International Journal of Applied Science and Engineering
Published by Chaoyang University of Technology

M Talha Junaid1*, Abdul Saboor Karzad1#, Moussa Leblouba1

1 Department of Civil & Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, P. O. Box 27272, UAE
# Present Address: Department of Civil Engineering, College of Engineering, American University of Sharjah, Sharjah, P. O. Box 26666, UAE


 

Download Citation: |
Download PDF


ABSTRACT


This research paper reports results of strength development properties of ambient-cured alkali activated binders (AABs) and their reliance on different parameters, such as type of pre-cursor materials & their proportions, type & ratio of activators, and curing age. In this research study sodium silicate (SS) and sodium hydroxide (SH) solutions were used to activate a blend of low-calcium (class F) fly ash (FA) and ground granulated blast furnace slag (GGBFS). A total of 25 AABs mixes with various mix proportions are investigated in this research study. The results indicate that AABs can be manufactured with strength properties similar to ordinary Portland cement concrete (OPC). For further insight into the mechanical property variations of these samples SEM and EDS tests are conducted and their micrographs are presented here. A previously proposed analytical model to predict the compressive stress-strain response of these AABs is also modified in this study to better capture their post peak behaviour.


Keywords: Alkali activated binder, Elastic modulus, Compressive strength, Flexural strength, Stress-strain, SEM, EDS.


Share this article with your colleagues

 


REFERENCES


  1. Ahmed, F.B., Biswas, R.K., Ahsan, K.A., Islam, S., Rahman, M.R. 2021. Estimation of strength properties of geopolymer concrete, Materials Today: Proceedings. Elsevier Ltd, (xxxx). doi: 10.1016/j.matpr.2021.03.002.

  2. ASTM C39/C39M - 16b, 2016. Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, 1–7. doi: 10.1520/C0039.

  3. ASTM C496, 2006. Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, 1–5. doi: 10.1520/C0496.

  4. Binici, H. 2013. Engineering properties of geopolymer incorporating slag, fly ash, silica sand and pumice, Advances in Civil and Environmental Engineering, 01, 108–123.

  5. Chandrakanth, V., Koniki, S. 2020. Effect of elevated temperature on geo-polymer concrete - A Review, E3S Web of Conferences, 184, 1–4. doi: 10.1051/e3sconf/202018401090.

  6. Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., Hanjitsuwan, S. 2012. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems, Journal of Materials Science, 47, 4876–4883. doi: 10.1007/s10853-012-6353-y.

  7. Collins, M.P., Mitchell, D., MacGregor, J.G. 1993. Structural design considerations for high-strength concrete, Concrete International, 15, 27–34.

  8. Davidovits, J. 1991. Geopolymers - Inorganic polymeric new materials, Journal of Thermal Analysis, 37, 1633–1656. doi: 10.1007/BF01912193.

  9. Davidovits, J. 1994. Global warming impact on the cement and aggregate industries, 6, 263–278.

  10. Davidovits, J., Orlinski, J. (Eds.) 1988. Soft mineralurgy and geopolymers, Proceedings of the 1st International Conference on Geopolymer ’88, 1, 25–48.

  11. Deb, P.S., Nath, P., Sarker, P.K. 2014. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature, Materials and Design. Elsevier Ltd, 62, 32–39. doi: 10.1016/j.matdes.2014.05.001.

  12. Diaz, E.I., Allouche, E.N., Eklund, S. 2010. Factors affecting the suitability of fly ash as source material for geopolymers’, Fuel. Elsevier Ltd, 89, 992–996. doi: 10.1016/j.fuel.2009.09.012.

  13. Diaz-Loya, E.I., Allouche, E.N., Vaidya, S. 2011. Mechanical properties of fly-ash-based geopolymer concrete, ACI Materials JournalMaterials Journal, 108, 300–306.

  14. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo A., van Deventer, J.S.J. 2007. Geopolymer technology: The current state of the art, Journal of Materials Science, 42, 2917–2933. doi: 10.1007/s10853-006-0637-z.

  15. Fernández-jiménez, A. 2006. Engineering properties of alkali-activated fly ash concrete, ACI Materials Journal, 103. doi: 10.14359/15261.

  16. Ganesh, A.C., Muthukannan, M. 2018. A review of recent developments in geopolymer concrete, International Journal of Engineering & Technology, 7, 696. doi: 10.14419/ijet.v7i4.5.25061.

  17. Hardjito, D., Cheak, C.C., Ing, C.H.L. 2008. Strength and setting times of low calcium fly ash-based geopolymer mortar, Modern Applied Science, 2, 3–11. doi: 10.5539/mas.v2n4p3.

  18. Hassan, A., Arif, M., Shariq, M. 2019. Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure, Journal of Cleaner Production. Elsevier B.V., 223, 704–728. doi: 10.1016/j.jclepro.2019.03.051.

  19. Junaid, M.T., Kayali, O., Khennane, A., Black, J. 2015. A mix design procedure for low calcium alkali activated fly ash-based concretes, Construction and Building Materials. Elsevier Ltd, 79, 301–310. doi: 10.1016/j.conbuildmat.2015.01.048.

  20. Junaid, M.T., Khennane, A., Kayali, O. 2015. Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures, Materials and Structures/Materiaux et Constructions, 48, 3357–3365. doi: 10.1617/s11527-014-0404-6.

  21. Junaid, M.T., Khennane, A., Kayali, O. 2016. Stress-strain behaviour of alkali activated fly-ash concrete at elevated temperatures, 2nd International Conference on Advances in Cement and Concrete Technology in Africa.

  22. Junaid, M.T., Khennane, A., Kayali, O., Sadaoui, A., Picard, D., Fafard, M. 2014a. Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures, Cement and Concrete Research. Elsevier Ltd, 60, 24–29. doi: 10.1016/j.cemconres.2014.01.026.

  23. Junaid, M.T., Khennane, A., Kayali, O., Sadaoui, A., Picard, D., Fafard, M. 2014b. Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures, Cement and Concrete Research. Elsevier Ltd, 60, 24–29. doi: 10.1016/j.cemconres.2014.01.026.

  24. Junaid, T.M., Kayali, O., Khennane, A. 2017. Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures, Materials and Structures/Materiaux et Constructions. Springer Netherlands, 50, 1–10. doi: 10.1617/s11527-016-0877-6.

  25. Kong, D., Sanjayan, J., Sagoe-Crentsil, K. 2006. The behaviour of geopolymer paste and concrete at elevated temperatures, in International Conference on Pozzolan, Concrete and Geopolymer, Khon Kaen, Thailand, 105–118.

  26. Lee, N.K., Lee, H.K. 2013. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials. Elsevier Ltd, 47, 1201–1209. doi: 10.1016/j.conbuildmat.2013.05.107.

  27. Li, Y., Shen, L., Mirmoghtadaei, R., Ai, L. 2017. A Design of Experiment Approach to Study the Effects of Raw Material on the Performance of Geopolymer Concrete, Advances in Civil Engineering Materials, 6, 526-549. https://doi.org/10.1520/ACEM20160007.

  28. Lloyd, N.A., Rangan, B.V. 2010. Geopolymer concrete with fly ash, Sustainable Construction Materials and Technologies, 7, 1–12. doi: 10.1063/1.4775784.

  29. Malhotra, V.M. 2002. Introduction: Sustainable development and concrete technology, Concrete International, 24, 22.

  30. McCaffrey, R. 2002. Climate change and the cement industry, GCL Magazine, 5. doi: 10.1001/jama.275.18.1405.

  31. Mindess, S., Young, J.F., Darwin, D. 2003. Concrete. Pearson Education Inc.

  32. Nath, P., Sarker, P.K. 2014. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Construction and Building Materials. Elsevier Ltd, 66, 163–171. doi: 10.1016/j.conbuildmat.2014.05.080.

  33. Nath, P., Sarker, P.K. 2015. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature, Cement and Concrete Composites. Elsevier Ltd, 55, 205–214. doi: 10.1016/j.cemconcomp.2014.08.008.

  34. Nath, P., Sarker, P.K. 2017. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Construction and Building Materials. Elsevier Ltd, 130, 22–31. doi: 10.1016/j.conbuildmat.2016.11.034.

  35. Neville, A.M., Brooks, J.J. 2010. Concrete technology. Second, Pearson Education Limited. Second. England: Pearson.

  36. Ravikumar, D., Peethamparan, S., Neithalath, N. 2010. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder, Cement and Concrete Composites. Elsevier Ltd, 32, 399–410. doi: 10.1016/j.cemconcomp.2010.03.007.

  37. Shehab, H.K., Eisa, A.S., Wahba, A.M. 2016. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement, Construction and Building Materials. Elsevier Ltd, 126, 560–565. doi: 10.1016/j.conbuildmat.2016.09.059.

  38. Shrivas, R., Paramkusam, B.R., Dwivedi, S.B. 2021. Effect of alkali concentration on strength development in jointly activated pond ash-GGBFS mixtures through geopolymeric reactions, KSCE Journal of Civil Engineering. doi: 10.1007/s12205-021-1869-9.

  39. Soutsos, M., Boyle, A.P., Vinai, R., Hadjierakleous, A., Barnett, S.J. 2016. Factors influencing the compressive strength of fly ash based geopolymers, Construction and Building Materials. Elsevier Ltd, 110, 355–368. doi: 10.1016/j. conbuildmat.2015.11.045.

  40. ASTM C78 / C78M-21, Standard test method for flexural strength of concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2021, www.astm.org

  41. ASTM C469 / C469M-14e1, Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression, ASTM International, West Conshohocken, PA, 2014, www.astm.org

  42. Topark-Ngarm, P., Chindaprasirt, P., Sata, V. 2015. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete, Journal of Materials in Civil Engineering, 27, 04014198. doi: 10.1061/(ASCE) MT.1943-5533.0001157.

  43. US Geological-Survey, 2013. Mineral commodity summaries 2013. doi: 10.3133/mineral2013.

  44. Van Jaarsveld, J.G.S., Van Deventer, J.S.J., Lukey, G.C. 2002. The effect of composition and temperature on the properties of fly ash-and kaolinite-based Geopolymers, Chemical Engineering Journal, 89, 63–73.

  45. Wattimena, O.K., Antoni, Hardjito, D. 2017. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer, AIP Conference Proceedings, 1887. doi: 10.1063/1.5003524.

  46. Xie, J., Kayali, O. 2014. Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature, Construction and Building Materials. Elsevier Ltd, 67, 20–28. doi: 10.1016/j.conbuildmat.2013.10.047.

  47. Yadollahi, M.M., Benli, A. 2017. Stress-strain behavior of geopolymer under uniaxial compression, Computers and Concrete, 20, 381–389. doi: 10.12989/cac.2017.20.4.381


ARTICLE INFORMATION


Received: 2020-12-28
Revised: 2021-04-25
Accepted: 2021-07-21
Available Online: 2021-09-01


Cite this article:

Junaid, M.T., Karzad, A.S., Leblouba, M. 2021. Investigation on the properties of ambient cured alkali activated binder concrete. International Journal of Applied Science and Engineering, 18, 2020339. https://doi.org/10.6703/IJASE.202109_18(5).018

  Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.