Pabitra Kumar Biswas a* and Subrata Banerjee b

aDepartment of Electrical Engineering, Asansol Engg. College, Asanso, West Bengal, India
bDepartment of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal, India


 

Download Citation: |
Download PDF


ABSTRACT


The active magnetic bearing (AMB) is an integral part of the industrial rotational machine. The paper deals with simulation study of three and four coil AMB utilizing Finite Element Method (FEM). This paper also presents how ANSYS software (Ver. 12.1) can be used to perform the magnetic field analysis in the AMB. This work reports ANSYS simulation for two different structure of AMB that uses three and four attraction type magnets placed in 120 and 90 degree apart from each and other respectively. Three and four attractive magnets give an unstable static force, decreasing with greater distance, and increasing at close distances between electromagnet (stator) and rotor. The nonlinear solution of the magnetic vector potential is determined by using the 2-D finite element method. The force is calculated by Maxwell’s stress tensor method. The electromagnetic field distribution and density analysis allow verifying the designed AMB and the influence of the shaft and coil current changes on the bearing parameters.


Keywords: Electromagnetic field; active magnetic bearing; finite element method; ANSYS software; flux pattern.


Share this article with your colleagues

 


REFERENCES


[1] Piłat, A. 2004. FEMLab software applied to active magnetic bearing analysis, International Journal of Applied Mathematics and Computer Science. Spec. iss.: Issues in modeling, optimization and controls, 14, 4: 497-501.

[2] Piłat, A. 2006. Selected magnetostatic analysis of 3-coil Active Magnetic Bearing, expert from the proceeding of the COSMOL Users conference, Prague.

[3] Meeker, D. 1999. Example: Radial Magnetic Bearing (Nonlinear Magneto static,),http://femm.fostermiller. Net/wiki/Examples.

[4] Ludvig, T. and Kuczmann, M. 2008. Design of active magnetic bearing. Journal of optoelectronics and advanced materials, 10, 7: 1834-1836.

[5] Gosiewski, Z. and Falkowski, K. 2003. “Multifunction magnetic bearings”. Biblioteka Naukowa Institute Lotnictwa, Warszawa (in Polish).

[6] Ohmori, K., Kim, S., Masuzawa, T., and Okada, Y. 2002. Design of an Axial-type Self Bearing Motor for Small Axial Pump. Proceedings of The Eighth International Symposium on Magnetic Bearings, Japan, August 26-28.

[7] Maslen, E. 1999. Magnetic Bearings, Charlottesville, Virginia, USA, (personal note).

[8] Reference Guide ANSYS CFX-Solver, Release 12.1.

[9] Mathew, N.O. 2009. “Sadiku, Element of Electromagnetic”. OXFORD University press.

[10] Rothwell, E. J. and Cloud, M. J. 2001. “Electromagnetics”. CRC Press.

[11] Hammond, P. and Sykulski, J. K. 1994. “Engineering Electromagnetism-Physical Processes and Computation”. Oxford University Press, New York.

[12] Pahner, U., Mertens, R., De Gersem, H., Belmans, R., and Hameyer, K. 1998. A parametric finite element environment tuned for numerical optimization. IEEE Transactions on Magnetics, 34, 5: 2936-2939.

[13] Gorazd ˇStumberger, Drago Dolinar, Uwe Pahner, and Kay Hameyer. 2000. Optimization of Radial Active Magnetic Bearings Using the Finite Element Technique and the Differential Evolution Algorithm. IEEE Transactions on Magnetics, 36, 4: 1009-1013.

[14] Antila, M., Lantto, E., and Arkkio, A. 1998. Determination of forces and linearized parameters of radial active magnetic bearings by finite element technique. IEEE Transaction on Magnetics, 34, 3: 684-694.

[15] Hantila, I. F. 1975. A Method For Solving Stationary Magnetic Field in Nonlinear Media. Rev. Roum. Sei. Techn. Electrotechn. Et. Energ, 20, 397.

[16] Hsu, C. T. and Chen, S. L. 2002. Exact Linearization of a Voltage-Controlled 3-Pole Active Magnetic Bearing System. IEEE Transactions on Control Systems Technology, 10, 4: 618-625.

[17] Schweitzer, G. 2002. Active magnetic bearings-chances and limitation. International Centre for Magnetic Bearings, ETH Zurich, CH-8092 Zurich.

[18] Mukhopadhyay, S. C., Ohji, T., Iwahara, M., and Yamada, S. 1999. Design, analysis and control of a new repulsive type magnetic bearing. IEE proc. on Elect. Pwr. Appl. 146, 1: 33-40, Jan.

[19] Polazer, B., Stumberger, G., Ritonia, J., and Dolinar, D. 2008. Variations of active magnetic bearing linearized model parameters analyzed by finite element computation. IEEE Transaction on Magnetics, 44, 6: 1534-1537.


ARTICLE INFORMATION


Received: 2012-06-29
Revised: 2012-11-21
Accepted: 2013-03-07
Available Online: 2013-09-01


Cite this article:

Biswas, P.K., Banerjee, S. 2013. ANSYS based FEM analysis for three and four coil active magnetic Bearing-a comparative study. International Journal of Applied Science and Engineering, 11, 277–292. https://doi.org/10.6703/IJASE.2013.11(3).277