International Journal of

Automation and Smart Technology

L. Adewale Ajao1*, E. Adewale Adedokun2, M. Bashir Mua’zu3, and J. Agajo4


1,2,3Department of Computer Engineering, Ahamadu Bello University, Zaria, Nigeria
4Department of Computer Engineering, Federal University of Technology, Minna, Nigeria

Download Citation: |
Download PDF


ABSTRACT


Internet of Things (IoT) is an explosive technology that has enhanced the performance of sensor networks and transformed wireless communication through the interconnection of smart devices and cognitive systems. Despite the numerous innovative solutions and technological benefits realized by the adoption of IoT, some of the persistent challenges of the IoT smart technology design is the component integration issue (scalability) during the hardware design phase. Also, power consumption, interoperability difficulties, end-to-end communication lag, and quality of services (QoS) deterioration. This research therefore addresses these challenges by systematically investigating and analyzing the selected factors and relevant performance indicators. It also gives a clear and cohesive description of the proposed IoT design model together with the pertinent systemic component’s communication. The design requirements and technical procedures for integrating embedded devices, sensor networks and wireless data communication for the enhancement of the proposed IoT architectural model is also elucidated in this work.


Keywords: Communication, embedded system, interoperability, quality of service (QoS), sensors, smart system


Share this article with your colleagues

 


REFERENCES


 

  1. [1] L. A. Ajao, J. Agajo, J. G. Kolo, A. Ahamed, B. K. Nuhu and C. O. Inalegwu, "Embedded system-based internet of things for smart home/office appliances control using wi-fi technology". In proceeding of 2nd International Engineering Conference (IEC, 2017), vol. 1, pp. 405-412, 2017.

  2. [2] H. Sundmaeker, P. Guillemin, P. Friess and S. Woelffle. "Vision and challenges for realizing the internet of things", CERP-IoT European Commission, pp. 1-15, 2010.      

  3. [3] M. C. Damingo, "An overview of the internet of things for people with disabilities", Journal of Network and Computer Applications, vol. 35, no. 2, pp. 584-596, 2012. https://doi.org/10.1016/j.jnca.2011.10.015

  4. [4] Z. Zhou, B. Yao, R. Xing, L. Shu and S. Bu, "E-CARP: An energy efficient routing protocol for uwsns in the internet of underwater things", IEEE Sensors Journal, vol. 1, no. 1, pp. 92-99, 2015.   
     
  5. [5] J. Agajo, J. G. Kolo, M. A. Adegboye, B. K. Nuhu, L. A. Ajao, and I. Aliyu. "Experimental Performance Evaluation and Feasibility Study of 6lowpan Based Internet of Things", Acta Electrotechnica et Informatica, vol. 17, no. 2, pp. 16-22, 2017. https://doi.org/10.15546/aeei-2017-0011

  6. [6] L. A. Ajao, J. Agajo, J. G. Kolo, O. C., Inalegwu and E. A. Edem. "Development of a low power consumption smart embedded wireless sensor network for the ubiquitous environmental monitoring using zigbee module". Journal of Science, Technology & Education (JOSTE), vol. 5, no. 1, pp. 94-108, 2017.   

  7. [7] Calzada, I. (2019). Smart City Citizenship, Elsevier, pp. 256. ISBN: 9780128153000.            

  8. [8] Botta, A., Donato, W., Persico, V. and Pescapé, A., Integration of cloud computing and Internet of Things: A survey", Future Generation Computer Systems, vol. 56 pp. 684-700. https://doi.org/10.1016/j.future.2015.09.021

  9. [9] S. Seol, Y. Shin and W. Kim "Design and realization of personal IoT architecture based on mobile gateway", International Journal of Smart Home, vol. 9, no. 11, pp. 133-144, 2015. https://doi.org/10.14257/ijsh.2015.9.11.15

  10. [10] P. Bodgan, M. Pajic, P. P. Pande and V. Raghunathan, "Making the internet-of-things a reality: from smart models, sensing and actuation to energy-efficient architectures", ACM, pp. 1-10, 2016. https://doi.org/10.1145/2968456.2973272

  11. [11] S. P. N. Mahamure, and P. N. Mahalle, "Communication protocol and queuing theory-based modelling for the internet of things", Journal of ICT, vol. 3, no 2016, pp. 157-176, 2017. https://doi.org/10.13052/jicts2245-800X.323

  12. [12] Alamri, "Ontology middleware for integration of IoT," MDPI Journal Computer, vol. 7, no. 51, pp. 1-15, 2018. https://doi.org/10.3390/computers7040051

  13. [13] S. Aliyu, A. Yusuf, A. Umar, M. Hafiz, and L. A. Ajao. Design and development of a low-cost gsm-bluetooth home automation system, International Journal of Artificial Intelligent and Application, vol. 8, no. 8, pp. 41-50, 2017. https://doi.org/10.5815/ijisa.2017.08.05

  14. [14] L. A. Ajao, J. Agajo, J. G. Kolo, D. Maliki, and M. A. Adegboye, "Wireless sensor network based-internet of thing for agro-climatic parameters monitoring and real-time data acquisition". Journal of Asian Scientific Research (JASR), vol. 7, no. 6, pp. 240-252, 2017. https://doi.org/10.18488/journal.2.2017.76.240.252

  15. [15] M. F. Mekala, and P. Viswanathan, "CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system", Journal Measurement, Elsevier, vol. 134, pp. 236-244, 2019. https://doi.org/10.1016/j.measurement.2018.10.072

  16. [16] K. Ahuja and A. Khosla, "Network selection criterion for ubiquitous communication provisioning in smart cities for smart energy system", Journal of Network and Computer Applications, vol. 127, no. 1, pp. 82-91, 2019. https://doi.org/10.1016/j.jnca.2018.11.011

  17. [17] D. Sembroiz, D. Careglio, S. Ricciardi and U. Fiore, "Planning and operational energy optimization solutions for smart buildings", Information Sciences, vol. 476, pp. 439-452, 2019. https://doi.org/10.1016/j.ins.2018.06.003

  18. [18] Y-S. Jeong, M. S. Obaidat, J. M and L. T. Yang. "Advanced mathematics and numerical modeling of IoT", Journal of Applied Mathematics, vol. 2015, pp. 1-5, 2015. https://doi.org/10.1155/2015/824891

  19. [19] V. Stavroulaki, D. Kelaidonis, K. Petsas, A. Moustakos, P. Vlacheas, P. Demestichas and K. Hashimoto, "Foundations of semantic data models and tools, IoT and big data integration in multi-cloud environments", University of Surrey, pp. 1-115, 2016.

  20. [20] I. A. Modupe, and O. O. Olugbara, "Minimizing Energy Consumption in Wireless Ad hoc Networks with Meta heuristics", The 4th International Conference on Ambient Systems, Networks and Technologies, Procedia Computer Science, vol. 19, no. 2013, pp. 106-115, 2013. https://doi.org/10.1016/j.procs.2013.06.019

  21. [21] Z. Ayesha, S. Shah, R. Khalid, S. M. Hussan, H. Rahim and N. Javaid. "A meta-heuristic home energy management system", IEEE, 31st International Conference on Advanced Information Networking and Applications Workshops, pp. 244-250, 2017. 

  22. [22] B. Manzoora, N. Javaida, O. Rehmana, M. Akbara, Q. Nadeema, A. Iqbala and M. Ishfaqb, "Q-LEACH: A New Routing Protocol for WSNs", Procedia Computer Science, vol. 19, no. 2013, pp. 926-931, 2013. https://doi.org/10.1016/j.procs.2013.06.127

  23. [23] G. K. Nigam, and C. Dabas, "ESO-LEACH: PSO based energy efficient clustering in LEACH", Journal of King Saud University, Computer and Information Sciences, vol. 2, no. 2018, pp. 1-20, 2018. https://doi.org/10.1016/j.jksuci.2018.08.002

  24. [24] H. Chu-Ming, H. Jen-Fa, Y. Chao-Chin, "Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes", Optical Fiber Technology, vol. 16, no. 5, pp. 265-270, 2010. https://doi.org/10.1016/j.yofte.2010.05.004

  25. [25] O. Younis & S. Fahmy. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366-379, 2004. https://doi.org/10.1109/TMC.2004.41

  26. [26] J. T. Thirukrishna, S. Karthik, and V. P. Arunachalam "Revamp energy efficiency in Homogeneous Wireless Sensor Networks using Optimized Radio Energy Algorithm (OREA) and Power-Aware Distance Source Routing protocol", Future Generation Computer Systems, vol. 81, no. 2018, pp. 331-339, 2018. https://doi.org/10.1016/j.future.2017.11.042

  27. [27] L. Lu, H. Zhao, and B. Champagne, "Diffusion total least-squares algorithm with multi-node feedback", Journal of Signal Processing, Elsevier, vol. 153, pp. 243-254, 2018. https://doi.org/10.1016/j.sigpro.2018.07.025

  28. [28] R. Mahakud, S. Rath, M. Samantaray, B. S. Priyanka, P. Priya, A. Nayak, and A. Kumari, "Energy management in wireless sensor network using PEGASIS", Procedia Computer Science, vol. 92, pp. 207-212, 2016. https://doi.org/10.1016/j.procs.2016.07.347

  29. [29] S. Bandyopadhyay, and E. J. Coyle, "An energy efficient hierarchical clustering algorithm for wireless sensor networks", In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 3, pp. 1713-1723, 2003.    
         
  30. [30] B. Barekatain, S. Dehghani and M. Pourzaferani, "An energy-aware routing protocol for wireless sensor networks based on new combination of genetic algorithm and k-means". Procedia Computer Science, vol. 72, pp. 552-560, 2015. https://doi.org/10.1016/j.procs.2015.12.163

  31. [31] S. Bayraklı, and S. Z. Erdogan, "Genetic algorithm-based energy efficient clusters (gabeec) in wireless sensor networks", Procedia Computer Science, Conference on Ambient Systems, Networks and Technologies (ANT), pp. 247-254, 2012. https://doi.org/10.1016/j.procs.2012.06.034

  32. [32] Y. Touati, A. Ali-Chérif, and B. Daachi, "Routing information for energy management in wsns, Energy Management in Wireless Sensor Networks, vol. 3, pp. 23-51, 2017. https://doi.org/10.1016/B978-1-78548-219-9.50003-5


ARTICLE INFORMATION


Received: 2019-03-28
Revised: 2019-10-19
Accepted: 2019-12-23
Available Online: 2021-07-01


Cite this article:

L. Adewale Ajao., E. Adewale Adedokun., M. Bashir Mua’zu. and J. Agajo. (2021) Smart Embedded Wireless System Design: An Internet of Things Realization. Int. j. autom. smart technol. https://doi.org/10.5875/ausmt.v11i1.2146

  Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.