International Journal of Applied Science and Engineering
Published by Chaoyang University of Technology

Yeng-Fong Shih 1*, Wei-Cheng Hou 1, Chun-Wei Chang 1Chien-Hsin Wu 2,3, Ru-Jong Jeng 2,3, Ying-Hsiao Chen 4

1 Department of Applied Chemistry, Chaoyang University of Technology, Taichung City 413310, Taiwan

2 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan

3 Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106319, Taiwan

4 Department of Chemical Engineering, National United University, Miaoli, 360023, Taiwan


 

Download Citation: |
{xpdfattach}


ABSTRACT


The aim of this research is to incorporate the nanographite particle (NGP) modified microencapsulated phase change material (GPCM) and carbon nanotube (CNT) into shape memory materials (SMMs). The GPCM with paraffin in the core and NGP in the shell possesses characteristics such as high thermal capacity, rapid heat absorption, and reduced electrical resistance. Moreover, the thermal storage effect of this GPCM may enhance the shape fixity and shape recovery of the SMMs. Additionally, CNTs with high aspect ratios and exceptional electrical and thermal conductivities can improve the mechanical strength and facilitate electrical or thermal activation of SMMs. After adding these GPCM and CNT to the polyurethane (PU), the thermal conductivity increased to 0.60 W/mK, and the surface resistance decreased to 2.5 × 102 Ω/sq. Upon thermal activation, the shape fixity and shape recovery of these SMMs can reach 98% and 99%, respectively. In addition, it was observed that the material could form a complete circuit under an AC voltage of 100V and successfully achieve the shape recovery effect. This indicates that the addition of GPCM and CNT can enable the SMMs to achieve shape recovery effects through heat, light, and electrical activation.


Keywords: Electrical activation, Nanographite, Phase change microcapsule, Shape memory.


Share this article with your colleagues

 


REFERENCES


  1. Bao, M., Lou, X., Zhou, Q., Dong, W., Yuan, H., Zhang, Y. 2014. Electrospun biomimetic fibrous scaffold from shape memory polymer of pdlla-co-tmc for bone tissue engineering. ACS Applied Materials and Interfaces, 6(4), 2611–2621.

  2. Chen, Z., Wang, J., Yu, F., Zhang, Z., Gao, X. 2015. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. Journal of Materials Chemistry A, 3(21), 11624–11630.

  3. El Feninat, F., Laroche, G., Fiset, M., Mantovani, D. 2002. Shape memory materials for biomedical applications. Advanced Engineering Materials, 4(3), 91–104.

  4. Hassan, A., Shakeel Laghari, M., Rashid, Y. 2016. Micro-encapsulated phase change materials: A review of encapsulation, safety and thermal characteristics. Sustainability, 8(10), 1046.

  5. Hassan H., Hallez H., Thielemans W., Vandeginste V. 2024. A review of electro-active shape memory polymer composites: Materials engineering strategies for shape memory enhancement. European Polymer Journal, 208, 112861.

  6. He, X., Zhang, L., Li, C. 2021. PEG-based polyurethane/ Paraffin@SiO2/ Boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property. Composites Communications, 25, 100609.

  7. Herath M., Epaarachchi J., Islam M., Fang L., Leng J. 2020. Light activated shape memory polymers and composites: A review. European Polymer Journal, 136, 109912.

  8. Jamekhorshid, A., Sadrameli, S.M. Farid, M. 2014. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531–542.

  9. Jing, J.-H., Wu, H.-Y., Shao, Y.-W., Qi, X.-D., Yang, J.-H., Wang, Y. 2019. Melamine foam-supported form-stable phase change materials with simultaneous thermal energy storage and shape memory properties for thermal management of electronic devices. ACS Applied Materials & Interfaces, 11(21), 19252–19259.

  10. Kaliyannan, G.V., Rajasekar, R., Gunasekaran, R., Anbupalani, M.S., Chinnasamy, M., Palaniappan, S.K. 2022. Doping of carbon nanostructures for energy application. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham, 83–109.

  11. Kim, B.K., Lee, S.Y., Xu, M. 1996. Polyurethanes having shape memory effects. Polymer, 37(26), 5781–5793.

  12. Koca, H.D., Turgut, A., Evgin, T., Ateş, I., Chirtoc, M., Šlouf, M., Omastová, M. 2023. A comprehensive study on the thermal and electrical conductivity of EPDM composites with hybrid carbon fillers. Diamond and Related Materials, 139, 110289.

  13. Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, R.A. 2004. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials, 3(2), 115–120.

  14. Kumar, P.S., Rajasekar, R., Sivasenapathy, C., Pal, S.K. 2020. Development of shape memory alloy based quarter car suspension system. Journal of Mechanical Engineering Research, 3(1), 21–24.

  15. Langer, R., Tirrell, D.A. 2004. Designing materials for biology and medicine. Nature, 428(6982), 487–492.

  16. Lendlein, A., Gould, O.E.C. 2019. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 4(2), 116–133.

  17. Li, W., Xu, L., Wang, X., Zhu, R., Yan, Y. 2022. Phase change energy storage elastic fiber: A simple route to personal thermal management. Polymers, 14(1), 53.

  18. Liu, Q., Li, M., Gu, Y., Wang, S., Zhang, Y., Li, Q., Gao, L., Zhang, Z. 2015. Interlocked CNT networks with high damping and storage modulus. Carbon, 86, 46–53.

  19. Liu, Y., Du, H., Liu, L., Leng, J. 2014. Shape memory polymers and their composites in aerospace applications: A review. Smart Materials and Structures, 23(2), 023001.

  20. Mather, P.T., Luo, X., Rousseau, I.A. 2009. Shape memory polymer research. Annual Review of Materials Research, 39(1), 445–471.

  21. Mineart, K.P., Tallury, S.S., Li, T., Lee, B., Spontak, R.J. 2016. Phase-change thermoplastic elastomer blends for tunable shape memory by physical design. Industrial and Engineering Chemistry Research, 55(49), 12590–12597.

  22. Parvate, S., Singh, J., Dixit, P., Vennapusa, J.R., Maiti, T.K., Chattopadhyay, S. 2021. Titanium dioxide nanoparticle-decorated polymer microcapsules enclosing phase change material for thermal energy storage and photocatalysis. ACS Applied Polymer Materials, 3(4), 1866–1879.

  23. Peng, G., Dou, G., Hu, Y., Sun, Y., Chen, Z. 2020. Phase change material (PCM) microcapsules for thermal energy storage. Advances in Polymer Technology, 2020, 9490873.

  24. Pilate, F., Toncheva, A., Dubois, P., Raquez, J.-M. 2016. Shape-memory polymers for multiple applications in the materials world. European Polymer Journal, 80, 268–294.

  25. Rajasekar, R., Sahoo, S., Lee, J.H., Das, A.K., Somasundaram M., Palaniappan S.K., Sivaraj S. 2021. Carbon-based multi-layered films for electronic application: A Review. Journal of Electronic Materials, 50(4), 1845–1892.

  26. Shih, Y.-F., Chen, P.T., Lau, E.M., Hsu, L.R. 2021. Thermally conductive microcapsule/high-density polyethylene composite for energy saving and storage. Modern Physics Letters B, 35(24), 2150429.

  27. Su, J.-F., Wang, X.-Y., Han, S., Zhang, X.-L., Guo, Y.-D., Wang, Y.-Y., Tan, Y.-Q., Han, N.-X., Li, W. 2017. Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells. Journal of Materials Chemistry A, 5(45), 23937–23951.

  28. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C. 2012. Stimulus-responsive shape memory materials: A review. Materials & Design, 33, 577–640.

  29. Sun, W., Wang, X., Zhang, X., Kong, X. 2020. Design and synthesis of microencapsulated phase-change materials with a poly(divinylbenzene)/dioxide titanium hybrid shell for energy storage and formaldehyde photodegradation. The Journal of Physical Chemistry C, 124(38), 20806–20815.

  30. Wan, X., He, Y., Liu, Y., Leng, J. 2022. 4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties. Additive Manufacturing, 53, 102689.

  31. Wang, H., Zhao, L., Chen, L., Song, G., Tang, G. 2017. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids, 111, 207–213.

  32. Wang, J., Xue, Z., Li, G., Wang, Y., Fu, X., Zhong, W.-H., Yang, X. 2018. A UV-curable epoxy with “soft” segments for 3D-printable shape-memory materials. Journal of Materials Science, 53(17), 12650–12661.

  33. Wang, M., Sayed, S. M., Guo, L.-X., Lin, B.-P., Zhang, X.-Q., Sun, Y., Yang, H. 2016. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules, 49(2), 663–671.

  34. Wu, C.-H., Chen, Y.-C., Dai, S.A., Chen, S.-C., Tung, S.-H., Lee, R.-H., Su, W.-C., Jeng, R.-J. 2017. Iterative synthesis of monodisperse pendants for making comb-like polyurethanes. Polymer, 119, 1–12.

  35. Wu, C.-H., Huang, Y.-C., Chen, W.-L., Lin, Y.-Y., Dai, S.A., Tung, S.-H., Jeng, R.-J. 2020a. Size-dependent phase separation and thermomechanical properties of thermoplastic polyurethanes. Polymer, 210, 123075.

  36. Wu, C.-H., Shau, S.-M., Liu, S.-C., Dai, SA., Chen, S.-C., Lee, R.-H., Hsieh, C.-F., Jeng, R.-J. 2015. Enhanced shape memory performance of polyurethanes via the incorporation of organic or inorganic networks. RSC Advances, 5(22), 16897–16910.

  37. Wu, H.-Y., Chen, R.-T, Shao, Y.-W., QI, X.-D., Yang, J.-H.,Wang, Y. 2019a. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustainable Chemistry & Engineering, 7(15), 13532–13542.

  38. Wu, H.-Y., Li, S.-T., Shao, Y.-W., Jin, X.-Z., QI, X.-D., Yang, J.-H., Zhou, Z.-W., Wang, Y. 2020b. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chemical Engineering Journal, 379, 122373.

  39. Wu, H., Deng, S., Shao, Y., Yang, J., Qi, X., Wang, Y. 2019b. Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Applied Materials & Interfaces, 11(50), 46851–46863.

  40. Wu, T., Hu, Y., Rong, H., Wang, C. 2021. SEBS-based composite phase change material with thermal shape memory for thermal management applications. Energy, 221, 119900.

  41. Xia, Y., He, Y., Zhang, F., Liu, Y., Leng, J. 2021. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Advanced Materials, 33(6), 2000713.

  42. Xiao, X., Kong, D., Qiu, X., Zhang, W., Liu, Y., Zhang, S., Zhang, F., Hu, Y., Leng, J. 2015. Shape memory polymers with high and low temperature resistant properties. Scientific Reports, 5(1), 14137.

  43. Yu, K., Liu, Y., Leng, J. 2014. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances, 4(6), 2961–2968.

  44. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., Magdassi, S. 2016. 3D Printing: 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials, 28(22), 4166–4166.

  45. Zhang, D., Liu, L., Lan, X., Leng, J., Liu, Y. 2022. Synchronous deployed design concept triggered by carbon fibre reinforced shape memory polymer composites. Composite Structures, 290, 115513.

  46. Zhang, L., Yang, W., Jiang, Z., He, F., Zhang, K., Fan, J., Wu, J. 2017. Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance. Applied Energy, 197, 354–363.

  47. Zhang, Q., Cui, K., Feng, J., Fan, J., Li, L., Wu, L., Huang, Q. 2015. Investigation on the recovery performance of olefin block copolymer/hexadecane form stable phase change materials with shape memory properties. Solar Energy Materials and Solar Cells, 132, 632–639.

  48. Zhang, Q., Feng, J. 2013. Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Solar Energy Materials and Solar Cells, 117, 259–266.

  49. Zhao, Q., QI, H. J., Xie, T. 2015. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 49-50, 79–120.

  50. Zhao, W., Liu, L., Zhang, F., Leng, J., Liu, Y. 2019. Shape memory polymers and their composites in biomedical applications. Materials Science and Engineering: C, 97, 864–883.


ARTICLE INFORMATION


Received: 2024-01-12
Revised: 2024-03-16
Accepted: 2024-04-08


Cite this article:

Shih, Y.F., Hou, W.C., Chang, C.W., Wu, C.H., Jeng, R.J., Chen, Y.H. 2024. Carbon nanotube/microcapsule/polyurethane nanocomposites for multi‐stimuli responsive shape memory polymers. International Journal of Applied Science and Engineering, 21, 2024018. https://doi.org/10.6703/IJASE.202409_21(4).005

  Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.