D. Krishnaa* and Diwakar Shendeb

aDepartment of Chemical Engineering, M.V.G.R. College of Engineering, Vizianagaram,Andhra Pradesh, India
bDepartment of Chemical Engineering, Visvesvaraya National Institute of Technology,Nagpur, India


 

Download Citation: |
Download PDF


ABSTRACT


This paper reports the feasibility of chromolaena odorata leaf powder as adsorbent forThis paper reports the feasibility of chromolaena odorata leaf powder as adsorbent forthe adsorption of Cu (II) metal ions from aqueous solutions at various conditions. Variousindustries discharges heavy metals in water bodies, affect the aquatic life, human health and overallecosystem adversely. So, it is needed to remove the heavy metals present in water using low costtechniques. In this direction, bio-sorption is identified. Batch experimental studies were carriedout for the removal of Cu (II) from waste water by adsorption on chromolaena odorata leaf powder.The effect of several process parameters like the agitation time, the adsorbent size, adsorbentdosage, initial copper concentration, and the effect of solution pH on adsorption are studied. BothLangmuir and Freundlich models for Cu (II) adsorption onto chromolaena odorata leaf powder areproved to be best fit based on high regression coefficient R2 value. The adsorption kinetic modelsfollow the second order. The maximum metal uptake observed at pH 6 for copper removal is10.416 mg/g.


Keywords: Adsorption; batch technique; isotherms; kinetics; chromolaena odorata leaf powder.


Share this article with your colleagues

 


REFERENCES


[1] Tong, K.S., Kassim, M. J. and Azraa, A. 2011. Adsorption of copper ion from aqueoussolution by novel biosorbent Uncariagambir: Equilibrium, kinetics and thermodynamicstudies. Chemical Engineering Journal, 170, 1: 145-153. doi: 10.1016/j.cej.2011.03.044

[2] Yisa, J. 2010. Heavy metals contamination of road-deposited sediments. American Journalof Applied Science, 7, 9: 1231-1236. doi: 10.3844/ajassp.2010.1231.1236

[3] Ong, M. C. and Kamruzzaman, B. Y. 2009. An assessment of metals (Pb and Cu)contamination in bottom sediment from South China Sea coastal waters, Malaysia. AmericanJournal of Applied Science, 6, 7: 1418-1423. doi: 10.3844/ajassp.2009.1418.1423

[4] Ghalay, A. E., Snow, A., and Kamal, M. 2008. Kinetics of manganese uptake by wetlandplants. American Journal of Applied Science, 5, 10: 1415-1423. doi: 10.3844/ajassp.2008.1415.1423

[5] Omar, W. and Al-Itawi, H. 2007. Removal of Pb2+ ions from aqueous solutions by adsorptionon Kaoline clay. American Journal of Applied Science, 4, 7: 502-507. doi:10.3844/ajassp.2007.502.507

[6] World Health Organisation. 2004. Guidelines for drinking water quality, 3rd ed., WHO,Genrva. 1: 334.

[7] Zhou, X., Korenaga, T., Takahashi, T., Moriwake, T., and Shinoda, S. 1993. A processmonitoring/controlling system for the treatment of waste water containing (VI), WaterResearch, 27, 6: 1049-1052. doi: 10.1016/0043-1354(93)90069-T

[8] Tiravanti, G., Petruzzelli, D., and Passino, R. 1997. Pretreatment of tannery wastewaters byan ion-exchange process for Cr (III) removal and recovery. Water Science and Technology,36, 2-3: 197-207. doi: 10.1016/S0273-1223(97)00388-0

[9] Seaman, J. C., Bertsch, P. M. and Schwallie, L. 1999. In-Situ Cr(VI) reduction within coarsetextured,oxide-coated soil and aquifer systems using Fe(II) solutions. EnvironmentalScience and Technology, 33, 6: 938-944. doi: 10.1021/es980546+

[10] Kongsricharoern, N. and Polprasert, C. 1996. Chromium removal by a bipolar electrochemicalprecipitation process. Water Science and Technology, 34, 9: 109-116. doi:10.1016/S0273-1223(96)00793-7

[11] Pagilla, K. R. and Canter, L. W. 1999. Laboratory studies on remediation of chromiumcontaminatedsoils. Journal of Environmental Engineering, 125, 3: 243-248. doi:10.1061/(ASCE)0733-9372(1999)125:3(243)

[12] Chakravathi, A. K., Chowadury, S. B., Chakrabarty, S., Chakrabarty, T. and Mukherjee, D.C. 1995. Liquid membrane multiple emulsion process of chromium(VI) separation fromwaste waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 103, 1-2: 59-71. doi: 10.1016/0927-7757(95)03201-N

[13] Aksu, Z., Özer, D., Ekiz, H. I., Kutsal, T., and Çaglar, A. 1996. Investigation of biosorptionof chromium(VI) on cladophora crispata in two-staged batch reactor. EnvironmentalTechnology, 17, 2: 215-220. doi: 10.1080/09593331708616379

[14] Huang, S.-D., Fann, C.-F., and Hsieh, H.-S, 1982. Foam separation of chromium(VI) from[14] Huang, S.-D., Fann, C.-F., and Hsieh, H.-S, 1982. Foam separation of chromium(VI) fromaqueous solution. Journal of Colloid Interface Science, 89, 2: 504-513. doi: 10.1016/0021-9797(82)90201-6

[15] Park, D., Yun, Y.-S. and Park, J. M. 2010. The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 1: 86-102. doi: 10.1007/s12257-009-0199-4

[16] Varma, V. G. and Misra, A. K. 2016. Equilibrium and kinetics studies on the adsorption ofcopper onto paddy straw powder. Desalination and Water Treatment. 57, 28: 13081-13090.doi: 10.1080/19443994.2015.1057536

[17] Thapak, H. K., Trivedia, S. S., and Pandey, L. K. 2015. Removal of copper from syntheticwaste water by tea waste adsorbent. STM Journal of Water Pollution & PurificationResearch. 2: 5–9.[18] Chowdhury, A., Bhowal, A., and Datta, S. 2012. Equilibrium, thermodyanamic and kineticstudies for removal of copper (II) from aqueous solution by onion and garlic skin. Water. 4:37-51. doi: 10.14294/WATER.2012.4

[19] Veli, S. and Alyüz, B. 2007. Adsorption of copper and zinc from aqueous solutions by usingnatural clay. Journal of Hazardous Materials, 149, 1: 226–233. doi: 10.1016/j.jhazmat.2007.04.109

[20] Singha, B. and Das, S. K. 2013. Adsorptive removal of Cu(II) from aqueous solution andindustrial effluent using natural/agricultural wastes. Colloids and Surfaces B: Biointerfaces.107: 97-106. doi: 10.1016/j.colsurfb.2013.01.060

[21] Rao, M. M., Ramesh, A., Rao, G. P. C., and Seshaiah, K. 2006. Removal of copper andcadmium from aqueous solution by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials. 129, 1-3:123–129. doi: 10.1016/j.jhazmat.2005.08.018

[22] Kamar, F. H. and Nechifor, A. C. 2015. Removal of copper ions from industrial wastewaterusing walnut shells as natural adsorbent materials. U.P.B. Scientific Bulletin, Series B, 77,3: 141-150

[23] Bajpai, S. K. and Jain, A. 2010. Removal of copper(II) from aqueous solution using spenttea leaves (STL) as a potential sorbent. Water SA, 36, 3: 221-228.

[24] Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 9: 1361-1403. doi:10.1021/ja02242a004

[25] Freundlich, H. M. F. 1907. Uber die adsorption in losungen. Zeitschrift fur PhysikalischeChemie (Leipzig), 57: 385-470.

[26] Tempkin, M. J. and Pyzhev, V. 1940. Recent modifications to Langmuir Isotherms. ActaPhysiochim URSS, 12: 217-222.

[27] Baral, S. S., Das, N., Choudhury, G. R., and Das, S. N. 2009. A preliminary study on theadsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata. Journal of HazardousMaterial, 171, 1-3: 358-369. doi: 10.1016/j.jhazmat.2009.06.011

[28] Meena, A. K., Mishra, G. K., Rai, P. K., Rajagopal, C., and Nagar, P. N. 2005. Removal ofheavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. Journal ofHazardous Materials, 122, 1-2: 161-170. doi: 10.1016/j.jhazmat.2005.03.024


ARTICLE INFORMATION


Received: 2017-02-06
Revised: 2018-01-08
Accepted: 2018-01-22
Available Online: 2018-02-01


Cite this article:

Krishna, D., Shende, D. 2018. Removal of Cu (II) from aqueous solution using chromolaena leaf powder as adsorbent. International Journal of Applied Science and Engineering, 15, 59-70. https://doi.org/10.6703/IJASE.201802_15(1).059