.34 
coarse tree 56.3% 56.3% 37.91 

DA linear discriminant 52.6% 52.6% 6.05 
quadratic discriminant 66.3% 66.2% 3.52 

LR logistic regression 
*applied to discrete data, this study adopts the verification of time series data, so 
it will not be collected if it cannot be verified. 

Naïve Bayes 
classifiers 

Gaussian Naïve Bayes 63.3% 63.2% 9.3 
kernel Naïve Bayes 68.8% 68.8% 14754 

SVM linear SVM 48.4% 49.7% 340965 
quadratic SVM 48.1% 49% 343071 
cubic SVM 41% 42.7% 389928 
fine Gaussian SVM 75.7% 75.5% 160494 
medium Gaussian SVM 73.5% 73.5% 175052 
coarse Gaussian SVM 69.2% 69.1% 203506 

KNN fine KNN 71% 70.9% 20.46 
medium KNN 75.2% 75% 39.77 
coarse KNN 76.1%* 76.1%* 100.63 
cosine KNN 63.8% 64.1% 7052.9 
cubic KNN 75.1% 75% 99.86 
weighted KNN 73.8% 73.8% 51.66 

EL boosted trees 68.7% 68.8% 535.31 
bagged trees 74.5% 74.6% 1254.2 
subspace discriminant 53% 52.7% 157.07 
subspace KNN 64.9% 64.8% 440.87 
Rusboosted trees 67.9% 67.9% 773.56 

NNs narrow NN 70.9% 71% 3768 
medium NN 72.8% 72.1% 5098 
wide NN 73.8% 74.1% 9009.8 
bilayered NN 72.9% 72.3% 4795 
trilayered NN 72.3% 72.1% 6643 
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Fig. 3. Model 5.3 (coarse KNN) testing confusion matrix 
diagram 

      To further demonstrate the efficiency of the proposed 
method, Fig. 8 displays the comparison results of training 
time when cubic SVM is used as the classifier. It 
demonstrates that the three-axis method requires 4.51 days 
to train the cubic SVM model, making it time-inefficient. In 
contrast, both SSF and the proposed method are    
significantly more time-efficient than the three-axis method. 
Fig. 9 shows the recognition accuracy. It displays that the 
proposed method has superior training and testing accuracy 
compared to the three-axis and SSF methods. Furthermore, 
it is noted that the prediction time is less than 0.01 s when 
using the trained ensemble bagged tree and cubic SVM 
models, making the proposed method suitable for real-time 
HAR applications. 
 

Table 7. Accuracy rate of each classifier under the statistical signal feature 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 

classifier model method 
training 

accuracy (%) 
testing 

accuracy (%) 
training 
time (s) 

DT fine tree 91.8% 77.5% 13.99 
medium tree 87.9% 82.7% 10.28 
coarse tree 76.5% 69.6% 9.95 

DA linear discriminant 88.7% 86% 9.38 
quadratic discriminant 79.2% 74.8% 8.62 

LR logistic regression 
*applied to discrete data, this study adopts the verification of time series data, 

so it will not be collected if it cannot be verified. 
Naïve Bayes 

classifiers 

Gaussian Naïve Bayes 72.3% 68.9% 9.08 
kernel Naïve Bayes 82.5% 80.7% 298.1 

SVM linear SVM 91.8% 87.5% 17.87 
quadratic SVM 93.5% 86.8% 20.54 
cubic SVM 92.9% 86.5% 34.89 
fine Gaussian SVM 69.3% 62.7% 67.82 
medium Gaussian SVM 93.8% 88.5%* 23.27 
coarse Gaussian SVM 89.9% 85.6% 23.06 

KNN fine KNN 85.9% 79% 62.97 
medium KNN 87% 80.7% 62.72 
coarse KNN 83% 76.9% 67.56 
cosine KNN 87.2% 82% 74.52 
cubic KNN 85.3% 84.4% 855.31 
weighted KNN 87.7% 81.3% 96.41 

EL boosted trees 90.7% 85.6% 147.84 
bagged trees 94.5%* 87.4% 105.01 
subspace discriminant 86.6% 83.9% 109.2 
subspace KNN 90.2% 84.7% 447.41 
Rusboosted trees 88.6% 82.8% 177.3 

NNs narrow NN 92.1% 86.6% 177 
medium NN 91.5% 86.6% 254.28 
wide NN 91.5% 85.9% 287.4 
bilayered NN 92% 87.4% 259.82 
trilayered NN 92.2% 86.1% 320.21 
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Fig. 4. Model 6.2 (bagged Trees) testing confusion matrix diagram 

 
Fig. 5. Convergence plot

 
Table 8. GA-optimized EWMA weights 

SSF No. 1 2 3 4 5 6 7 8 9 10 11 
λ* 0.04 0.89 0.70 0.00 0.00 0.46 0.97 1.00 0.95 0.24 0.00 

SSF No. 12 13 14 15 16 17 18 19 20 21 22 
λ* 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 .001 0.20 

SSF No. 23 24 25 26 27 28 29 30 31 32 33 
λ* 0.00 0.02 0.00 1.00 0.03 1.00 0.00 0.00 0.00 0.02 0.00 

SSF No. 34 35 36 37 38 39 40 41 42 43 44 
λ* 0.99 0.00 1.00 0.04 0.00 0.00 0.38 0.06 0.00 0.03 0.00 

SSF No. 45 46 47 48 49 50 51 52 53 54 55 
λ* 0.08 0.00 0.68 0.00 0.00 0.07 1.00 0.70 0.02 0.00 0.00 

SSF No. 56 57 58 59 60 61 62 63 64 65 66 
λ* 0.00 0.00 0.00 0.03 0.00 0.00 0.11 0.39 0.92 0.02 0.00 
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Table 9. Accuracy rate of Performance-based features classifier 

classifier model method 
training 

accuracy (%) 
testing 

accuracy (%) 
training time 

(s) 
DT fine tree 97.7% 89.4% 11.02 

medium tree 93% 90.6% 9.19 
coarse tree 77.2% 76.2% 8.93 

DA linear discriminant 87.3% 66.7% 6.27 
quadratic discriminant 75.2% 69.6% 3.52 

LR logistic regression 
*applied to discrete data, this study adopts the verification of time series data, so it 
will not be collected if it cannot be verified. 

Naïve Bayes 
classifiers 

Gaussian Naïve Bayes *unable to calculate 
kernel Naïve Bayes 88.9% 86.4% 329.3 

SVM linear SVM 98.6% 94.1% 19.83 
quadratic SVM 99.6% 93.2% 19.65 
cubic SVM 99.8%* 92.8% 19.32* 
fine Gaussian SVM 95.4% 74.9% 65.49 
medium Gaussian SVM 98.9% 94.8% 20.86 
coarse Gaussian SVM 96.8% 91.7% 29.37 

KNN fine KNN 98.9% 88% 49.24 
medium KNN 97.3% 88.8% 50.56 
coarse KNN 92.2% 86.7% 54.11 
cosine KNN 97% 89.5% 60.04 
cubic KNN 96.3% 87.5% 563.27 
weighted KNN 98.5% 89.5% 81.83 

EL boosted trees 97.8% 94.6% 102.39 
bagged trees 99.6% 95.2%* 77.56 
subspace discriminant 92.7% 89% 77.28 
subspace KNN 99.6% 93% 367.51 
Rusboosted trees 93.6% 89.7% 122.12 

NNs narrow NN 99.1% 93.1% 99.02 
medium NN 99.3% 94.6% 112.46 
wide NN 99.6% 94.4% 126.16 
bilayered NN 99.2% 93.6% 133.58 
trilayered NN 99.1% 93.2% 148.99 

 

 
Fig. 6. The training time comparison under the 
implementation of ensemble bagged tree 

 
Fig. 7. Accuracy comparison under the implementation of 
ensemble bagged tree 
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Fig. 8. The training time comparison under the 
implementation of cubic SVM 
 

 
Fig. 9. Accuracy comparison under the implementation of 
cubic SVM 
 
   
5. CONCLUSION 
 
    HAR is garnering attention across various fields, such as 
healthcare, fitness and sports, security and surveillance, 
occupational safety, smart environments, and more. This is 
largely attributed to the rapid development of mobile 
devices, which enable users to record human activity signals 
using accelerometers. In this study, we found that the 
recognition rates were poor when tri-axial activity signals 
collected from accelerometers were directly fed into 
classifiers, including DT, DA, LR, Naïve Bayes classifiers, 
SVM, EL, and NN. The recognition rates are significantly 
improved when the three-axis signals were transformed into 
SSF. Despite the improvement in accuracy, the increase in 
the number of input variables from 3 to 66 has burdened the 
computation time. Furthermore, a higher recognition rate is 
needed to have an effective decision making. This study 
innovatively uses multi-variable EWMA to calculate 66 

feature variables, and uses GA to optimize the EWMA 
weight value of each feature. The performance based of GA-
optimized EWMA features model can achieve efficiency 
with only 35 features. The classification accuracy of the 
Ensemble Bagged Tree classifier reaches 95.2%, with a 
prediction time of less than 0.01 s. This demonstrates that 
the GA-optimized EWMA features model proposed in this 
study can significantly enhance recognition accuracy and 
time efficiency in HAR. In future work, the proposed 
method can be integrated into wearable devices, such as 
smartwatches or bracelets, for applications in healthcare, 
health promotion, elderly monitoring, and more. 
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