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ABSTRACT

Real-time human activity recognition (HAR) is garnering attention across various
fields, such as healthcare, fitness and sports, security and surveillance, occupational
safety, smart environments, and more. This is largely attributed to the rapid development
of mobile devices, which enable users to record human activity signals using
accelerometers. In this study, we found that the recognition rates were poor when tri-
axial activity signals collected from accelerometers were directly fed into classifiers,
including decision trees (DT), discriminant analysis (DA), logistic regression (LR),
Naive Bayes classifiers, support vector machines (SVM), ensemble learning (EL), and
neural networks (NN). The recognition rates improved from 75% to 94% when the three-
axis signals were transformed into statistical signal features (SSF). Despite the
improvement in accuracy, the increase in the number of input variables from 3 to 66 has
burdened the computation time. Furthermore, a higher recognition rate is needed to have
an effective decision making. Therefore, this study develops a novel feature engineering
method by using genetic algorithm (GA) and exponentially weighted moving average
(EWMA). The EWMA is not only used to capture the characteristics of time sequences
derived from the activity signals but also to eliminate redundant SSFs. GA is employed
to optimize EWMA weights for each SSF. The results demonstrate that the Ensemble
Bagged Trees classifier, using the proposed GA-optimized EWMA features, achieves a
testing recognition rate of 95.2% with a prediction time of less than 0.01 s, making it
suitable for the field of real-time HAR.

Keywords: Human activity recognition, Feature engineering, Statistical signal features,
Exponentially weighted moving average, Genetic algorithm.

1. INTRODUCTION

With the development of technology, more and more people are using smartphones
and wearable devices for personal exercise and health management. When applied in the
medical field, human activity recognition (HAR) is a key area of artificial intelligence
and machine learning. Machine learning methods such as deep learning and integrated
models are further used to identify and classify activities through data collected by
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various devices. Human activities can be accurately
identified and classified. Machine learning techniques have
significantly advanced HAR in recent years, especially in
fields such as healthcare and human-computer interaction
(Gumaei et al., 2019; Irfan et al., 2021; Khan et al., 2022).
These methods enable the extraction of high-level
knowledge from raw sensor inputs, allowing for precise
identification of different activities. The fusion of machine
learning methods, wearable technology and deep learning
models provides more effective development for accurate
HAR, and the use of sensor-equipped wearable devices and
smartphones facilitates real-time monitoring of human
activities (Devarakonda and Bozi¢, 2022), contributing to
the development of personalized healthcare systems and
health monitoring. The integration of deep learning models
has changed the way of analyzing large medical data sets
and also provided new developments for health promotion
(Purushotham et al., 2018). Therefore, a more effective
prediction model of the deep learning model is proposed,
which can further develop complex health promotion
models suitable for individual users, and also help enhance
public health and social well-being.

Due to the advancement of technology, wearable devices
are equipped with sensors that can be used to collect,
monitor and analyze users' physiological data, movement
activities and location information. In the realm of HAR,
sensors can be mainly divided into three categories:
movement, environment and location. The movement
sensors, including accelerometers, gyroscopes and gravity
sensors can be utilized to track titling, shaking, rotating or
swinging. The environment, such as barometer and
thermometer can be used to monitor humidity, pressure and
temperature. The location sensors like magnetometers can
provide a device's location relative to a global reference
point.

In this research, the accelerometer will be employed, as
it detects the acceleration forces exerted on the device along
the three physical axes (X, Y, and Z), capturing both
movement and gravitational forces. If we can further
analyze these large amounts of signals to find out the hidden
correlations and patterns in users' daily activities, and then
plan and provide relevant derivative health promotion
service activities, only then can real value be generated for
wearable devices. As the use cases of wearable devices
increase, the value of the data generated becomes more and
more valuable. Through big data analysis of users' general
daily physical activity information, it can be used to
improve the accuracy and reminder efficiency of physical
activity and health promotion analysis. It is expected that in
the future, people will use wearable devices to find out
about health promotion, physical enhancement and medical
care, and will bring greater contributions to the fields of
public health and health promotion.

Recent studies have focused on smartphone-based HAR
using accelerometer data (Kwapisz et al., 2011; Zhang and
Sawchuk, 2012; Bayat et al., 2014; Ortiz and Luis, 2015).
In these studies, the authors employed various classification

methods to analyze accelerometer data effectively. The

primary classifiers used in their study include decision trees

(DT), support vector machines (SVM), and k-nearest

neighbors (KNN). For example, Zhang and Sawchuk (2012)

employs DT, SVM, and KNN classifiers to effectively

recognize human activities using data from wearable
accelerometers in walk forward, walk left, walk right, go
upstairs, go downstairs, jump up, run, stand, sit activities.

Ortiz and Luis (2015), Bayat et al. (2014), and Kwapisz et

al. (2011) also utilized DT, SVM, and KNN as classifiers,

with a strong emphasis on feature extraction to enhance the
performance of HAR using smartphone accelerometer data.

Feature extraction from accelerometer signals is a crucial

step in HAR. Miluzzo et al. (2008), Dengel et al. (2016),

Figo et al. (2010), Kose et al. (2012),Siirtola and Rdning

(2012), Shoaib et al. (2013) Dengel et al. (2016),Yin (2016)

and Hsu et al. (2015) employed Decision Trees and SVMs

as classifiers, highlighting the importance of feature
extraction in enhancing HAR performance using
accelerometer data from smartphones and smartwatches.

The findings of Dengel et al. (2016), Yin (2016), Hsu et al.

(2015), and Shoaib et al. (2013) suggest that SVM generally

achieved higher accuracy than DT, aligning with other

studies that have demonstrated the superior effectiveness of

SVM in activity recognition tasks.

In healthcare, high-accuracy HAR systems can
significantly enhance decision-making by healthcare
professionals. For example, accurately recognizing
activities such as walking, sitting, or lying down can help
assess a patient's mobility and recovery progress, leading to
more informed treatment plans. In this study, eight
classifiers—DT, discriminant analysis (DA), logistic
regression (LR), Naive Bayes classifier, SVM, ensemble
learning (EL), and Neural Network (NN)—will be
employed to recognize six activities: walking, going
upstairs, going downstairs, standing, sitting, and lying down,
based on accelerometer data. To build upon previous
research, this study specifically integrates eight classifiers
and improves the feature extraction method to enhance
efficiency. Feature selection is pivotal in this process
because it directly influences the effectiveness of the
recognition system. By identifying the most pertinent
features, it not only decreases computational load but also
improves the accuracy of activity classification by removing
redundant and irrelevant information.

The following features will be used as inputs for these
classifiers and a thorough comparison will be provided in
this study, including:

(1) Original X, Y, Z three-axis data.

(2) Statistical signal features (SSF), including mean, root
mean square error (RMSE), autocorrelation, peak
analysis, and time-frequency analysis.

(3) GA-optimized EWMA features

The GA-optimized EWMA features are the proposed
feature engineering method that takes the time sequence of
the acquired data into consideration. In the past research, the
characteristic of time sequence is ignored for analysis,
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potentially leading to the low recognition accuracy. The
EWMA assigns exponentially decreasing weights to past
observations as it moves through time. This means that the
most recent observations have the most influence on the
average, while older observations have less impact. Thus,
this study will apply the EWMA to the SSF to memorize the
past observations.

The following issue needed to be addressed is the
determination of EWMA weights for each SSF, as each SSF
has different dynamics. Since GA can explore the entire
search space by using a population of potential solutions,
which reduces the risk of getting trapped in local optima,
this study will use GA to search for the optimal EWMA
weights for each SSF, aiming to maximize the true positive
rate for each activity.

This study is organized as follows: Section 2 introduces
eight classifiers: DT, DA, LR, Naive Bayes classifiers,
SVM, EL, and NN. Section 3 presents the proposed GA-
optimized EWMA implementation and provides a
comparison, and Section 5 offers the conclusion.

2. LITERATURE REVIEW

2.1 Decision Trees

DT is a widely used machine learning algorithm that
utilizes a hierarchical, tree-like model for decision-making
in classification and regression tasks (Quinlan, 1986). The
algorithm recursively partitions data into subsets based on
feature values, allowing for intuitive interpretation and
visualization (Breiman et al., 1984). This tree-like structure
allows for easy visualization and understanding of the
decision-making process, making DT particularly valuable
in various applications including HAR (Xiao et al., 2013).
In the context of health promotion, decision trees can
significantly enhance HAR by enabling the automatic
identification and classification of physical activities
performed by individuals. This capability is crucial for
developing interventions aimed at promoting physical
activity and improving overall health outcomes. For
instance, decision trees can analyze data collected from
wearable sensors to classify activities such as walking,
running, or sitting, thereby providing insights into an
individual's activity levels and patterns (Xiao et al., 2013).
By accurately recognizing these activities, public health
practitioners can tailor health promotion strategies to
encourage more active lifestyles among specific
populations (Sanchez and Skeie, 2018). Moreover, decision
trees can be integrated into smart home environments to
monitor the physical activities of older adults or individuals
with disabilities. This application not only enhances safety
by detecting falls or unusual inactivity but also supports the
development of personalized health interventions that
promote physical activity and independence (Sanchez and
Skeie, 2018). The ability of decision trees to handle various
types of data, including time-series data from sensors,
makes them particularly suitable for HAR tasks, where the

temporal aspect of activities is essential for accurate
classification (Hendriks et al., 2019). Additionally, decision
trees can be combined with other machine learning
techniques, such as support vector machines or genetic
algorithms, to improve classification performance and
robustness in HAR applications (Chen et al., 2011; Li and
Fan, 2014). This hybrid approach can lead to more accurate
predictions and a better understanding of the factors
influencing physical activity, ultimately informing public
health initiatives aimed at enhancing community health and
well-being. In summary, decision trees are a powerful tool
for HAR offering a structured and interpretable method for
analyzing physical activities. Their application in health
promotion can lead to more effective interventions that
encourage active lifestyles and improve health outcomes,
particularly in vulnerable populations.

2.2 Discriminant Analysis

DA is a statistical classification method that constructs
linear or quadratic functions to differentiate between
predefined groups by maximizing the separation among
them (Fisher, 1936). It allows the researcher to assess
whether significant differences exist between the groups
based on the predictor variables. Additionally, it evaluates
the accuracy of the classification. The discriminant analysis
is widely used in the field of healthcare. (Tintorer et al.,
2015) employed the discriminant analysis to explore the
factors affecting the adoption of clinical communities of
practice among healthcare professionals. Kabir (2021)
evaluated factors that influence maternal healthcare service
utilization. Ciucd et al. (2020) distinguished between
individuals who undergo screening and those who do not for
colorectal cancer. Rivenbark and Ichou (2020) found that
exploring discrimination in healthcare as a barrier to access
for socially disadvantaged populations. In healthcare,
discriminant analysis has been utilized to evaluate the
discriminatory properties of enabling factors on healthcare
service utilization (Rivenbark and Ichou, 2020), determine
the ability of variables to discriminate between different
groups such as screeners and non-screeners for colorectal
cancer (Ciucd et al., 2020), and understand how
discrimination acts as a barrier to care for vulnerable
populations (Chen et al., 2011). By utilizing this statistical
technique, researchers can gain valuable insights into the
complex interplay of factors influencing healthcare
utilization, trust, and disparities among diverse populations.

2.3 Logistic Regression

LR is a fundamental statistical technique for modeling
binary outcomes by estimating the probability of an event
occurring based on predictor variables (Cox, 1958). The
logistic function enables the transformation of linear
combinations of independent variables into probabilities,
making it particularly useful in disease prediction and
healthcare studies (Hosmer et al., 2013). For example, in a
study comparing screeners and non-screeners for colorectal
cancer, logistic regression could be utilized to identify the
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factors significantly influencing the likelihood of being a
screener (Sherchan et al., 2022). In healthcare research,
logistic regression has been employed to explore various
aspects of healthcare delivery and patient outcomes
(Hosmer et al., 2013; Sherchan et al., 2022).

2.4 Naive Bayes Classifiers

Naive Bayes classifiers are probabilistic models that
apply Bayes’ theorem wunder the assumption of
independence between predictor variables (Duda and Hart,
1973). Sherchan et al. (2022) optimized the Naive Bayes
classifier method to improve accuracy in diagnosing the
disease. Affandi (2023) applied the Naive Bayes classifier
in sentiment analysis of student experiences during online
learning, demonstrating high accuracy in classifying
sentiments related to online lectures during the COVID-19
pandemic. In conclusion, Naive Bayes classifiers play a
significant role in healthcare research by enabling accurate
predictions, sentiment analysis, and classification tasks.
Their simplicity, efficiency, and ability to handle
categorical data make them valuable tools for various
healthcare applications, ranging from disease diagnosis to
sentiment analysis and community question classification.

2.5 Support Vector Machines

SVMs are supervised learning models that identify the
optimal hyperplane to separate data into distinct classes
(Cortes and Vapnik, 1995). SVMs have been utilized in the
development of an intelligent health monitoring system
using IoT and advanced machine learning techniques to
provide accurate predictions and assist healthcare workers
in giving appropriate interventions (Chandra et al., 2023).
SVMs have been employed in the efficient diagnosis of liver
disease, where the algorithm was optimized with a row
Search Algorithm to enhance diagnostic accuracy
(Devikanniga et al., 2018). SVMs have been used in
knowledge discovery for hospital-acquired catheter-
associated urinary tract infections, demonstrating their
utility in analyzing and predicting healthcare-associated
infections (Park et al., 2019). Moreover, SVMs have been
applied in the field of voice pathology assessment, where
they were used as a classifier in a healthcare big data
framework to assess voice disorders efficiently (Hossain
and Muhammad, 2016). Additionally, SVMs have been
employed in the context of COVID-19 outbreak prevention,
where sentiment analysis was conducted to predict
individuals’ awareness of precautionary procedures using
machine learning models, including SVM (Aljameel et al.,
2020). In conclusion, SVMs play a crucial role in healthcare
applications by enabling accurate predictions, disease
diagnosis, infection forecasting, and sentiment analysis.
Their ability to handle complex data and classify
information efficiently makes them valuable tools for
improving healthcare outcomes and decision-making
processes. Based on these previous related researches on
HAR (Shoaib et al., 2013; Hsu et al., 2015; Dengel et al.,

2016; Yin, 2016), the findings indicated that SVMs

generally provided higher accuracy compared to decision

trees, which is consistent with findings from other studies
that have demonstrated the effectiveness of SVMs in
activity recognition tasks.

SVMs has a great impact on transforming the input data
into a higher-dimensional space, making it easier for the
SVMs to find a hyperplane that separates the classes
effectively. Common SVMs kernel functions are:

Common SVMs kernel functions are:

(1) Linear kernel:K (xl-,x]-) = x;X;, which is called “linear
SVM?” in this study.

(2) Polynomial kernel: K(xi,xj) = (xi X+ c)d, where ¢
is a constant to control the influence of higher-order
terms and d denotes the degree of the polynomial, with
d=2 is called “Quadratic SVM” and d=3 is called “cubic
SVM?” in this study.

d
(3) Gaussian kernel: K(xi,xj) = exp (—y”xi — x]-||2) R
where y controls the width of the Gaussian function. A
larger y focus on local points, while a smaller y captures
global patterns. With y = 0.5,y =1 and y = 2 would

be called “fine Gaussian SVM”, “medium Gaussian
SVM,” and “coarse Gaussian SVM” in this study.

2.6 Nearest Neighbor

KNN algorithm is a non-parametric classification
technique that assigns a data point to the class most common
among its nearest neighbors (Cover and Hart, 1967). The
Nearest Neighbor (NN) method, particularly in its KNN
form, is a widely utilized algorithm in machine learning and
data mining, characterized by its simplicity and
effectiveness in classification and regression tasks. In the
context of public health, KNN has been applied to various
domains, including  disease  prediction, patient
classification, and health outcome analysis. One notable
application of KNN in public health is in the detection and
classification of diseases. For instance, utilized the K-
Nearest Neighbor method to develop an expert system for
detecting immunodeficiency, demonstrating its
effectiveness in predicting health conditions based on
patient data (Ramadhan et al., 2019). Additionally, research
on large-margin nearest neighbor classifiers provides
insights into enhancing classification performance, which is
crucial for accurate health assessments (Domeniconi et al.,
2005). In summary, the Nearest Neighbor method,
especially through its KNN variant, has significant
applications in public health, ranging from disease detection
to environmental health assessments. Its ability to handle
complex datasets and provide accurate classifications
makes it a vital tool in the ongoing efforts to improve health
outcomes and inform public health policies. Despite its
simplicity and efficiency, KNN’s accuracy is sensitive to
the choice of distance metric and the number of neighbors
used, which necessitates careful parameter tuning.
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2.7 Ensemble Learning
EL is a machine learning paradigm that combines

multiple classifiers to improve prediction accuracy and
reduce overfitting (Dietterich, 2000). EL involves
combining multiple individual machine learning models to
create a more robust and accurate predictive model by
leveraging the diversity of different models to improve
overall prediction performance. In healthcare, ensemble
learning has been increasingly utilized to enhance disease
diagnosis, risk prediction, treatment response modelling,
and various other healthcare applications. For example, in a
study focusing on cardiovascular disease risk prediction,
ensemble meta-learning using SVM was employed to
improve the accuracy of risk prediction models (Punn,
2024). EL has been applied to Alzheimer’s disease
classification by integrating deep ensemble learning
techniques with deep learning systems to enhance
prediction accuracy (An et al., 2020). It has also been
utilized for diagnosing chronic obstructive pulmonary
disease (COPD), where bagging ensemble learning and
artificial neural network classifiers improved detection
accuracy (Siddiqui, 2024). In the area of healthcare claim
fraud detection, ensemble-based algorithms have been used
to predict social behavior with high accuracy in imbalanced
data environments (Kaddi, 2023). Another application is the
prediction of health trends on social media platforms, where
ensemble techniques have demonstrated effectiveness in
analyzing health-related data from social networks
(Agarwal et al., 2019). Additionally, ensemble learning has
been employed for high-dimensional imbalanced credit
scoring datasets, with multiple optimized ensemble
approaches proposed to develop reliable and accurate credit
scoring models (Lenka et al., 2023). In conclusion,
ensemble learning plays a crucial role in healthcare research
by combining the strengths of multiple machine learning
models to improve predictive accuracy, enhance disease
diagnosis, and optimize treatment strategies. By leveraging
the diversity of different models, ensemble learning
techniques have shown promise in addressing complex
healthcare challenges and improving decision-making
processes.

Specifically, the ensemble methods combine multiple
wear learners to form a strong, more accurate models. Each
ensemble method utilizes a different strategy to aggregate
weak learner for improved performance. In this study,
several ensemble methods would be applied, such as
Ensemble Boosted Trees, Ensemble Bagged Trees,
Ensemble Subspace Discriminant, Ensemble Subspace
KNN and Ensemble RUSBoosted Trees, detailed as
follows:

(1) Ensemble boosted trees: Boosting combines weak
learners iteratively, focusing on the errors of the
previous iteration. Each subsequent tree is trained to
correct the errors made by the preceding ones. Common
boosting  algorithms: AdaBoost, LogitBoost,
GentleBoost.

(2) Ensemble  bagged trees: Bagging (Bootstrap
Aggregating) trains multiple trees on different
bootstrapped samples of the training data, with
predictions are being aggregated (majority voting for
classification).

(3) Ensemble subspace discriminant: Trains multiple
discriminant classifiers (e.g., linear discriminant
analysis) on random subspaces of the feature space.

(4) Ensemble subspace KNN: Combines KNN classifiers
trained on random subspaces of the feature space. Each
subspace is a random subset of features.

(5) Ensemble RUSBoosted Trees: RUSBoost (Random
Under-Sampling Boost) combines boosting with
random under-sampling of the majority class in
imbalanced datasets. Each iteration under-samples the
majority class and trains a tree on the under-sampled
data.

2.8 Neural Networks

NNs are computational models inspired by the human
brain, consisting of interconnected artificial neurons
arranged in layers that process input data and generate
predictions (McCulloch and Pitts, 1943). Neural Networks
are a class of machine learning algorithms inspired by the
structure and function of the human brain. They consist of
interconnected nodes, or neurons, organized in layers that
process input data and generate output predictions. Tiwari,
(2023) utilized the neural networks to enhance medical
decision-making processes and improve patient outcomes.
Sav et al. (2022) applied the neural networks to detect
healthcare claim fraud, where they were used to predict

social behavior accurately in an imbalanced data
environment.
Furthermore, NNs have been employed in the

development of an intelligent health monitoring system
using [oT and advanced machine learning techniques to
assist healthcare workers in providing appropriate
interventions (Chandra et al., 2023). Moreover, Sav et al.
(2022) adopted the NNs to predict the health trends on
social media platforms, demonstrating their effectiveness in
analysing health-related data from social networks and
aiding in medical diagnosis and treatment. Haq et al. (2022)
applied the NNs to classify brain tumors in IoT-enabled
healthcare systems, showcasing their utility in medical
image analysis and disease classification. Almutairi et al.
(2022) utilized the neural networks to detect elderly
behaviors, highlighting their role in monitoring and
improving the well-being of elderly individuals. As
mentioned above, the neural networks are capable of
learning complex patterns from data and make informed
decisions has made them valuable tools in advancing
healthcare research and practice.

A comparison of the strengths and weaknesses of the
reviewed classifiers is presented in Table 1. In this study,
the three-axis signal, SSF, and the proposed GA-optimized
EWMA features are respectively fed into these classifiers

https://doi.org/10.6703/1JASE.202506_22(2).004
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Table 1. A comparison of several classifiers

strengths

weaknesses

classifier model type
1.DT non-linear, tree-based
2.DA linear or quadratic
3.LR linear

4. Naive Bayes Classifiers probabilistic, linear

5. SVMs linear or non-linear kernels

6. KNN instance-based, non-
parametric

7. EL combines multiple models
(e.g., bagging, boosting)

8. NNs non-linear

* Easy to interpret and
visualize

* Easy to interpret and
visualize

Works well with normally

distributed classes

* Simple and interpretable

* Works well with linearly
separable data

* Performs well with high
dimensional data

* Handles irrelevant
features effectively

* Effective in high
dimensional spaces

* Versatile through kernel
trick

* Robust against overfitting

* No training phases

* Adaptable to multi-class
problems

* Improved accuracy

* Reduces overfitting

* Versatile and can handle
various data types

* Flexible and powerful
* Can model complex
patterns

* Basy to overfitting
* May create biased trees if
some classes dominate

Assumes normality and

equal covariance

* Limited to linear decision
boundaries

* May underperform with
complex patterns

Can perform poorly if

feature independence is

violated

* Can be computationally
intensive

* Less interpretable

* Careful parameter tuning

Sensitive to irrelevant
features and feature scaling

* Can be complex to
implement

* Less interpretable

* Higher computational
cost

* Requires large amounts
of data

* Computationally
intensive

* Less interpretable
(black box)

, and a thorough comparison is provided to demonstrate the
efficiency of the proposed methodology.

3. MATERIALS AND METHODS

In this section, a GA-optimized EWMA feature
engineering method will be presented in order to enhance
the accuracy of HAR. Fig. 1 shows the flow chart of the
proposed HAR method, with details provided as follows:
Step 1. Acquire data

The three-axial sensor data collected from 30
experimental subjects were recorded using a Galaxy S Il cell
phone’s accelerometer. The acceleration will sample at 50
samples per second. Six human activities, including walking,
walking upstirs, walking downstairs, witting, standing and
lying down were used as classification labels. The recorded
data is accessible from https://www.mathworks.com/
matlabcentral/fileexchange/53001-code-for-webinar-
signal-processing-and-machine-learning-techniques-for-
sensor-data-analytics

Step 2. Statistical signal features

The three-axis sensor data was transformed into 66
statistical signal features, including the mean, RMSE,
autocorrelation, peak analysis, and time-frequency analysis.
Step 3. EWMA-based statistical signal features

Given a set of EWMA weights for each statistical signal
feature (denoted as S), where , then EWMA values at time ¢
for each variable can be obtained by:

EWMA, = 1S, + (1 — 2)EWMA,_, =

Ai
1-(1-1;)B

)s. ()

where B is the backward operator (i.e. BS; = S;_). By

applying EWMA to input features, we can smooth out short-
term fluctuations and highlight long-term trends. This can
improve the stability and robustness of the model,
particularly in noisy datasets. Specifically, applying
EWMA weights in a classification problem can make the
model more responsive to recent changes in data, which is

https://doi.org/10.6703/1JASE.202506_22(2).004
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Fig. 1. The flow chart of proposed human activity recognition

beneficial in dynamic environments. However, it also
requires careful tuning to avoid overfitting or loss of
important historical information. In the next step, we will
introduce how to determine the optimal EWMA weights for
each statistical signal features. Another advantage of the use
of EWMA-based statistical signal features is that it can
conduct variable reduction once the is set to be 0.
Step 4. Optimizing EWMA weights by using GA

GA is a powerful tool for solving complex optimization
problems due to their global search capability, flexibility,
robustness, and scalability. They are particularly
advantageous in situations where the search space is large,
the objective function is non-linear or noisy, and traditional
optimization methods struggle to find optimal solutions.
Therefore, the GA will be used to find the optimal EWMA
weights. Fig. 2 shows the flowchart of GA implementation

for searching the optimal EWMA weights

Detailed steps for GA implementation are:
(1) Initializing the search agents

By giving a population size d, we can generate a d X 66
search agent matrix, with0 < A; < 1, which can be denoted
as:

[/11,1 A A1 65 /11,66]
l — 12,1 12,2 ﬂ'2,65 ){2,66 (2)
Aoy Aag Aaes  Aaes

(2) Evaluate the fitness function

The optimal EWMA weights for each statistical signal
feature can be determined by maximizing the accuracy for
each class, which can be expressed as:

https://doi.org/10.6703/1JASE.202506_22(2).004
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Table 2 The transformed 66 statistical signal features.

statistics feature name
mean TotalAccXMean, TotalAccYMean, TotalAccZMean
RMSE BodyAccXRMS, BodyAccYRMS, BodyAccZRMS

autocorrelation ~ BodyAccXCovZeroValue, BodyAccXCovFirstPos, BodyAccXCovFirstValue,
BodyAccYCovZeroValue, BodyAccYCovFirstPos, BodyAccYCovFirstValue,
BodyAccZCovZeroValue, BodyAccZCovFirstPos, BodyAccZCovFirstValue

peak analysis BodyAccXSpectPos1, BodyAccXSpectPos2, BodyAccXSpectPos3, BodyAccXSpectPos4,
BodyAccXSpectPos5, BodyAccXSpectPos6, BodyAccY SpectPosl, BodyAccY SpectPos2,
BodyAccYSpectPos3, BodyAccY SpectPos4, BodyAccY SpectPos5, BodyAccY SpectPoso6,
BodyAccZSpectPos1, BodyAccZSpectPos2, BodyAccZSpectPos3, BodyAccZSpectPos4,
BodyAccZSpectPos5, BodyAccZSpectPos6, BodyAccXSpectVall, BodyAccXSpectVal2,
BodyAccXSpectVal3, BodyAccXSpectVal4, BodyAccXSpectValS, BodyAccXSpectVal6,
BodyAccYSpectVall, BodyAccY SpectVal2, BodyAccY SpectVal3, BodyAccY SpectVal4,
BodyAccYSpectVal5, BodyAccYSpectVal6, BodyAccZSpectVall, BodyAccZSpectVal2,
BodyAccZSpectVal3, BodyAccZSpectVal4 , BodyAccZSpectValS5, BodyAccZSpectVal6

time-frequency  BodyAccXPowerBandl, BodyAccXPowerBand2, BodyAccXPowerBand3, BodyAccXPowerBand4,

analysis BodyAccXPowerBand5, BodyAccYPowerBand1, BodyAccYPowerBand2, BodyAccYPowerBand3,

BodyAccYPowerBand4, BodyAccYPowerBand5, BodyAccZPowerBand1, BodyAccZPowerBand?2,
BodyAccZPowerBand3, BodyAccZPowerBand4, BodyAccZPowerBand5

Initialize the parameters
1. population size: d
2. lower and upper bounds: ¢ < 3, <1
3. Fitness function
4. Maximum iteration: Max_iter

A
Initialize the search agents

Aoy A’lvl }"lﬁi Mg
A, A, Ay L
A= _| _z : _:,rs _:6!
7‘4,1 Ao ;“zl,ﬁ5 }“41,66

l

Evaluate the fitness of objective
function

|

Elite matrix
7“;,1 7“{,2 o )‘;,55 )\’;,66
_ 7"’2,1 }‘;,z o 7"’2,65 7\"2,66

»!

' ' ' '
)”4,1 7“4,2 )\’11,65 )\’(1,66

iter = iter +1

Optimal EWMA weights
A= (}‘1’)‘2’“"7‘66)

Fig. 2. GA implementation for searching EWMA weights
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max Accuracy(Class 1) + Accuracy(Class 2) + -+

+ Accuracy(Class j)
S.t. 0 < Ai < 1
i = 12,66 ©)
Where
Accuracy(Class j) = L4 Y e ’

Total number of ins tances
TP is the number of instances where the model correctly
predicted the positive class and TN is the number of
instances where the model correctly predicted the negative
class.
(3) Generate the elite matrix

A matrix that stores the best-performing individuals (elite
individuals) from the current population. The goal of elitism
is to preserve the best solutions found so far, ensuring that
the Genetic Algorithm does not lose high-quality solutions
during the evolution process. Without elitism, there's a risk
that the crossover and mutation operations could degrade or
lose the best solutions, especially if the population size is
small or if the algorithm hasn't fully converged. The elite
matrix can be expressed as

[/11,1 /11,2 /11,65 /11,66]
/1' — /12,1 /12,2 /12,65 /12,66 (4)
/111,1 Ad,z /1d,65 /111,66

(4) Terminal criterion
In this study, the terminal criterion of a maximum number
of generations is adopted, meaning the GA stops after
reaching a predefined number of generations (iterations).
The optimal EWMA weights for each feature are
determined when the maximum number of generations is
reached and are denoted as 1* = (43,13, -+, A&g)-
Step 5. Classifier comparison

The proposed GA- EWMA features will be used in
various classifiers, including DT, DA, LR, Naive Bayes
classifiers, SVM, EL, and NNs. Table 3 lists the classifier
types and their model methods. Therefore, there are total 30
classifiers will be implemented for a comparison.

4. RESULTS AND DISCUSSION

This section will first introduce the data characteristics.
In Case 1, the original three-axis data X, Y, and Z are used
as inputs to the classifiers. Case 2 illustrates the use of SSF
as inputs, while Case 3 demonstrates the use of proposed
GA-optimized EWMA features.

4.1 Data resources

This study uses the experimental data of Davide Anguita
et al. (2013) to collect information about human daily
behavior by installing a Samsung Galaxy II smartphone on
the waist of the human body to sense human body activities.
30 volunteers aged 19 to 48 years old were used to perform
such a task, and were divided into six activity categories:

Table 3. Classifier types and their model methods
classifier model method

1.DT fine tree
medium tree
coarse tree
linear discriminant
quadratic discriminant
logistic regression
Gaussian Naive Bayes
kernel Naive Bayes
linear SVM

quadratic SVM

cubic SVM

fine Gaussian SVM
medium Gaussian SVM
coarse Gaussian SVM
fine KNN

medium KNN

coarse KNN

cosine KNN

cubic KNN

weighted KNN
boosted trees

bagged trees

subspace discriminant
subspace KNN
Rusboosted trees
narrow NN
medium NN
wide NN
bilayered NN
trilayered NN

2.DA

3.LR

4. Naive Bayes
classifiers

5.SVM

6. KNN

7.EL

8. NNs

standing, sitting, lying, walking, going downstairs and
going upstairs. Each action was attempted at least twice and
based on Table 4 shows the experimental activity procedure
and duration. The sampling frequency is 50 HZ,
corresponding to the activity category, and the three- axis
data of X, Y, and Z in the accelerometer are recorded. The
experimental design is divided into static and dynamic
activities, totaling 192 s. Among them, the experimental
procedure of static activity (A) is standing position (1),
which refers to the first standing position 15 s, and so on,
the static activity totals 90 s.

In the dynamic activity (B) experimental program,
walking (1) refers to the first 15 s of walking, and so on, the
total number of dynamic activities is 102 s. Table 5. defines
the representative activities of each activity class in the
following analysis. There are a total of 10,299 observations,
with 70% of the observations used as the training dataset,
while 30% used as the testing dataset. The execution
environment is under Intel(R) Core (TM) i15-8400H CPU@
2.81 Hz, NVIDGeForce GTX 1060 3GB and Sav et al.
(2022) MATLAB 2021a is used for implementing the
program.
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Table 4. Experimental activity program

static activity (A) time (s) dynamic activity (B) time (s)
start 0 walking (1) 15
standing position (1) 15 walking (2) 15
sitting position (1) 15 going downstairs (1) 12
standing position (2) 15 going upstairs (1) 12
lying position (1) 15 going downstairs (2) 12
sitting position (1) 15 going upstairs (2) 12
sying position (2) 15 going downstairs (3) 12
going upstairs (3) 12
stop 0
subtotal 90 subtotal 102
total 192 s
Table 5. Representative activities of the confusion matrix diagram
dynamic activity (B) static activity (A)
activities Class activities Class
walking 1 standing 4
going downstairs 2 sitting 5
going upstairs 3 lying 6

4.2 Case 1: Original data X, Y, Z as input variables

Table 6 shows the classification results when X, Y, and Z
are used as input features. The results indicate that the
lowest testing accuracy, 42.7%, is achieved with the cubic
SVM classifier, while the coarse KNN approach yields the
highest testing accuracy at 76.1%. In terms of computation
time, the cubic SVM classifier spent 389,928 s (i.c., about
451 days) to train the model, while the quadratic
discriminant classifier took only 3.52 s. Generally speaking,
the coarse KNN classifier seems to be the better classifier
when using original data as the input. From the confusion
matrix diagram of coarse KNN in Fig. 3, it can be found that
the average accuracy of the three static activities (i.e. Class
4-6) is 96.1%, which is compared to the average of 51.5%
of the three dynamic activities (Class 1-3).

4.3 Case 2: 66 SSFs

In Case 2 of this study, the original data is transformed
into 66 SSFs, with the classification results presented in
Table 7. The results show a significant increase in accuracy
compared to using the original variables as inputs. Table 7
indicates that bagged trees and medium Gaussian SVM are
the top-performing classifiers when SSFs are used as input
features. The training and testing accuracies for the bagged
trees classifier are 94.5% and 87.4%, respectively, while for
the medium Gaussian SVM classifier, they are 93.8% and
88.5%, respectively. Fig. 4 displays the confusion matrix for
the bagged trees classifier. It shows that the average
accuracy rate for dynamic activities has increased to 95.7%
(compared to 51.5% in Case 1). This indicates that the use
of SSF's has significantly improved the recognition accuracy
of dynamic activities. Additionally, the computation time
has also been significantly reduced compared to Case 1.
4.4 Case 3: GA-optimized EWMA features

In this Case, we use bagged trees as the classifier in order
to determine the EWMA weights. The population size of 50,
crossover rate 0.3, mutation rate 0.2 and maximum iteration
100 are used in the GA implementation. Fig. 5 shows the
GA convergence plot for searching the EWMA weights.
Table 8 shows the acquired GA-optimized EWMA weights
for 66 SSFs. It shows that the number of SSFs has been
reduced from 66 to 35. From Table 9, it shows that bagged
trees has a training accuracy of 99.6% and testing accuracy
0f 95.2%. The training time in Case 1 is 1254.2 s, 105.01 s
in Case 2, and only 77.56 s when using the GA-optimized
EWMA features. Furthermore, the GA-optimized EWMA
features were also applied to other classifiers, as shown in
Table 9, where the cubic SVM demonstrated the best
training time. Table 9 shows that using the GA-optimized
EWMA features is capable of enhancing the recognition
accuracy.

4.5 Discussion and Comparison

Fig. 6 displays the comparison results of training time
between the three-axis method, SSF, and the proposed
method when ensemble bagged trees is used as the classifier.
The results indicate that the three-axis method requires the
longest training time, while both SSF and the proposed
method significantly reduce training time. Fig. 7
demonstrates the comparison results of recognition
accuracy of the training and testing. Results shows that the
test accuracy rate boosts to 87.4% from 74.6% when the
statistical features are used. However, the SSF approach
increases the number of inputs from 3 to 66. In contract, the
proposed method not only enhance the accuracy both in
training and testing, but also reduce the number of inputs to
35, leading to the training time takes only 19.3 s.
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Table 6. Original data X, Y, Z accuracy rate of each classifier

. training testing training
classifier model method accuracy (%) accuracy (%) time (s)
DT fine tree 71.4% 71.3% 44.25
medium tree 67.7% 67.9% 40.34
coarse tree 56.3% 56.3% 37.91
DA linear discriminant 52.6% 52.6% 6.05
quadratic discriminant 66.3% 66.2% 3.52
LR logistic regression

*applied to discrete data, this study adopts the verification of time series data, so
it will not be collected if it cannot be verified.

Naive Bayes Gaussian Naive Bayes 63.3% 63.2% 9.3
classifiers kernel Naive Bayes 68.8% 68.8% 14754
SVM linear SVM 48.4% 49.7% 340965
quadratic SVM 48.1% 49% 343071
cubic SVM 41% 42.7% 389928
fine Gaussian SVM 75.7% 75.5% 160494
medium Gaussian SVM 73.5% 73.5% 175052
coarse Gaussian SVM 69.2% 69.1% 203506
KNN fine KNN 71% 70.9% 20.46
medium KNN 75.2% 75% 39.77
coarse KNN 76.1%* 76.1%* 100.63
cosine KNN 63.8% 64.1% 7052.9
cubic KNN 75.1% 75% 99.86
weighted KNN 73.8% 73.8% 51.66
EL boosted trees 68.7% 68.8% 535.31
bagged trees 74.5% 74.6% 1254.2
subspace discriminant 53% 52.7% 157.07
subspace KNN 64.9% 64.8% 440.87
Rusboosted trees 67.9% 67.9% 773.56
NNs narrow NN 70.9% 71% 3768
medium NN 72.8% 72.1% 5098
wide NN 73.8% 74.1% 9009.8
bilayered NN 72.9% 72.3% 4795
trilayered NN 72.3% 72.1% 6643
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Model 5.3(Coarse KNN)

1/836% | 25.5% | 13.5% | 26% | 4.9% 536% | 46.4%
2|26.1% MH 11.0% | 1.5% | 4.5% | 0.0% 568% | 432%
% 3|31.4% | 19.7% |443% | 1.7% | 2.9% 443% | 557%
s
o
2
4] 02% | 0.1% | 0.0% [EXETE 4.9%
5[ 06% | 04% | 00% | 5.4% [REELA

To further demonstrate the efficiency of the proposed
method, Fig. 8 displays the comparison results of training
time when cubic SVM is used as the classifier. It
demonstrates that the three-axis method requires 4.51 days
to train the cubic SVM model, making it time-inefficient. In
contrast, both SSF and the proposed method are
significantly more time-efficient than the three-axis method.
Fig. 9 shows the recognition accuracy. It displays that the
proposed method has superior training and testing accuracy
compared to the three-axis and SSF methods. Furthermore,
it is noted that the prediction time is less than 0.01 s when
using the trained ensemble bagged tree and cubic SVM

6 0.0% 00.0%
e models, making the proposed method suitable for real-time
Prodicied Class HAR applications.
Fig. 3. Model 5.3 (coarse KNN) testing confusion matrix
diagram
Table 7. Accuracy rate of each classifier under the statistical signal feature
. training testing training
classifier model method accuracy (%) accuracy (%) time (s)
DT fine tree 91.8% 77.5% 13.99
medium tree 87.9% 82.7% 10.28
coarse tree 76.5% 69.6% 9.95
DA linear discriminant 88.7% 86% 9.38
quadratic discriminant 79.2% 74.8% 8.62
LR logistic regression
*applied to discrete data, this study adopts the verification of time series data,
so it will not be collected if it cannot be verified.
Naive Bayes Gaussian Naive Bayes 72.3% 68.9% 9.08
classifiers kernel Naive Bayes 82.5% 80.7% 298.1
SVM linear SVM 91.8% 87.5% 17.87
quadratic SVM 93.5% 86.8% 20.54
cubic SVM 92.9% 86.5% 34.89
fine Gaussian SVM 69.3% 62.7% 67.82
medium Gaussian SVM 93.8% 88.5%* 23.27
coarse Gaussian SVM 89.9% 85.6% 23.06
KNN fine KNN 85.9% 79% 62.97
medium KNN 87% 80.7% 62.72
coarse KNN 83% 76.9% 67.56
cosine KNN 87.2% 82% 74.52
cubic KNN 85.3% 84.4% 855.31
weighted KNN 87.7% 81.3% 96.41
EL boosted trees 90.7% 85.6% 147.84
bagged trees 94.5%%* 87.4% 105.01
subspace discriminant 86.6% 83.9% 109.2
subspace KNN 90.2% 84.7% 447.41
Rusboosted trees 88.6% 82.8% 177.3
NNs narrow NN 92.1% 86.6% 177
medium NN 91.5% 86.6% 254.28
wide NN 91.5% 85.9% 287.4
bilayered NN 92% 87.4% 259.82
trilayered NN 92.2% 86.1% 320.21
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Model 6.2 (Bagged Trees)

il 97.3% 2.0% 2.7%

2.9%

w

71%

True Class

B

8.7%

11.7% [Reisieas] 11.8%

1 2 3 4 5 6
Predicted Class

Fig. 4. Model 6.2 (bagged Trees) testing confusion matrix diagram

%107
. Best fitness
- Mean fitness

Fitness value
o]
)

0 10 20 30 40 50 60 70 80 90 100
Generation

Fig. 5. Convergence plot

Table 8. GA-optimized EWMA weights

SSF No. 1 2 3 4 5 6 7 8 9 10 11
N 004 08 070 000 000 046 097 100 095 024 0.00
SSF No. 12 13 14 15 16 17 18 19 20 21 22
N 030 0.00 0.00 0.00 000 0.00 000 009 009 .001 0.20
SSF No. 23 24 25 26 27 28 29 30 31 32 33
N 0.00 0.02 000 1.00 0.03 1.00 0.00 000 0.00 0.02 0.00
SSF No. 34 35 36 37 38 39 40 41 42 43 44
N 099 0.00 1.00 004 000 000 038 006 0.00 0.03 0.00
SSF No. 45 46 47 48 49 50 51 52 53 54 55
N 0.08 0.00 068 000 000 007 100 070 0.02 0.00 0.00
SSF No. 56 57 58 59 60 61 62 63 64 65 66
N 0.00 0.00 0.00 0.03 000 000 0.11 039 092 0.02 0.00
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Table 9. Accuracy rate of Performance-based features classifier

. training testing training time
classifier model method accuracy (%) accuracy (%) )
DT fine tree 97.7% 89.4% 11.02
medium tree 93% 90.6% 9.19
coarse tree 77.2% 76.2% 8.93
DA linear discriminant 87.3% 66.7% 6.27
quadratic discriminant 75.2% 69.6% 3.52
LR logistic regression
*applied to discrete data, this study adopts the verification of time series data, so it
will not be collected if it cannot be verified.
Naive Bayes Gaussian Naive Bayes *unable to calculate
classifiers kernel Naive Bayes 88.9% 86.4% 3293
SVM linear SVM 98.6% 94.1% 19.83
quadratic SVM 99.6% 93.2% 19.65
cubic SVM 99.8%%* 92.8% 19.32%*
fine Gaussian SVM 95.4% 74.9% 65.49
medium Gaussian SVM 98.9% 94.8% 20.86
coarse Gaussian SVM 96.8% 91.7% 29.37
KNN fine KNN 98.9% 88% 49.24
medium KNN 97.3% 88.8% 50.56
coarse KNN 92.2% 86.7% 54.11
cosine KNN 97% 89.5% 60.04
cubic KNN 96.3% 87.5% 563.27
weighted KNN 98.5% 89.5% 81.83
EL boosted trees 97.8% 94.6% 102.39
bagged trees 99.6% 95.2%* 77.56
subspace discriminant 92.7% 89% 77.28
subspace KNN 99.6% 93% 367.51
Rusboosted trees 93.6% 89.7% 122.12
NNs narrow NN 99.1% 93.1% 99.02
medium NN 99.3% 94.6% 112.46
wide NN 99.6% 94.4% 126.16
bilayered NN 99.2% 93.6% 133.58
trilayered NN 99.1% 93.2% 148.99
10 Accuralcy comparison of Ensemble Bagged Trees
training time tralnlng
12542 T 100 testlng
1200 - .
1000 80 f 745 746
S 70 -
800 - i; 60 -
5 50 1
? 600 - 2 40 -
400 + %7
20 -
200 - 10
1050 776 0
0 SSF GA-EWMA
XYz SSF GA-EWMA Method

Fig. 6. The

training

Method
time comparison under

implementation of ensemble bagged tree
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Fig. 7. Accuracy comparison under the implementation of

ensemble bagged tree
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Fig. 9. Accuracy comparison under the implementation of
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5. CONCLUSION

HAR is garnering attention across various fields, such as
healthcare, fitness and sports, security and surveillance,
occupational safety, smart environments, and more. This is
largely attributed to the rapid development of mobile
devices, which enable users to record human activity signals
using accelerometers. In this study, we found that the
recognition rates were poor when tri-axial activity signals
collected from accelerometers were directly fed into
classifiers, including DT, DA, LR, Naive Bayes classifiers,
SVM, EL, and NN. The recognition rates are significantly
improved when the three-axis signals were transformed into
SSF. Despite the improvement in accuracy, the increase in
the number of input variables from 3 to 66 has burdened the
computation time. Furthermore, a higher recognition rate is
needed to have an effective decision making. This study
innovatively uses multi-variable EWMA to calculate 66

feature variables, and uses GA to optimize the EWMA
weight value of each feature. The performance based of GA-
optimized EWMA features model can achieve efficiency
with only 35 features. The classification accuracy of the
Ensemble Bagged Tree classifier reaches 95.2%, with a
prediction time of less than 0.01 s. This demonstrates that
the GA-optimized EWMA features model proposed in this
study can significantly enhance recognition accuracy and
time efficiency in HAR. In future work, the proposed
method can be integrated into wearable devices, such as
smartwatches or bracelets, for applications in healthcare,
health promotion, elderly monitoring, and more.
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