Susan Sam and A. Samson Nesaraj 1 

Department of Chemistry, Karunya University, Karunya Institute of Technology and Sciences Karunya Nagar, Coimbatore -641 114, Tamil Nadu, India.

Download Citation: |
Download PDF


ABSTRACT


MnFe2O4 is one of the most common spinel ferrites and its nanoparticles have found applications in various applications. In this paper, we report the preparation of MnFe2O4 nanocrystalline spinel particles by different techniques viz., low temperature combustion technique using urea, glycine and glucose as fuels and chemical-precipitation method. The resulting powder was characterized by XRD, particle size analysis and SEM. The XRD pattern confirmed the presence of cubic phase in all the samples. The particle size data of the powder prepared with chemical precipitation route revealed that 42.8 % of particles lie below 229 nm. The surface microstructure elucidation by SEM also confirmed the presence of uniform sized nanoparticles in the sample prepared by co-precipitation method.


Keywords: MnFe2O4 spinel; preparation; combustion; chemical precipitation; characterization


Share this article with your colleagues

 


REFERENCES


  1. [1] Zuo, X., Yang, A., Yoon, S., Christodoulides, J., Harris, V. G., and Vittoria, C. 2005. Large induced magnetic anisotropy in manganese spinel ferrite films. Applied Physics Letters, 87, 15: 2505-2507.

  2. [2] Ang, K. L., Venkatraman, S., and Ramanujan, R. V. 2007. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Materials Science and Engineering: C, 27: 347-351.

  3. [3] Wu, R., and Qu, J. 2005. Removal of water-soluble azo dye by the magnetic material MnFe2O4. Journal of Chemical Technology and Biotechnology, 80: 20-27.

  4. [4] Ahmed, M. A., Okasha, N., and El-Dek, S. I. 2008. Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology, 19: 1-6.

  5. [5] Amighian, J., Mozaffer, M., and Nasr, B. 2006. Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method. Physica Status Solidi. C. Current Topics in Solid State Physics, 3: 3188-3192.

  6. [6] Solis,T. V., Vigon, P. V., Alvarez, S., Marban, G., and Fuertes, A. B. 2007. Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catalysis Communication, 8: 2037-2042.

  7. [7] Mishra, S., Kundu, T. K., Barick K. C., and Bahadur, D. 2006. Preparation of nanocrystalline MnFe2O4 by doping with Ti4+ ions using solid-state reaction route. Journal of Magnetism and Magnetic Materials, 307: 222-226.

  8. [8] Rashad, M. M. 2006. Synthesis and magnetic properties of manganese ferrite from low grade manganese ore, Materials Science Engineering: B, 127: 123-129.

  9. [9] Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H., and Yang, S. 2010. Water-soluble superparamagnetic manganese ferrite nanoparticles for mag-netic resonance imaging. Biomaterials, 31: 3667-3673.

  10. [10] Choi, H. N., Baek, K. S., Hyun, S. W., Shim, I. B., and Kim, C. S. 2009. A Study of Co Substituted Mn-Ferrite, Mn1-xCoxFe2O4(x = 0.0,0.5,1.). IEEE Transactions on Magnetics, 45: 2554-2556.

  11. [11] Rucha, D., Vipul, D., Kinnari, P., and Ramesh, V. U. 2009. Structural and magnetic properties of size-controlled Mn5Zn0.5Fe2O4 nanoparticles and magnetic fluids. Pramana Journal of Physics, 73: 765-780.

  12. [12] Iyer, R., Desai, R., and Upadhayay, R. V. 2009. Low temperature synthesis of nanosized Mn1−xZnxFe2O4 ferrites and their characterizations. Bulletin Materials Science, 32: 141-147.

  13. [13] Deraz, N. M., and Shaban, S. 2009. Optimization of Catalytic, Surface and Magnetic Properties of Nanocrystalline Manganese Ferrite. Journal Analytical and Applied Pyrolysis, 86: 173-179.

  14. [14] Ju, Y. W., Park, J. H., Jung, H. R., Cho, S. J., and Lee, W. J. 2008. Electrospun MnFe2O4 nanofibers: Preparation and morphology. Composites Science and Technology, 68: 1704-1709.

  15. [15] Kim, J. G., Seo, J. W., Cheon, J., and Kim, Y. J. 2009. Rietweld Analysis of Nano-crystalline MnFe2O4 with Electron Powder Diffraction. Bulletin of Korean Chemical Society, 30: 183-187.

  16. [16] Arul Dhas, N., and Patil, K. C. 1993. Properties of magnesia-stabilized zirconia powders prepared by a combustion route.  Journal of Materials Science Letters, 12: 1844-1847.

  17. [17] Farh, L. , Massot, M., Lemal, M., Julien, C., Chitra, S., Kalyani, P., Mohan, T., and Gangadharan, R. 1999. Physical Properties and Electrochemical Features of Lithium Nickel-Cobalt Oxide Cathode Materials Prepared at Moderate Temperature. Journal of Electroceramics, 3-4: 425-432.

  18. [18] Hatchwell, C., Sammes, N. M., Brown, I. W. M., and Kendall, K. 1999. Current collectors for a novel tubular. SOFC design. Journal of Power Sources, 77: 64-68.

  19. [19] Gasparov, L., Rush, A., Pekarek, T.  Patel, N., and Helmuth, B. 2009. Raman studies of doped magnetite above and below the Verwey transition. Journal of Applied Physics, 105, 7: 07E109-07E109-3.

  20. [20] Osmokrovic, P., Jovalekic, C., Manojlovic, D., and Pavlovic, M. 2006. Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction. Journal of Optoelectronics and Advanced Materials, 8: 312-314.

  21. [21] Kostogloudis, G. Ch., Vasilakos, N., and Ftikos, 1997. Pr1-xSrxMnO3±δ (x = 0, 0.15, 0.3, 0.4, 0.5) as a Potential SOFC Cathode Material Operating at Intermediate Temperatures (500-700 °C). Journal of European Ceramic Society, 17: 1513-1521.

  22. [22] Shaji Kumar, M. , Srinivasan, T.M., Ramasamy P., and Subramanian, C. 1994. Synthesis of lanthanum aluminate by a citrate-combustion route. Materials Letters, 25, 3-4: 171-174.

  23. [23] Kuo, S. , and Wu, N. L. 2005. Electrochemical Capacitor of MnFe2O4 with NaCl.

  24. [24] Chavan, S. V., Pillai. K. T., and Tyagi, A. K. 2006. Combustion synthesis of nanocrystalline yttria: Tailoring of powder properties. Materials Science and Materials and Engineering B, 132: 266-271.


ARTICLE INFORMATION




Accepted: 2011-09-15
Available Online: 2011-12-01


Cite this article:

S., Sam, Nesaraj, A.S. 2011. Preparation of MnFe2O4 nanoceramic particles by soft chemical routes. International Journal of Applied Science and Engineering, 9, 223–239. https://doi.org/10.6703/IJASE.2011.9(4).223