REFERENCES
- Afsar, M.M., Crump, T., Far, B., 2022. Reinforcement learning based recommender systems: A survey. ACM Computing Surveys, 55(7), 1–38.
- Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., Zaremba, W., 2017. Hindsight experience replay. Advances in Neural Information Processing Systems, 30.
- Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A., 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.
- Chen, L., Zhu, G., Liang, W., Wang, Y., 2023. Multi-objective reinforcement learning approach for trip recommendation. Expert Systems with Applications, 226, 120145.
- Covington, P., Adams, J., Sargin, E., 2016. Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198.
- Cui, L., Ou, P., Fu, X., Wen, Z., Lu, N., 2017. A novel multi-objective evolutionary algorithm for recommendation systems. Journal of Parallel and Distributed Computing, 103, 53–63.
- Gomez-Uribe, C.A., Hunt, N., 2015. The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1–19.
- Hayes, C.F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., Roijers, D.M., 2022. A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1), 26.
- Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9(8), 1735–1780.
- Hou, Y., Gu, W., Dong, W., Dang, L., 2023. A deep reinforcement learning real-time recommendation model based on long and short-term preference. International Journal of Computational Intelligence Systems, 16(1), 4.
- Hu, Y., Da, Q., Zeng, A., Yu, Y., Xu, Y., 2018. Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 368–377.
- Jahn, J., 1985. Scalarization in multi objective optimization. Springer Vienna, pp. 45–88.
- Joachims, T., Freitag, D., Mitchell, T., 1997. Webwatcher: A tour guide for the world wide web. International Joint Conference on Artificial Intelligence, pp. 770–777.
- Keat, E.Y., Sharef, N.M., Yaakob, R., Kasmiran, K.A., Marlisah, E., Mustapha, N., Zolkepli, M., 2022. Multiobjective deep reinforcement learning for recommendation systems. IEEE Access, 10, 65011–65027.
- Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2015. Continuous control with deep reinforcement learning. International Conference on Learning Representations, abs/1509.02971.
- Linden, G., Smith, B., York, J., 2003. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76–80.
- Liu, F., Tang, R., Li, X., Ye, Y., Chen, H., Guo, H., Zhang, Z., 2018. Deep reinforcement learning based recommendation with explicit user-item interactions modeling. Neurocomputing, 307, 139–150.
- Mulani, J., Heda, S., Tumdi, K., Patel, J., Chhinkaniwala, H., Patel, J., 2020. Deep reinforcement learning based personalized health recommendations. “Deep learning techniques for biomedical and health informatics”, Springer, pp. 231–255.
- Paparella, V., Anelli, V.W., Boratto, L., Di Noia, T., 2023. Reproducibility of multiobjective reinforcement learning recommendation: Interplay between effectiveness and beyond-accuracy perspectives. In Proceedings of the 17th ACM Conference on Recommender Systems, pp. 467–478.
- Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R., 2013. A survey of multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113.
- Roijers, D.M., Whiteson, S., Oliehoek, F.A., 2015. Computing convex coverage sets for faster multi-objective coordination. Journal of Artificial Intelligence Research, 52, 399–443.
- Sarker, A., Shen, H., Kowsari, K., 2020. A data-driven reinforcement learning based multiobjective route recommendation system. IEEE 17th international conference on mobile ad hoc and sensor systems (mass), pp. 103–111.
- Sherstinsky, A., 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
- Song, L., Tekin, C., Van Der Schaar, M., 2014. Online learning in large-scale contextual recommender systems. IEEE Transactions on Services Computing, 9(3), 433–445.
- Stamenkovic, D., Karatzoglou, A., Arapakis, I., Xin, X., Katevas, K., 2022. Choosing the best of both worlds: Diverse and novel recommendations through multi-objective reinforcement learning. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 957–965.
- Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
- Von Lucken, C., Baran, B., Brizuela, C., 2014. A survey on multi-objective evolutionary algorithms for many-objective problems. Computational optimization and applications, 58, 707–756.
- Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M., De Freitas, N., 2016. Dueling network architectures for deep reinforcement learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48, pp. 1995–2003.
- Wu, H., Ma, C., Mitra, B., Diaz, F., Liu, X., 2022. A multi-objective optimization framework for multi-stakeholder fairness-aware recommendation. ACM Transactions on Information Systems, 41(2), 1–29.
- Yalnizyan-Carson, A., Richards, B.A., 2022. Forgetting enhances episodic control with structured memories. Frontiers in Computational Neuroscience, 16, 757244.
- Yang, R., Sun, X., Narasimhan, K., 2019. A generalized algorithm for multi-objective reinforcement learning and policy adaptation. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 1311, 14636–14647.
- Zhao, X., Zhang, L., Xia, L., Ding, Z., Yin, D., Tang, J., 2017. Deep reinforcement learning for list-wise recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems. Association for Computing Machinery, New York, NY, USA, 95–103.
- Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z., 2018. DRN: A deep reinforcement learning framework for news recommendation. In Proceedings of the 2018 world wide web conference, pp. 167–176.
- Zheng, Y., Wang, D.X., 2021. A survey of recommender systems with multi-objective optimization. Neurocomputing, 474, 141–153.