J. Throck Watson1

Department of Biochemisty and Molecular Biology Michigan State University East Lansing, Michigan 48824


 

Download Citation: |
Download PDF


ABSTRACT


During the last decade, ‘top-down analysis’ of proteins has been available to those scientists privileged by access to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).  Recent advances in ion trap and orbitrap technology coupled with developments like electron transfer dissociation (ETD) promise to make the ‘top-down’ strategy of protein analysis more widely available.  Here, the general strategy of ‘top-down analysis’ is reviewed, an example of ‘top-down analysis’ of a small protein by ion trap mass spectrometry is described, and the importance of ETD is presented in the context of instrumentation based on the linear ion trap or as hybridized with transmission quadrupole mass spectrometers.


Keywords: mass spectrometry, amino acid sequencing, electron transfer dissociation, ion/ion reactions, MS/MS, protein identification.


Share this article with your colleagues

 


REFERENCES


  1. [1] Biemann, K., and Papayannopoulos, I. A. 1994. Sequencing of Proteins. Accounts of Chemical Research, 27: 370-378.

  2. [2] Biemann K. 1995. Coming of Age of MS in Peptide/Protein Chemistry. Protein Science, 4: 1920-1927.

  3. [3] Johnson, R. S., Martin, S. A., Biemann, K., Stults, J. T., and Watson, J. T. 1987. Novel fragmentation process of peptides by CAD-MS/MS: differentiation of leucine and isoleucine. Analytical Chemistry, 59: 2621-5.

  4. [4] Stults, J. T., and Watson, J. T. 1987. Identification of a new type of fragment ion in the CAD spectra of peptides allows leucine/isoleucine differentiation. Biomed. Environ. Mass Spectrom, 14: 583-6.

  5. [5] Sadagopan, N., and Watson, J. T. 2001. Mass spectrometric evidence for mechanisms of fragmentation of chargederivatized peptides. Journal of the American Society for Mass Spectrometry, 12(4): 399-409.

  6. [6] Stults, J. T. 1990. Peptide sequencing by mass spectrometry. Methods Biochem Anal, 34: 145-201.

  7. [7] Hanash S. 2003.Disease proteomics. Nature, 422(6928): 226-32.

  8. [8] Zhang, G., Fan, H., Xu, C., Bao, H., and Yang, P. 2003. On-line preconcentration of in-gel digest by ion-exchange chromatography for protein ID using HPLC-ESI-MS/MS. Analytical Biochemistry, 313: 327-330.

  9. [9] Le Bihan T., Duewel, H. S., and Figeys, D. 2003. On-line strong cation exchange m-HPLC-ESI-MS/MS for protein identification and process optimization. Journal of the American Society for Mass Spectrometry, 14: 719-727.

  10. [10] Kislinger, T., and Emili, A. 2005. Multidimensional protein identification technology: current status and future prospects. Expert Review of Proteomics, 2: 27-39.

  11. [11] Kelleher, N. L. 2004. Top-down proteomics. Analytical Chemistry, 76, (11): 196A-203A.

  12. [12] Meng, F., Forbes, A. J., Miller, L. M., and Kelleher, N. L. 2005. Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrometry Reviews, 24, (2): 126-134.

  13. [13] Bogdanov, B., and Smith, R. D. 2005. Proteomics by FTICR mass spectrometry: Top down and bottom up. Mass Spectrometry Reviews, 24, (2): 168-200.

  14. [14] Deterding, L. J., Bhattacharjee, S., Ramirez, D. C., Mason, R.P., and Tomer, K. B. 2007. Top-Down and Bottom-Up Mass Spectrometric Characterization of Human Myoglobin-Centered Free Radicals Induced by Oxidative Damage. Analytical Chemistry, 79, (16): 6236-6248.

  15. [15] Elias, J. E., Haas, W., Faherty, B. K., and Gygi, S. P. 2005. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nature Methods, 2, (9): 667-675.

  16. [16] Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., and Cooks, R. G. 2005. The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40, (4): 430-443.

  17. [17] Hu, Q., Cooks, R. G., and Noll, R. J. 2007. Phase-Enhanced Selective Ion Ejection in an Orbitrap MS. Journal of the American Society for Mass Spectrometry, 18: 980-983.

  18. [18] Makarov, A. 2000. Electrostatic axially harmonic orbital trapping: a highpe -rformance technique of mass analysis. Analyticay Chemistry. 72(6): 1156-62.

  19. [19] Makarov, A. 2006. "Theory and Practice of the Orbitrap Mass Analyzer". In: 54th Annual Conf American Social Mass Spectrometry, Seattle, MOF 3:40.

  20. [20] Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K. and Horning, S. 2006. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Analyticay Chemistry, 78: 2113-2120.

  21. [21] Makarov, A., Denisov, E., Lange, O., and Horning, S. 2006. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid MS. Journal of the American Society for Mass Spectrometry, 17: 977-982.

  22. [22] Scherperel, G., Yan, H., Wang, Y., and Reid, G. E. 2006. 'Top-down' characterization of site-directed mutagenesis products of Staphylococcus aureus dihydroneopterin aldolase by multistage tandem mass spectrometry in a linear quadrupole ion trap. Analyst (Cambridge, United Kingdom) 131(2): 291-302.

  23. [23] Sze, S. K., Ge, Y., Oh, H., and McLafferty, F. W. 2002. Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Process National Academy Science. U S A 99, (4): 1774-9.

  24. [24] Stephenson, J. L., McLuckey, S. A., Reid, G. E., Wells, J. M., and Bundy, J. L. 2002. Ion/ion chemistry as a top-down approach for protein analysis. Current Opinion in Biotechnology, 13, (1): 57-64.

  25. [25] McLafferty, F. W., Horn, D. M., Breuker, K., Ge, Y., Lewis, M. A., Cerda, B., Zubarev, R. A., and Carpenter, B. K. 2001. ECD of gaseous multiply charged ions by FT-ICR. Journal of the American Society for Mass Spectrometry, 12: 245-9.

  26. [26] Shi, S. D, Hemling, M. E, Carr, S. A, Horn, D. M., Lindh, I., and McLafferty, F. W. 2001. Phosphopeptide/phosphopr otein mapping by ECD-MS. Analytical Chemistry, 73: 19-22.

  27. [27] Cooper, H. J., Håkansson, K., and Marshall, A. G., 2005. The role of electron capture dissociation in biomolecular analysis. Mass Spectrometry Reviews, 24: 201-222

  28. [28] Davidson, W., and Frego, L. 2002. Micro-HPLC/FTMS with ECD of protein enzymatic digests. Rapid Commun Mass Spectrom, 16: 993-8.

  29. [29] Haselmann, K. F., Budnik, B. A., Olsen, J. V., Nielsen, M. L., Reis, C. A., Clausen, H., Johnsen, A. H., and Zubarev, R. A. 2001. Advantages of external accumulation for ECD in FTMS. Analytical Chemistry, 73: 2998-3005.

  30. [30] Palmblad, M., Tsybin, Y. O., Ramstrom, M., Bergquist, J., and Hakansson, P. 2002. Liquid chromatography and ECDin FT-ICR-MS. Rapid Commun Mass Spectrom, 16: 988-92.

  31. [31] Polfer, N. C., Haselmann, K. F., Zubarev, R. A., and Langridge-Smith, P. R. 2002. Electron capture dissociation of polypeptides using a 3 Tesla FT-ICR-MS. Rapid Commun Mass Spectrom, 16: 936-43.

  32. [32] McFarland, M. A., Chalmers, M. J., Quinn, J. P., Hendrickson, C. L., and Marshall, A. G. 2005. Evaluation and Optimization of ECD Efficiency in FT-ICR MS. Journal of the American Society for Mass Spectrometry, 16: 1060-1066.

  33. [33] Cooper, H. J., Hudgins, R. R., Hakansson, K., and Marshall, A. G. 2002. Characterization of amino acid side chain losses in electron capture dissociation. Journal of the American Society for Mass Spectrometry, 13(3): 241-9.

  34. [34] Haselmann, K. F., Budnik, B. A., and Zubarev, R. A. 2000. ECD of b (2+) peptide fragments reveals the presence of the acylium ion structure. Rapid Communications in Mass Spectrometry, 14: 2242-6.

  35. [35] Adams, C. M., Kjeldsen, F., Zubarev, R. A., Budnik, B. A., and Haselmann, K. F. 2004. ECD distinguishes a single-amino acid and probes the tertiary structure. Journal of the American Society for Mass Spectrometry, 15: 1087-1098.

  36. [36] Chamot-Rooke, J., van der Rest, G., Dalleu, A., Bay, S., and Lemoine, J. 2007. The Combination of Electron Capture Dissociation and Fixed Charge Derivatization Increases Sequence Coverage for O-Glycosylated and O-Phosphorylated Peptides. Journal of the American Society for Mass Spectrometry. FIELD Full Journal Title: Journal of the American Society for Mass Spectrometry, 18, (8): 1405-1413.

  37. [37] Liu, H., and Hkansson, K. 2006. Electron Capture Dissociation of Tyrosine O-Sulfated Peptides Complexed with Divalent Metal Cations. Analytical Chemistry, 78, (21): 7570-7576.

  38. [38] Parks, B. A., Jiang, L., Thomas, P. M., Wenger, C.D., Roth, M. J., Boyne, M. T., II, Burke, P. V., Kwast, K. E., and Kelleher, N. L. 2007. Top-Down Proteomics on a Chromatographic Time Scale Using Linear Ion Trap FT Hybrid MS. Analytical Chemistry, 79, (21): 7984-7991.

  39. [39] Turecek, F. 2003. N-C(alpha) Bond Dissociation Energies and Kinetics in Amide and Peptide Radicals. Is the Dissociation a Non-ergodic Process? Journal of the American Society, 125, (19): 5954-63.

  40. [40] Turecek, F., and Syrstad, E. A. 2003. Mechanism and energetics of intramolecular hydrogen transfer in amide and Peptide radicals and cation-radicals. Journal of the American Chemamic Society, 125, (11): 3353-69.

  41. [41] O'Connor, P. B., Lin, C., Cournoyer, J. J., Pittman, J. L., Belyayev, M., and Budnik, B. A. 2006. Long-Lived Electron Capture Dissociation Product Ions Experience Radical Migration via Hydrogen Abstraction. Journal of the American Society for Mass Spectrometry, 17, (4): 576-585.

  42. [42] Silivra, O. A., Kjeldsen, F., Ivonin, I. A., and Zubarev, R. A. 2005. Electron capture dissociation of polypeptides in a 3D quadrupole ion trap: Implementation and first results. Journal of the American Society for Mass Spectrometry, 16: 22-27.

  43. [43] Syka, J. E. P., Coon, J. J., Schroeder, M. J., Shabanowitz, J., and Hunt, D. F. 2004. Peptide and protein sequence analysis by ETD-MS. Process National Academy Scencei. USA 101: 9528-9533.

  44. [44] Coon, J. J., Syka, J. E. P., Shabanowitz, J., and Hunt, D. F. 2005. Tandem mass spectrometry for peptide and protein sequence analysis. BioTechniques, 38, (4): 519,521,523.

  45. [45] Coon, J. J., Shabanowitz, J., Hunt, D. F., and Syka, J. E. P. 2005. Electron Transfer Dissociation of Peptide Anions. Journal of the American Society for Mass Spectrometry, 16, (6): 880-882.

  46. [46] Chi, A., Bai, D. L., Geer, L. Y., Shabanowitz, J., and Hunt, D. F. 2007. Analysis of intact proteins on a chromatographic time scale by ETD-MS/MS. International Journal of Mass Spectrometry and Ion Processes, 259: 197-203

  47. [47] Mikesh, L. M., Ueberheide, B., Chi, A., Coon, J. J., Syka, J. E. P., Shabanowitz, J., and Hunt, D. F. 2006. The utility of ETD mass spectrometry in proteomic analysis. Biochimica et Biophysica Acta, Proteins and Proteomics, 1764, (12): 1811-1822.

  48. [48] Mikesh, L. M., Ueberheide, B., Chi, A., Coon, J. J., Syka, J. E. P., Shabanowitz, J., and Hunt, D. F. 2006. The utility of ETD mass spectrometry in proteomic analysis. Biochimica Biophysica Acta, Proteins Proteomics, 1764, (12): 1811-1822.

  49. [49] Huang, T. Y., Emory, J. F., O'Hair, R. A. J., and McLuckey, S. A. 2006. Electron-Transfer Reagent Anion Formation via ESI and CAD. Analytical Chemistry, 78: 7387-7391.

  50. [50] Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E. P., and Coon, J. J. 2007. Supplemental Activation Method for High-Efficiency ETD of Doubly Protonated Peptide Precursors. Analytical Chemistry, 79: 477-485.

  51. [51] Liang, X., Hager, J. W., and McLuckey, S. A. 2007. Transmission Mode Ion/Ion Electron-Transfer Dissociation in a Linear Ion Trap. Analytical Chemistry, 79: 1073-1081.

  52. [52] Liang, X., Han, H., Xia, Y., and McLuckey, S. A. 2007. A Pulsed Triple Ionization Source for Sequential Ion/Ion Reactions in an Electrodynamic Ion Trap. Journal of the American Society for Mass Spectrometry, 18: 369-376.

  53. [53] Liang, X., and McLuckey, S. A. 2007. Transmission Mode Ion/Ion Proton Transfer Reactions in a Linear Ion Trap. Journal of the American Society for Mass Spectrometry, 18: 882-890.

  54. [54] Zarling, A. L., Polefrone, J. M., Evans, A. M., Mikesh, L. M., Shabanowitz, J., Lewis, S., Engelhard, V. H., and Hunt, D. F. 2006. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Process National Academy Science. USA 103: 14889-14894.

  55. [55] Catalina, M. I., Koeleman, C. A. M., Deelder, A. M., and Wuhrer, M. 2007. ETD of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Communications in Mass Spectrometry, 21: 1053-1061.

  56. [56] Sparkman, O. D. 2006. Mass Spectrometry PittCon 2006. Journal of the American Society for Mass Spectrometry, 17: 873-884.

  57. [57] Sparkman, O. D. 2007. Mass Spectrometry PittCon 2007. Journal of the American Society for Mass Spectrometry, 18.

  58. [58] Coon, J. J., Ueberheide, B., Syka, J. E. P., Dryhurst, D. D., Ausio, J., Shabanowitz, J., and Hunt, D. F. 2005. Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 102, (27): 9463-9468.

  59. [59] O'Connor, P. B., Cournoyer, J. J., Pitteri, S. J., Chrisman, P. A., and McLuckey, S. A. 2006. Differentiation of Aspartic and Isoaspartic Acids Using ETD. Journal of the American Society for Mass Spectrometry, 17, (1): 15-19.


ARTICLE INFORMATION




Accepted: 2008-01-10
Publication Date: 2007-12-01


Cite this article:

Watson, J.T. 2007. ‘Top Down’ analysis of proteins for the masses. International Journal of Applied Science and Engineering, 5, 81–95. https://doi.org/10.6703/IJASE.2007.5(2).81