International Journal of

Automation and Smart Technology

Adarsha Narayan Mallick1*, Amanpreet Chander1, A. Pratap Choudhari1, Hemant Kumar Chattar1, Ashish Sahani1


1Indian Institute of Technology, Ropar

 

Download Citation: |
Download PDF


ABSTRACT


The development of soft robotics technology has enabled them to be used for healthcare devices. One of the areas where this technology can play a crucial role is the medical assistive devices for various purposes like rehabilitation. In contrast to commonly used technology utilizing rigid actuators with a limited range of motion simultaneously compromising the safety of their human counterparts, this technology suits well to be used in the same with an added advantage. These soft actuators address the issues like safety, compliance, freedom of motion, biocompatibility, and ease of use. Various technologies like Dielectric Elastomers Actuators (DEA), fluid-based soft actuators, Twisted String Actuators (TSA), Supercoiled Polymer Actuators (SCPA), etc., have been developed to mimic the motion of a living being. The focus of this write-up is concentrated on unconventional and recent approaches to the design and control of soft actuators. In the present study, each technology's working principle and application have been discussed, along with their limitations. Soft actuators with different technologies which can be used in assistive devices, their requirements, and limitations are discussed along with some recent devices and the importance of the material to develop soft robots.


Keywords: Artificial muscle; Assistive devices; rehabilitation; Soft actuators.


Share this article with your colleagues

 


REFERENCES


 

  1. [1] D.Chiaradia, M. Xiloyannis, M.Solazzi, L. Masia, and A. Frisoli, “Rigid Versus Soft Exoskeletons: Interaction Strategies for Upper Limb Assistive Technology,” Wearable Robotics 2020:67–90. https://doi.org/10.1016/B978-0-12-814659-0.00004-7

  2. [2] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature 2015;521:467–75. https://doi.org/10.1038/nature14543

  3. [3] G. Kwakkel, R.V. Peppen, R. C. Wagenaar, S. W. Dauphinee, C. Richards, A. Ashburn, K. Miller, N. Lincoln, and C. Partridge, I. Wellwood and P. Langhome, “Effects of augmented exercise therapy time after stroke: a meta- analysis,” Stroke 2004;35:2529–39. https://doi.org/10.1161/01.STR.0000143153.76460.7d

  4. [4] L. Shore, V. Power, B. Hartigan, S. Schülein, E. Graft, A. D. Eyto, and Leonard O’Sullivan, “Exoscore: A Design Tool to Evaluate Factors Associated With Technology Acceptance of Soft Lower Limb Exosuits by Older Adults,” Hum Factors 2020;62:391– 410. https://doi.org/10.1177/0018720819868122

  5. [5] T. Arnold, and M. Scheutz, “The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction,” Soft Robot 2017;4:81–7. https://doi.org/10.1089/soro.2017.0032

  6. [6] D. Sasaki, T. Noritsugu, M. Takaiwa, and H. Yamamoto, “ Wearable power assist device for hand grasping using pneumatic artificial rubber muscle,” RO-MAN 2004 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No04TH8759) n.d. https://doi.org/10.1109/ROMAN.2004.1374840

  7. [7] S. Joe, M. Totaro, H. Wang, and L. Beccai, “Development of the Ultralight Hybrid Pneumatic Artificial Muscle: Modelling and optimization,” PLoS One 2021;16:e0250325. https://doi.org/10.1371/journal.pone.0250325

  8. [8] J. Wirekoh, N. Parody, C. N. Riviere, and P. Y-L, “Design of fiber-reinforced soft bending pneumatic artificial muscles for wearable tremor suppression devices,” Smart Materials and Structures 2021;30:015013. https://doi.org/10.1088/1361-665X/abc062

  9. [9] S. Liu, Z. Fang, J. Liu, K. Tang, J. Luo, J. Yi, X.Hu, and Z. Wang, “A Compact Soft Robotic Wrist Brace With Origami Actuators,” Frontiersin Robotics and AI 2021;8. https://doi.org/10.3389/frobt.2021.614623

  10. [10] M. Zhu, T. N. Do, E. Hawkes, and Y. Visell, “Fluidic Fabric MuscleSheets for Wearable and Soft Robotics,” Soft Robotics 2020;7:179–97. https://doi.org/10.1089/soro.2019.0033

  11. [11] K. C. Galloway, P. Polygerinos, C. J. Walsh, and R. J. Wood, “Mechanically programmable bend radius for fiber-reinforced soft actuators,” 2013 16th International Conference on Advanced Robotics (ICAR) 2013. https://doi.org/10.1109/ICAR.2013.6766586

  12. [12] H. K. Yap, J. H. Lim, F. Nasrallah, J. C. H. Goh, and R. C. H. Yeow, “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness,” 2015 IEEE International Conference on Robotics and Automation (ICRA) 2015. https://doi.org/10.1109/ICRA.2015.7139889

  13. [13] Z. S. Navabi, and D. Zhou, “A Novel Soft Actuator for Continuum Soft Robot Arm,” Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics- ICBEB 2018 2018. https://doi.org/10.1145/3278198.3278223

  14. [14] M. Pan, C. Yuan, H. Anpalagan, A. Plummer, J. Zou, J. Zhang, and C. Bowen, “Soft Controllable Carbon Fibre-based Piezoresistive Self-Sensing Actuators,” Actuators 2020;9:79. https://doi.org/10.3390/act9030079

  15. [15] C. T. O’Neill, C. M. McCann, C. J. Hohimer, K. Bertoldi, and C. J. Walsh, “Unfolding Textile-Based Pneumatic Actuators for Wearable Applications,” Soft Robotics 2021. https://doi.org/10.1089/soro.2020.0064

  16. [16] L. N. Awad, J. Bae, K. O’Donnell, S. M. M. D. Rossi, K. Hendron, L. H. Sloot, P. Kudzia, S. Allen, K. G. Holt, T. D. Ellis, and C. J. Walsh, “A soft robotic exosuit improves walking in patients after stroke,” Science Translational Medicine 2017;9:eaai9084. https://doi.org/10.1126/scitranslmed.aai9084

  17. [17] M. Nilsson, J. Ingvast, J. Wikander, and H. V. Holst, “The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation,” 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences 2012. https://doi.org/10.1109/IECBES.2012.6498090

  18. [18] F. Alnajjar, H. Umari, W. K. Ahmed, M. Gochoo, A. A. Vogan, A. Aljumaily, P. Mohamed, and S. Shimoda, “CHAD: Compact Hand-Assistive Device for enhancement of function in hand impairments,” Robotics and Autonomous Systems 2021;142:103784. https://doi.org/10.1016/j.robot.2021.103784

  19. [19] M. Hosseini, R. Meattini, and G. Palli, and C. Melchiorri, “A WearableRobotic Device Based on Twisted String Actuation for Rehabilitation and Assistive Applications,” Journal of Robotics 2017;2017:1–11. https://doi.org/10.1155/2017/3036468

  20. [20] T. Tsabedze, E. Hartman, E. Abrego, C. Brennan, and J. Zhang, “TSA-BRAG: A Twisted String Actuator-powered Biomimetic Robotic Assistive Glove,” 2020 International Symposium on Medical Robotics (ISMR) 2020. https://doi.org/10.1109/ISMR48331.2020.9312928

  21. [21] T. Helps, M. Taghavi, S. Wang, and J. Rossiter, “Twisted RubberVariable-Stiffness Artificial Muscles,” Soft Robotics 2020;7:386–95. https://doi.org/10.1089/soro.2018.0129

  22. [22] S. J. Furst, and S. Seelecke, “Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input,” Journal of Intelligent Material Systems and Structures 2012;23:1233–47. https://doi.org/10.1177/1045389x12445036

  23. [23] L. J-H, Y. S. Chung, and H. Rodrigue, “Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper,” Scientific Reports. https://doi.org/10.1038/s41598-019-47794-1

  24. [24] S. J. Park, U. Kim,and C. H. Park, “A Novel Fabric Muscle Based on Shape Memory Alloy Springs,” Soft Robotics 2020;7:321– 31. https://doi.org/10.1089/soro.2018.0107

  25. [25] A. N. Mallick, M. Kumar, K. Arora and A. K. Sahani, “Finite Element Modeling of a Pressure Ulcers Preventive Bed for Neonates,” 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN), Ioannina, Greece, 2022, pp. 1-4. https://doi.org/10.1109/BSN56160.2022.9928469

  26. [26] Y. Almubarak, and Y. Tadesse, “Twisted and coiled polymer (TCP) muscles embedded in silicone elastomer for use in soft robot,” International Journal of Intelligent Robotics and Applications 2017;1:352–68. https://doi.org/10.1007/s41315-017-0022-x

  27. [27] F. Karami, L. Wu, and Y. Tadesse, “Modeling of One-ply and Two-ply Twisted and Coiled Polymer (TCP) Artificial Muscles,” IEEE/ASME Transactions on Mechatronics 2020:1–1. https://doi.org/10.1109/TMECH.2020.3014931

  28. [28] S. Aziz, B. Villacorta, S. Naficy, B. Salahuddin, S. Gao, T. A. Baigh, D. Sangian, and Z. Zhu, “A microwave powered polymeric artificial muscle,” Applied Materials Today 2021;23:101021. https://doi.org/10.1016/j.apmt.2021.101021

  29. [29] S. G. Fitzgerald, G. W. Delaney, and D. Howard, “A Review of Jamming Actuation in Soft Robotics,” Actuators 2020;9:104. https://doi.org/10.3390/act9040104

  30. [30] M. Shen, A. B. Clark, and N. Rojas, “A Scalable Variable Stiffness Revolute Joint Based on Layer Jamming for Robotic Exoskeletons,” Towards Autonomous Robotic Systems 2020:3–14. https://doi.org/10.1007/978-3-030-63486-5_1

  31. [31] M. Ibrahimi, L. Paternò, L. Ricotti, and A. Menciassi, “A Layer Jamming Actuator for Tunable Stiffness and Shape-Changing Devices,” Soft Robot 2021;8:85–96. https://doi.org/10.1089/soro.2019.0182

  32. [32] V. Sanchez, C. J. Walsh, and R. J. Wood, “Soft Robotics: Textile Technology for Soft Robotic and Autonomous Garments (Adv. Funct. Mater. 6/2021),” Advanced Functional Materials 2021;31:2170041. https://doi.org/10.1002/adfm.202170041

  33. [33] X. Chen, L. Gong, L. Wei, S-C Yeh, L. D. Xu, L. Zheng, and Z. Zou, “ A Wearable Hand Rehabilitation System With Soft Gloves,” IEEE Transactions on Industrial Informatics 2021;17:943– 52. https://doi.org/10.1109/TII.2020.3010369

  34. [34] M. Li, T. Wang, Y. Zhuo, B. He, T. Tao, J. Xie, and G. Xu, “A soft robotic glove for hand rehabilitation training controlled by movements of the healthy hand,” 2020 17th International Conference on Ubiquitous Robots (UR) 2020. https://doi.org/10.1109/UR49135.2020.9144753

  35. [35] L. Wang, G. Peng, W. Yao, S. Biggar, C. Hu, X. Yin, and Y. Fan, “10-Soft robotics for hand rehabilitation,” Intelligent Biomechatronics in Neurorehabilitation 2020:167–76. https://doi.org/10.1016/B978-0-12-814942-3.00010-6

  36. [36] B. B. Kang, H. Choi, H. Lee, and K. J. Cho, “Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System,” Soft Robotics 2019;6:214–27. https://doi.org/10.1089/soro.2018.0006

  37. [37] T. H. Hong, S. H. Park, J. H. Park, N. J. Paik, and Y. L. Park, “Design of Pneumatic Origami Muscle Actuators (POMAs) for A Soft Robotic Hand Orthosis for Grasping Assistance,” 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 2020. https://doi.org/10.1109/RoboSoft48309.2020.9116046

  38. [38] H. K. Yap, J. H. Lim, F. Nasrallah, F. Z. Low, J. C. H. Goh, and R. C. H. Yeow, “MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application,” 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) 2015. https://doi.org/10.1109/ICORR.2015.7281289

  39. [39] A. N. Mallick, M. Kumar, B. Basumatary, K. Arora and A. K. Sahani, “Design and Testing of Pressure Ulcers Preventive Bed for Neonates in Neonatal Intensive Care Units,” in IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 2, pp. 421-428, May 2023. https://doi.org/10.1109/TMRB.2023.3265635

  40. [40] M. Hosseini, R. Meattini, A. San-Millan, G. Palli, C. Melchiorri , and J. Paik, “A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications,” IEEE Robotics and Automation Letters 2020;5:4094–101. https://doi.org/10.1109/LRA.2020.2988152

  41. [41] V. Oguntosin, and A. Abdulkareem, “Design of a pneumatic soft actuator controlled via eye tracking and detection,” Heliyon 2020. https://doi.org/10.1016/j.heliyon.2020.e04388

  42. [42] C. Correia, K. Nuckols, D. Wagner, Y. M. Zhou, M. Clarke, D. Orzel, R. Solinsky, S. Paganoni, and C. J. Walsh, “Improving Grasp Function After Spinal CordInjury With a Soft Robotic Glove,” IEEE Trans Neural Syst 2020. https://doi.org/10.1109/TNSRE.2020.2988260

  43. [43] D. Chiaradia, L. Tiseni, M. Xiloyannis, M. Solazzi, L. Masia, and A. Frisoli, “An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove,” Fron 2020. https://doi.org/10.3389/frobt.2020.595862

  44. [44] Y. Yang, Y. Zhang, Z. Kan, J. Zeng, and M. Y. Wang, “HybridJamming for Bioinspired Soft Robotic Fingers,” Soft Robotics 2020;7:292–308. https://doi.org/10.1089/soro.2019.0093

  45. [45] A. J. Y. Goh, H. K. Yap, G. K. Ramachandran, and C. H. Yeow, “Application of Novel Graphite Flex Sensors in Closed-Loop Angle Feedback on a Soft Robotic Glove for Stroke Rehabilitation,” JPO Journal of Prosthetics and Orthotics 2020;32:272–85. https://doi.org/10.1097/JPO.0000000000000337

  46. [46] C. M. Thalman, T. Hertzell, and H. Lee, “Toward A Soft RoboticAnkle-Foot Orthosis (SR-AFO) Exosuit for Human Locomotion: Preliminary Results in Late Stance Plantarflexion Assistance,” 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 2020. https://doi.org/10.1109/RoboSoft48309.2020.9116050

  47. [47] L. N. Awad, P. Kudzia, D. A. Revi, T. D. Ellis, and C. J. Walsh, “Walkingfaster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation,” IEEE Open J Eng Med Biol 2020;1:108– https://doi.org/10.1109/OJEMB.2020.2984429

  48. [48] Y. Zhang, Z. Wang, C. Chen, T. Fang, R. Sun, and Y. Li, “A lightweight soft exoskeleton in lower limb assistance,” 2020 Chinese Automation Congress (CAC) 2020. https://doi.org/10.1109/CAC51589.2020.9327551

  49. [49] J. Fang, J. Yuan, M. Wang, L. Xiao, J. Yang, Z. Lin, P. Xu, and L. Hou, “Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices,” Soft Robotics 2020;7:95– 108. https://doi.org/10.1089/soro.2018.0155

  50. [50] E. Kokkoni, Z. Liu, and K. Karydis, “Development of a Soft Robotic Wearable Device to Assist Infant Reaching,” Journal of Engineering and Science in Medical Diagnostics and Therapy 2020;3. https://doi.org/10.1115/1.4046397

  51. [51] X. Wu, H. Liu, Z. Liu, M. Chen, F. Wan, C. Fu, H. Asada, Z. Wang, and C. Song, “RoboticCane as a Soft SuperLimb for Elderly Sit-to- Stand Assistance,” 2020 3rd IEEE International Conference onSoft Robotics (RoboSoft) 2020. https://doi.org/10.1109/RoboSoft48309.2020.9116028

  52. [52] J. Udea, J. Schultz, and H. Asada, “Cellular Actuators: Modularity and Variability in Muscle-inspired Actuation,” Elsevier Science, 2017

  53. [53] Z. Chi and Q. Xu, “Recent advances in the control of piezoelectric actuators,” Int. J. Adv. Robot. Syst., vol. 11, no. 11, p. 182, 2014. https://doi.org/10.5772/59099

  54. [54] A. N. Mallick, M. Kumar, A. Chander, R. Kumar, K. Arora and A. K. Sahani, “Automatic Pasteurized Formula Milk Preparation Machine with Automatic Sterilized Containers,” 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 2663-2667. https://doi.org/10.1109/EMBC48229.2022.9871811

  55. [55] X. Jiang, F. Tang, J. T. Wang, and T. P. Chen, “Growth and properties of PMN-PT single crystals,” Physica C, vol. 364-365, pp. 678–683, 2001. https://doi.org/10.1016/S0921-4534(01)00878-4

  56. [56] W. S. Chu, K. T. Lee, S. H. Song, M. W. Han, J. Y. Lee, H. S. Kim, M. S. Kim, Y. J. Park, K. J. Cho, and S. H. Ahn, “Review of biomimetic underwater robots using smart actuators,” Int. J. Precis. Eng. Manuf., vol. 13, no. 7, pp. 1281-1292, 2012. https://doi.org/10.1007/s12541-012-0171-7

  57. [57] J. Ueda, T. W. Secord, and H. H. Asada, “Large effective-strain piezo- electric actuators using nested cellular architecture with exponential strain amplification mechanisms,” IEEE/ASME Trans. Mech., vol. 15, no. 5, pp. 770–782, 2010. https://doi.org/10.1109/TMECH.2009.2034973

  58. [58] J.M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des., vol. 56, pp. 1078–1113, 2014 https://doi.org/10.1016/j.matdes.2013.11.084

  59. [59] G. Song, J. Zhao, X. Zhou, and J. A. D. Abreu-Garcia, “Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model,” IEEE/ASME Trans. Mech., vol. 10, no. 2, pp. 198–209, 2005. https://doi.org/10.1109/TMECH.2005.844708

  60. [60] R. J. Wood, E. Steltz, and R.S. Fearing, “Optimal energy density piezo- electric bending actuators,” Sensor. Actuat. A Phys., vol. 119, no. 2, pp. 476–488, 2005. https://doi.org/10.1016/j.sna.2004.10.024

  61. [61] P. A. York and R. J. Wood, “A geometrically-amplified in-plane piezoelectric actuator for mesoscale robotic systems,” in Proc. IEEE Int. Conf. Robot. Autom., 2017, pp. 1263–1268. https://doi.org/10.1109/ICRA.2017.7989150

  62. [62] R. Pelrine, R. D. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, R. J. Full, M. A. Rosenthal, and K. Meijer, “Dielectric elastomer artificial muscle actuators: toward biomimetic motion,” in: Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). SPIE,2002, pp. 126–137. https://doi.org/10.1117/12.475157

  63. [63] Y. Bar-Cohen, “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, ser,” Press Monograph Series. Society of Photo Optical, 2004.

  64. [64] R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater., vol. 12, no. 16, pp. 1223– 1225, 2000.
    https://doi.org/10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2

  65. [65] J. Zhang, J. Sheng, C. T. O’Neill, C. J. Walsh, R. J. Wood, J. H. Ryu, J. P. Desai, and M. C, “Yip, Robotic artificial muscles: Current progress and future perspectives,” IEEE Transactions on Robotics, 2019, 35(3), 761-781. https://doi.org/10.1109/TRO.2019.2894371

  66. [66] D. Villegas, M. V. Damme, B. Vanderborght, P. Beyl, and D. Lefeber, “Third-generation pleated pneumatic artificial muscles for robotic applications: Development and comparison with McKibben muscle,” Adv. Robot., vol. 26, no. 11-12, pp. 1205–1227, 2012. https://doi.org/10.1080/01691864.2012.689722

  67. [67] H. A. Baldwin, “Realizable models of muscle function,” in Proc. Rock Biomechanics Symp, 1969, p. 139148. https://doi.org/10.1007/978-1-4615-6558-1_14

  68. [68] F. Daerden, “Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements,” Master Thesis, Vrije University Brussel, Belgium, 1999.

  69. [69] B. Shih, D. Drotman, C. Christinason, Z. Huo, R. White, H. I. Christensen, and M. T. Tolley, “Custom soft robotic gripper sensor skins for haptic object visualization,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, to appear. https://doi.org/10.1109/IROS.2017.8202199

  70. [70] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, and D. F. Gruber, “Soft robotic grippers for biological sampling on deep reefs,” Soft Robot., vol. 3, no. 1, pp. 23–33, 2016. https://doi.org/10.1089/soro.2015.0019

  71. [71] C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Trans. Robot. Autom., vol. 12, no. 1, pp. 90–102, 1996. https://doi.org/10.1109/70.481753

  72. [72] M. A. Meller, J. B. Chipka, M. J. Bryant, and E. Garcia, “Modeling of the energy savings of variable recruitment McKibben muscle bundles,” pp. 1–11, 2015. https://doi.org/10.1117/12.2084444

  73. [73] C. S. Haines, N. Li, G. M. Spinks, A. E. Aliev, J. Di, and R. H. Baughman, “New twist on artificial muscles,” Proceedings of the National Academy of Sciences of the United States of America, 2016. https://doi.org/10.1073/pnas.1605273113

  74. [74] J. Foroughi, G. M. Spinks, G. G. Wallace, J. Oh, M. E. Lozlov, S. Fang, T. Mirfakhrai, J. D. W. Madden, M. K. Shin, S. J. Kim, and R. H. Baughman, “Torsional carbon nanotube artificial muscles,” Science 334(6055):494–497,2011.

  75. [75] C. L. Choy, F. C. Chen, and K. Young, “Negative thermal expansion in oriented crystalline polymers,” J Polym Sci, Polym Phys Ed 19(2):335–352,1981. https://doi.org/10.1002/pol.1981.180190213

  76. [76] S. H. Kim, M. D. Lima, M. E. Kozlov, C. S. Haines, G. M. Spinks, S. Aziz, C. Choi, H. J. Sim, X. Wang, H. Lu, D. Qian, J. D. W. Madden, R. H. Baughman, and S. J. Kim, “Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles,” Energy Environ Sci 8(11):3336–3344,2015. https://doi.org/10.1039/C5EE02219C

  77. [77] L. Reid, and W. Y. Hamad, “Electro-osmotic Actuators from Cellulose Nanocrystals and Nanocomposite Hydrogels,” ACS Applied Polymer Materials 4.1 (2021): 598-606. https://doi.org/10.1021/acsapm.1c01530

  78. [78] A. N. Mallick, M. Kumar, B. Basumatary, K. Arora and A. K. Sahani, “Design and Testing of Pressure Ulcers Preventive Bed for Neonates in Neonatal Intensive Care Units,” in IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 2, pp. 421-428, May 2023. https://doi.org/10.1109/TMRB.2023.3265635

  79. [79] M. Y. Choi, Y. Shin, H. S. Lee, S. Y. Kim, and J. H. Na, “Multipolar spatial electric field modulation for freeform electroactive hydrogel actuation,” Scientific reports 10.1 (2020): 2482. https://doi.org/10.1038/s41598-020-59318-3

  80. [80] L. Seurre, H. Aréna, S. Ghenna, C. Soyer, S. Grondel, C. Plesse, G. T. M. Nguyen, F. Vidal, and E. Cattan, “Behavior of conducting polymer-based micro-actuators under a DC voltage,” Sensors and Actuators B: Chemical 380 (2023): 133338. https://doi.org/10.1016/j.snb.2023.133338

  81. [81] M. K. Hilalpure, “Terfenol-D actuator behavior under pre-stress and step input current,” Materials Today: Proceedings 5.9 (2018): 19092-19101. https://doi.org/10.1016/j.matpr.2018.06.262

  82. [82] L. Chen, Y. Zhu, J. Ling, and M. Zhang, “Development and Characteristic Investigation of a Multidimensional Discrete Magnetostrictive Actuator,” IEEE/ASME Transactions on Mechatronics 27.4 (2022): 2071-2079. https://doi.org/10.1109/TMECH.2022.3173619

  83. [83] M. Scheutz, “The Inherent Dangers of Unidirectional Emotional Bonds between Humans and Social Robots,” Robot Ethics Ethical Soc. Implic. Robot., no. November, pp. 205–221, 2011.

 


ARTICLE INFORMATION


Received: 2023-07-07
Revised: 2023-07-07
Accepted: 2023-08-01
Available Online: 2023-08-01


Cite this article:

Mallick, A. N., Chander, A., Choudhari, A. P., Chattar, H. K., Sahani, A. (2023) A Review on the Role of Soft Robotics in Medical Assistive Devices. Int. j. autom. smart technol. https://doi.org/10.5875/ausmt.v13i1.2416

  Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.